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Abstract. κ-curves, which control one curvature extremum on each curve segment instead
of the end points, are de�ned as a sequence of the quadratic Bézier curve with three control
points. The authors have proposed generalized trigonometric basis functions consisting of
(sin t, cos t, 1) and de�ned the generalized trigonometric curve in order to extend κ-curves.
In this study, we will show that the linear generalized trigonometric curve de�ned by three
control points generates an elliptical arc, but cannot generate an arbitrary elliptical curve.
Hence we will rationalize it to express an arbitrary elliptical arc as well as arbitrary arcs of
parabola and hyperbola.
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1 INTRODUCTION

On the extensions of the cubic Bézier curve with four control points, to connect multiple segments with
required continuity has been strongly intended and for example, tangent and curvature continuity at the start
and end points are guaranteed independently by adding extra shape parameters. Contrary to this research
trend, κ-curves, which control one curvature extremum on each curve segment instead of the end points, are
de�ned as a sequence of the quadratic Bézier curve with three control points. The authors have proposed
generalized trigonometric basis functions consisting of (sin t, cos t, 1) and de�ned the generalized trigonometric
curve in order to extend κ-curves [6]. In this study, we will show that the linear generalized trigonometric
curve de�ned by three control points generates an elliptical arc, but cannot generate an arbitrary elliptical
curve. Hence we will rationalize it to express an arbitrary elliptical arc as well as arbitrary arcs of parabola and
hyperbola.
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2 κ-CURVE

The κ-curve, proposed recently by [10], is an interpolating spline which is curvature-continuous almost ev-
erywhere and passes through input points at the local curvature extrema. It has been implemented as the

curvature tool in Adobe Illustrator® and Photoshop® and is accepted as a favoured curve design tool by
many designers (see e.g. [2, 3]).

We consider the reasons for the success of κ-curve to be:

1. Information along contours is concentrated at local maxima of curvature.

2. Curves of low degree have smooth distribution of curvature.

3. G2-continuous curves tend to look fairer than only G1-continuous ones.

Attneave [1] suggested, based on his empirical study, that information along contours is concentrated in
regions of high magnitude of curvature, as opposed to being distributed uniformly along the contour, and
it is further concentrated at local maxima of curvature (see also [11]). Although Attneave never published
the details of his methods, [7] conducted a similar experiment, and obtained the same results. Levien and
Séquin [5] argue similarly, and assert that points of maximal curvature are salient features.

The curvature of a polynomial curve is given by a relatively complicated rational function [4], and its
distribution might not be globally smooth. However, if the curve is of a low degree, the curvature distribution
is more uniform and the curve is fairer, thus more suitable for illustration. The quadratic polynomial curve has
the nice property that its curvature has only one local maximum, and its location is easily computable [10],
which makes the handling of curvature extrema much easier.

Graphic designers often accept G1 continuity as good enough for illustration. However, discontinuity
remains; for example, if you join a straight line and a circular arc with G1 continuity, the rhythm of the curve
will be broken at the joint. For this reason we give pereference to G2-continuous curves.

Figure 1 shows examples of the εκ-curve (Miura et al., 2021), which is an extension of the κ-curve and
can control its curvature extrema. The left �gures use cubic Bézier curves for their curve segments and the
right �gures use linear generalized trigonometric curves for them, which are rationalized in this paper. In these
�gures a is a parameter controling curvature extrema.

3 GENERALIZED TRIGONOMETRIC CURVE

In this section, we describe the generalized trigonometric curve. The blending functios of the curve is based
on the trigonometric cubic Bernstein-like basis [9], which we are going to review �rst.

The trigonometric cubic Bernstein-like basis functions have an extra shape parameter α, and are de�ned
by

f0 = αS2 − αS + C2 = 1 + (α− 1)S2 − αS,
f1 = αS(1− S),
f2 = α(S2 + C − 1) = αC(1− C),
f3 = (1− α)S2 − αC + α = 1 + (α− 1)C2 − αC, (1)

where S = sin πt
2 , C = cos πt2 , for α ∈ (0, 2), t ∈ [0, 1]. Note that these functions satisfy partition of unity,

i.e.,
∑3
i=0 fi(t) = 1 for any α. When α = 1, the above functions are simpli�ed to

f0 = 1− S,
f1 = S(1− S),
f2 = C(1− C),
f3 = 1− C. (2)
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a=0.7 a=0.55

Figure 1: A Christmas tree drawn with εκ-curves using the cubic Bernstein basis functions (left) and the
quadratic trigonometric basis functions (right). Mark � indicates an input point. Note that the latter has
more rounded forms and-in this case-preferable.

If we add the second and third functions together and rename them to u, v and w, we obtain blending functions
{u, v, w} as follows:

u = 1− S,
v = S(1− S) + C(1− C) = S + C − 1,

w = 1− C.
(3)

It is straightforward to de�ne a curve by these blending functions with three control points, which we can
regard as a �linear� generalized trigonometric curve since the highest degree the trigonometric functions are in
is one.

One interesting relationship among these functions is

v2 = 2uw, (4)

which enables

(u+ v + w)2 = u2 + 2uv + 4uw + 2vw + w2, (5)

and yields the �ve blending functions {u2, 2uv, 4uw, 2vw, w2}, associated with �ve control points. We
can de�ne a curve using these blending functions and regard it as a �quadratic� trigonometric curve since the
highest power of each blending function is now degree two.

In a similar way, we can extend blending functions of �degree� n with 2n + 1 control points. We can
perform a recursive procedure called Gobithaasan-Miura's algorithm to evaluate a curve of any degree similar
to de Casteljau's algorithm avoiding the overhead of trigonometric function evaluation. This means that it is
not necessary to calculate the coe�cients of blending functions, or keep a coe�cient table.

In order to analyze what kind of curve can be generated by a linear generalized trigonometric curve, without
loss of generality up to similarity, we specify its three control points as (−1, 0), (b, h), and (1, 0). When h = 0,
the curve becomes a line segment on the x-axis and we assume that h 6= 0. Then the linear generalized

Computer-Aided Design & Applications, 20(2), 2023, 225-233
© 2023 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


228

trigonometric curve is given by

x = (b+ 1)S + (b− 1)C − b (6)

y = h(S + C − 1) (7)

By using the above equations and S2 +C2 = 1 and eliminating S and C, the following equation is obtained:

h2x2 + (b2 + 1)y2 − 2b h xy + 2hy − h2 = 0 (8)

In the above euqation, the coe�cients of x2 and y2 are h2 > 0 and b2 +1 > 0, respectively and this equation
represents an ellipse [8]. Hence, the linear generalized trigonometric curve represents an elliptical arc cut out
from the ellipse. Because of symmetry of the circle, if the lengths of the two line segments connecting the
control points are di�erent, no circular arc is represented. Furthermore if we assume that the locations of the
control points are made to be symmetrical along the y-axis by b = 0,

h2x2 + y2 + 2hy − h2 =
1

h2

(
x2 +

1

h2
(y2 + h)2 − 2

)
= 0 (9)

This equation does not represent a circle except for h = ±1 as explained below. When h = ±1, the two line
segments connecting the control points become the same length and orthogonal each other and the linear
generalized trigonometric curve represents a quater circular arc. Therefore in order to express an arbinrary
circular or elliptical arc, its rationalization is necessary.

Although the left side of equation (8) includes the term of y and a constant, we can elliminate them by
translating the curve along the y-axis. Hence it is enough to analyze the following quadratic form:

h2x2 − 2b h xy + (b2 + 1)y2 = (x, y)M

(
x

y

)
(10)

where

M =

(
h2 −bh
−bh (b2 + 1)

)
(11)

The eigenvalues λ0, λ1of matrix M are given by

λ0 =
1

2

(
b2 + h2 + 1−

√
b2(b2 + 2(h2 + 1)) + (h2 − 1)2

)
(12)

λ1 =
1

2

(
b2 + h2 + 1 +

√
b2(b2 + 2(h2 + 1)) + (h2 − 1)2

)
(13)

Hence by applying an appropriate transformation, we obtain

λ0x
2 + λ1y

2 = r2. (14)

If h 6= 0, λ0 > 0 and λ1 > 0. Then the above equation represents an ellipse. Especially when λ0 = λ1, or
since b2 + h2 + 1−

√
b2(b2 + 2(h2 + 1)) + (h2 − 1)2 = 0, b = 0 and h = ±1. So this represents a circle. In

this case, the linear generalized trigonometric curve becomes a quater circular arc. Even though we assume
b = 0 and locate the control points symmetrically, some speci�c circular arc is represented and no arbitray
circular arc is obtained. In the ellipse case, the number of the parameters of the implicit function expressing
an ellipse is essentially 5 and one degree of freedom remains by specifying the postions of the end points and
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tangent vectors there (4 constraints). However the ratio of λ0 and λ1 is constrained as the circle, we cannot
represent an arbitray circular and elliptical arc and we need its rationalization.

Figure 2 shows examples of the linear generalized trigonometric curve. To clarify its properties, we draw
quadratic Bézier curves de�ned by the same control points at the same time. In Fig.2(a), the locations of the
control points are (0, 0), (1, 1) and (1, 0). In (b) and (c), only the �rst control points are translated to (0, 1)
and (0, 2). The generalized trigonomtric curves are drawn in blue and the quadratic Bézier curves in orange.
From these �gures, the generalized trigonometric curve has smaller absolute curvature and are more rounded
than the Bézier curve. Especially in (b), the two line segments connecting the control points become the same
length and orthogonal each other and its equation can be simpli�ed as (sin π

2 t, cos
π
2 t). It's a quarter circular

arc.

GTC

GTC

GTC

Bezier

Bezier
Bezier

0.5

0.5

2.0

1.0

(a) (b) (c)

Figure 2: Examples of linear GT curves with quadratic Bézier curves.

4 RATIONAL QUADRATIC BÉZIER CURVE

It is very common to represent a circular arc by a quadratic rational Bézier curve as

C(t) =
(1− t)2P 0 + 2(1− t)tσP 1 + t2P 2

(1− t)2 + 2(1− t)tσ + t2
(15)

where σ is a weight of P 1. For example when P 0 = (−1, a), P 1 = (0, 0) and P 2 = (1, a) for a given a, if
σ = 1/

√
a2 + 1 the curve becomes a circular arc.

Hence we de�ne a blending function w(t) as follows:

w(t) =
t2

(1− t)2 + 2(1− t)tσ + t2
(16)

For this basis, the following equations is satis�ed:

v(t)2 = 4σ2u(t)w(t) (17)

Figure 3(a) shows graphs of {u(t), v(t), w(t)} = {w(1− t), 1− w(1− t)− w(t), w(t)} for σ = 1/4, 1/2,
1/
√
2, 2 and 10. By increasing σ, a curve de�ned by these basis functions approaches to a polyline connecting

its control points.
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Figure 3: (a) Rational quadratic Bernstein basis functions, (b) Comparison between the rational quadratic
Bernstein basis functions and {1− sin(πt/2), sin(πt/2) + cos(πt/2)− 1, 1− cos(πt/2)}

Note that if σ = 1, since the basis becomes that of the non-rational quadratic Bernstein basis, α = 4. If
σ = 1/

√
2, α = 2. However w(t) 6= 1− cos(πt/2). Figure 3(b) compares these two basis functions and they

are very similar, but not indentical.
Since there are two types of the bases whose α = 2, the conditions

{1− w(t)− w(1− t)}2 = αw(t)w(1− t) (18)

for a given constant α > 0 with w(0) = 0, w(1) = 1 and dw(0)/dt = 0 will not determine function w(t)
uniquely.

Notice that when t = 1/2, from the following equation:

(1− 2w(
1

2
))2 = αw(

1

2
)2

(4− α)w(1
2
)2 − 4w(

1

2
) + 1 = 0 (19)

When α = 4, w(1/2) = 1/4. Since 0 < w(1/2) < 1, when α < 4, w(1/2) = (2 −
√
α)/(4 − α) and when

α > 4, w(1/2) = (
√
α − 2)/(α − 4). Therefore although the basis functions are di�erent, if they have the

same α value, when t = 1/2, the values of these basis functions are exactly the same.

5 UNIQUENESS THEOREM OF THE SHAPE OF THE CURVE

We will prove a theorem called uniqueness theorem of the shape of the curve. We assume that for 0 ≤ t ≤ 1
a curve C(t) is de�ned by three control points P 0, P 1 and P 2 as

C(t) = u(t)P 0 + v(t)P 1 + w(t)P 2 (20)

where 0 ≤ w(t) ≤ 1, 0 ≤ v(t) ≤ 1 and

u(t) + v(t) + w(t) = 1

u(t) = w(1− t)
w(0) = 0

w(1) = 1

dw(t)

dt
> 0 for 0 < t < 1 (21)
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If there is such a constant α that

v(t)2 = αu(t)w(t) (22)

for 0 ≤ t ≤ 1, then the following theorem is satis�ed:

Theorem 1. Uniqueness Theorem: The shape of the curve C(t) is determined by α exclusively and it does

not depend on the basis functions {u(t), v(t), w(t)} which are used to de�ne the curve.

Proof. For a given value w0 = w(t0), 0 ≤ w0 ≤ 1, let u0 = u(t0). Since v(t) = 1− u(t)− w(t),

(1− u0 − w0)
2 = αu0w0 (23)

Hence

u0 =
(α− 2)w0 + 2−

√
αw0((α− 4)w0 + 4)

2
(24)

Since u0 is uniquely determined by w0, the location of the point C(t0) is also uniquely determined because
{u(t), v(t), w(t)} are barycentric coordinates of triangle P 0P 1P 2. By changing t from 0 to 1, w(t) also
increases from 0 to 1 and the shape of the curve C(t) is also completely determined.

Figure 4 shows u0 for 0 < w0 < 1 and 0 < α < 10

Figure 4: u0 for 0 < w0 < 1 and 0 < α < 10

6 RATIONAL GENERALIZED TRIGONOMETRIC CURVE

Similar to the rational quadratic Bézier curve, with weight ω we de�ne the rational linear generalized trigono-
metric curve as follows:

C(t) =
u(t)P 0 + v(t)ωP 1 + w(t)P 2

u(t) + ωv(t) + w(t)
(25)

= ur(t)P 0 + vr(t)P 1 + wr(t)P 2 (26)

where

ur(t) =
1− S

u(t) + v(t)ω + w(t)
, (27)

vr(t) =
S + C − 1

u(t) + v(t)ω + w(t)
, (28)

wr(t) =
1− C

u(t) + v(t)ω + w(t)
. (29)
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Then

vr(t)
2 = 2ω2 ur(t)wr(t) (30)

Therefore by comparing equations (17) and (30), and applying Uniquness theorem, when ω =
√
2σ, the

shapes of the linear generalized trigonometric curve and the quadratic Bézier curve are identical although their
parametrizations are di�erent. Therefore the rational linear generalized trigonometric curve can represent an
arbitrary elliptical arc as well as arbitrary arcs of parabola and hyperbola. Please refer to [4] about conics as
rational quadratics. Furthermore by the same reason, if we rationalize generalized hyperbolic curve and splines
in tension, they can represent an arbitrary elliptical arc as well as arbitrary arcs of parabola and hyperbola.

7 CONCLUSIONS

We has shown that the linear generalized trigonometric curve de�ned by three control points generates an
elliptical arc, but cannot generate an arbitrary elliptic curve. Hence, we have rationalized it to express an
arbitrary elliptical arc as well as arbitrary arcs of parabola and hyperbola. By the same reason, we have
shown that the rational generalized hyperbolic curve and rational splines in tension can represent an arbitrary
elliptical arc as well as arbitrary arcs of parabola and hyperbola. In the future research we will investigate
other properties of these rationalized curves.
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