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Abstract. The remarkable success of convolutional neural networks (CNNs) on long stand-
ing problems in computer vision has led to the recent resurgence of interest in deep neural
networks and their applications to problems in other domains. CNNs have been successfully
applied to 2D images, videos, and different types of one-dimensional data. Neural networks
like CNNs can progressively learn discriminative hierarchical features, thus capturing the un-
derlying structure of the data very effectively yielding state-of-the-art results on problems in
many domains.

It is however difficult to extend CNNs to 3D data without losing some structural infor-
mation. CNNs have been applied to projections of and patches on 3D models. 3D CNNs
have also been used with voxelized 3D data with some success. However, the lack of a
natural orientation and order of point data in 3D hinder effective utilization of these deep
learning-based techniques. In this paper we describe a simple and easy to implement method
for discretely encoding partial point neighborhoods for direct input to traditional CNNs. Our
encoding method captures and preserves most of the structural information present in a point
neighborhood. We show the usefulness of this technique for accurately predicting point co-
ordinates and other properties. In particular, we train a CNN model with our encoding for
patching holes in meshes.

Keywords: Convolutional Neural Networks, Point Cloud, Hole Patching, Mesh Completion
DOI: https://doi.org/10.14733/cadaps.2023.290-305

1 INTRODUCTION

The unexpected success of deep learning methods in image and speech recognition has prompted efforts to
obtain success on similar problems in 3D. So the past few years has seen growing interest in extending deep
learning methods to 3D data. However, such efforts have been impeded by issues related to the nature of 3D
CAD data and the limitations of current deep learning techniques. One-dimensional time-series data and 2D
image data both have strong structural properties and natural orientations that can be leveraged by CNNs and
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Figure 1: Our method of encoding partial neighborhoods of point clouds comprising: first grouping the
neighborhood points (1) into rings (2), ordering the points in the rings (3), and finally oversampling the points
in the rings to create a 2D matrix (4) of point coordinates and other properties.

recurrent neural networks (RNNs). On the other end, it is generally expected that the underlying structure,
if any, of high dimensional data will be discovered automatically by a deep enough neural network trained on
sufficient data. 3D data, for e.g. from CAD models, sits uncomfortably between these extremes.

3D meshes and point clouds have valuable structural information that should preferably not be discarded in
pre-processing steps. Neural network models like CNNs can explicitly utilize this underlying structure without
requiring a large number of samples. However, there are enough degrees of freedom in 3D, particularly in the
way the 3D points comprising the models are oriented and ordered, that it becomes difficult to normalize the
data for use with such networks. Neither can the structure of the 3D data be completely abandoned as that
would restrict its usefulness to global inference tasks such as object recognition and classification.

Each current approach to deep learning in 3D therefore entails different issues of its own. 3D CNNs on
voxelized data are both memory and computation intensive. Surface inaccuracies introduced by voxelization
also preclude accurate prediction of local surface properties. Techniques where the point data is embedded
in a high-dimensional space and then aggregated for pose and order invariance cannot be easily extended for
local estimation tasks. Projection and patch-based methods can be used for tasks such as mesh completion,
local estimation, and mesh in-painting, but they are not always very accurate. Graph-based methods have
been used for shape correspondence and retrieval, but they haven’t yet been investigated for local interpolation
tasks.

Our method is inspired by a combination of ideas from graph-based [10][12][9] and patch-based methods
[15][19]]20]. The method works directly on untransformed point clouds and is comparatively simple to im-
plement. The method does not requires data normalization such as the conversion into height maps needed
in patch-based methods. Nor does the method require conversion to polar coordinates or any special neural
network machinery used in graph-based methods. We encode a point and its neighborhood as a 2D image
containing raw point coordinates and properties which can be directly used to train a standard CNN model.

The method can be used to predict and interpolate points and their properties; we illustrate the method in
the context of patching holes on smooth surfaces. Our broad approach for patching holes in meshes is based
on the advancing front triangulation method described in [22] but we estimate the points using a CNN instead
of using the Moving Least-Squares (MLS) technique. An overview of the encoding process is shown in Fig. 1.

The rest of the paper is organized as follows. First we briefly survey some traditional and modern learning-
based techniques for patching holes in 3D meshes and then review literature on deep learning techniques for
point cloud completion which are potentially adaptable for local estimation tasks. Additionally, we survey some
general techniques for deep learning on 3D data. All these surveys are contained in Sec. 2. This is followed
by a detailed description of our approach for encoding partial point neighborhoods in Sec. 3. In Sec. 4 we
describe the CNN model architecture and discuss issues with creation of training data, training of the model
and its use for point prediction. We present the results in Sec. 5 and, and compare them with the results
from the more traditional MLS-based technique. We provide conclusions in 6 and indicate some directions
for future research.
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2 BRIEF SURVEY OF RECENT TECHNIQUES

Mesh patching has been extensively studied and there are numerous techniques applicable to different problems
depending on the required outcome. All mesh patching techniques are essentially based on understanding the
local neighborhood around the hole. Traditional methods approximate the neighborhood by fitting a low-
degree polynomial or a smooth surface over the surrounding points. These methods thus “learn” the local
neighborhood on the fly. In contrast, modern methods learn larger regions using more elaborate models having
many more tunable parameters. These modern methods must be pre-trained on the hole neighborhood;
typically no learning happens while the hole is being patched.

We first present a brief overview of some traditional methods as we use a triangulation technique from
a traditional method and our results are compared with that technique. Thereafter we briefly discuss some
learning-based techniques for patching holes and completing point clouds, and lastly we broadly survey some
techniques for deep learning on 3D data.

2.1 Traditional Techniques for Patching Holes

There are many traditional hole filling techniques; see [14] for a detailed survey and comparison of methods.
Many of these are patch-based techniques where local patches around the hole boundary are considered one-
by-one and the interior of the hole is then interpolated from these neighborhood patches. For patching smooth
surfaces, an effective method is to fit a bi-quadratic or a bi-cubic polynomial on the neighborhood of a point
near the hole boundary. This point is then projected on the polynomial surface to improve the point estimation.

The process of iteratively interpolating from the boundary of the hole by locally fitting surfaces using a
least squares approach is known as the MLS technique (see [8][23]). In [22] the MLS technique is used with
a boundary triangulation method for filling holes on smooth mesh surfaces.

A Poisson equation can be used to fit a smooth surface in place of a low-degree polynomial as in [33].
Radial basis functions have also been used to interpolate the surface between neighborhood regions [3][29].
Volumetric approaches for patching multiple holes simultaneously are presented in [16]. lterative subdivision
of a coarse initial triangulation with smoothening is studied in [28]. Several variations of these techniques and
other approaches are also reported in literature.

2.2 Learning-based Techniques for Patching Holes

More recently, several learning-based techniques have been investigated for patching meshes. In [15], a
method for in-painting 3D meshes based on dictionary learning and sparse coding is described. The mesh
is first subdivided into small patches, and the patches are converted into height maps by fitting a plane on
points in the patch and computing the signed distance of the points from this plane. The height maps are
then learned by a sparse coding model. The method tries to approximate the geometric texture in the region
of the hole. It can fill holes on non-smooth surfaces.

A similar dictionary-based learning method for patching small holes is proposed in [19], with the dictionary
learnt from many different shapes. This work is extended in [20] by using a CNN-based autoencoder. The
mesh is sampled into rectangular patches, which are then projected onto locally fitted planes and converted
into height maps. The CNN autoencoder is trained by artificially creating holes in these patches and letting
the model reconstruct the original patches.

2.3 Point Cloud Completion

Point cloud completion is a recent research area made possible by modern deep learning methods. The aim
of point cloud completion is to create dense point clouds from sparse ones; these methods could potentially
be adapted for local feature estimation. We therefore include a brief survey here.
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In [32] a method for completing a sparse point cloud, Point Completion Network (PCN), is presented
based on the PointNet architecture [17]. Here two stacked layers of PointNet are used in an encoder-decoder
configuration to predict a coarse point cloud. Patches from the coarse point cloud are then sampled and passed
through another decoder to create a denser point cloud. Similarly, a gridding residual network is described in
[30], where the input point cloud is converted into a differentiable grid and a 3D convolutional encoder-decoder
network is used to learn from the grid. Additional processes are designed to recreate a coarse point cloud and
recover local details.

In [2] a point cloud completion method using a Variational AutoEncoder (VAE) is described that learns the
latent space of mesh patches across a large number of meshes. This generalizes better to unseen cases, while
also allowing the learned model to be pose invariant. In [25] an autoencoder model is trained on complete
point clouds to generate large latent features. A different network is then used to train partial point clouds
and a Generative Adversarial Network (GAN) is used to help align the generated features. A VAE is used in
[13] to create a dense point cloud using a similar coarse-to-fine process.

2.4 General Deep Learning Techniques for 3D

Deep learning in 3D is an active area of research. The focus is largely on object classification, recognition
and shape retrieval; these same tasks have also been investigated using traditional techniques. A comparative
study of the various local 3D shape descriptors forming the backbone of many traditional techniques is done
in [4]. We briefly point to some popular methods of deep learning for 3D object classification and recognition,
and describe some techniques of local estimation. For more comprehensive surveys see [6][1][5].

CNNs have been applied to 2D projections of 3D data for 3D object classification leading to state-of-the-
art results [21][31][7]. 3D CNNs have been used with voxelized 3D data and octrees for shape analysis and
retrieval [27][18][24]. Points in 3D point clouds have been embedded into high-dimensional spaces [17] and
high-dimensional feature descriptors of mesh vertices have been learned using graph-based methods [10][12].

The use of deep learning for local estimation and interpolation in 3D meshes has received relatively less
attention; this is possibly due to lack of sufficient data for training from a single model among other reasons.
Deep neural networks with a large number of parameters require a large amount of training data and self-
sampling from a single 3D model may not always be sufficient. In spite of this, CNNs along with GANs have
been trained on small patches sampled from a mesh surface for in-painting meshes [20][26].

In [11] a method for consolidating point clouds by learning over a large set of globally distributed data is
described. The objective here is to obtain a uniform and dense point cloud with properly oriented normals
and enhanced sharp features. The input point cloud is self-sampled globally to create a large number of
unique samples from a single object. In [10] a geodesic convolutional neural network which extends the CNN
to non-Euclidean manifolds is proposed. The geodesic neighborhood of a point in a triangulated mesh is
encoded using polar coordinates and then binned based on the polar angle and distance. Convolutions are
then performed by sliding a kernel over the mesh. The authors of [9] propose to encode a neighborhood of
points in a mesh by enumerating the points in a spiral. A fixed length feature vector is then created and
trained using a RNN.

From a broad perspective, our encoding approach is similar to the work described in [10][9], while our
application and model are similar to the ones in [20]. We use the advancing front triangulation method
proposed in [22], but replace the MLS with interpolation from a CNN model.

3 ENCODING PARTIAL NEIGHBORHOODS

In this paper we describe a method for discrete encoding of partial neighborhoods of points in point clouds.
Here, by a partial neighborhood we mean a neighborhood with a span less than the complete 360° around a
point. The restraint to use partial data when complete data is available can be counter-intuitive but it can help
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Figure 2: Nature of neighborhood of query point with the advancing front: (left) portion of a small hole to
patch, (center) typical neighborhood of a query point (colored red) near the hole boundary (dashed curve),
(right) neighborhood (colored blue) on the contracted advancing front.

order the data consistently. The encoding method works with point clouds, triangular meshes and parametric
models. Points clouds represent a common form of 3D data, and are also a convenient representation for
illustrating our method. In the context of patching meshes, we therefore assume that the faces around the
hole boundary can be approximated by a uniformly distributed point cloud; we further assume that such
an approximation is available in a data structure suitable for efficient nearest neighbor queries. These are
computationally less demanding pre-requisites and are also required by traditional hole patching methods.

In an advancing front technique, the hole is patched by progressively interpolating from the boundary and
towards the interior of the hole. We refer to a point to be interpolated near the boundary of the hole as the
query point. The neighborhood of a query point in the advancing front of the hole boundary then typically
looks like that shown in Fig. 2. In most cases, the neighboring points are largely on one side of a plane passing
through the query point (Fig. 2 center), but as the front advances and the hole correspondingly contracts in
size the neighborhood of points tends to surround the query point from all sides (Fig. 2 right). Importantly,
throughout most of the patching process the neighborhoods of the query point remain partial.

During training a query point is selected at random from the support surface of the hole, and the partial
neighborhood as seen along a random direction in the surface around the query point is considered. In each
iteration of the advancing front method, the current boundary is first subdivided into small segments. Query
points are then determined by moving a small distance from the mid-point of each boundary segment in a
direction tangent to the hole surface. The details of the method are as described in [22].

3.1 Grouping into Rings

We first identify the points in a sufficiently large neighborhood of the query point. The neighboring points
are then grouped into several “rings” based on their distance from the query point (see Fig. 3). We took the
consecutive ring radii as linearly increasing multiples of the point cloud resolution r (that is, 7 is the mean
distance between two neighboring points in the point cloud) in our experiments. This is also the resolution we
use to advance the hole boundary. The ring radii may be differently determined depending on the application.
Each ring contains a number of points approximately proportional to the area of the ring. For example,
consider rings with radii 2r, 3r, 4r and so on. For the first ring with radius 2r the area is 7(2r)? ~ 1272 and
hence we expect to find approximately 12/2 = 6 points in the ring (halved due to the partial nature of the
neighborhood). Similarly the next ring has area 7(3r)? — 7(2r)? ~ 1572 and would typically contain 7 or 8
(15/2 = 7.5) points. Alternatively, one may choose the sequence 7, v/2r, v/3r, ... as ring radii such that an
approximately an equal number of points are enclosed by each annulus; this is shown in the right of Fig. 3
The underlying assumption here is that the neighborhood of a hole is a 2-manifold and the local neighbor-
hood around the query point is Euclidean. This is a reasonable assumption when patching holes on smooth
surfaces and most traditional patching methods bank on this assumption. However, this assumption may
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Figure 3: Choice of the sequence of ring radii: (left)rings with linearly increasing radii, (right) non-linearly
increasing radii to enclose an equal number of points in each annulus.

not be important when using learning-based methods since we are not trying to fit a smooth surface on the
neighborhood. In fact, as we show later, learning-based methods work better on non-smooth surfaces; in this
respect, learning methods can be seen as a generalization of traditional hole patching methods to all kinds of
surfaces.

3.2 Ordering Point in Rings

The point encodings described in the previous literature [10][12][9] are not rotation invariant. In general, it is
impossible to uniquely order a complete 360° neighborhood around a point. However, partial neighborhoods
can be ordered consistently as follows. We first select a random point P, from the ring. We denote an
estimation of the query point by @) and the estimated normal at this point by N. For each of the rest of
the points P; in the ring, we compute the cross product C; = (P; — Q) X (P, — Q). Then the dot product
di = (P, —Q)-(P.— Q) x sign(N - C;) gives us the signed distance of the rest of the points P; from the point
P, based on which the points inside a particular ring can be ordered. The computation is visually illustrated
in Fig. 4.

The method for encoding partial neighborhoods in point clouds was impelled by the application of the
method for patching holes in meshes. One possible reason that such partial encodings, where a unique point
ordering is possible, have not yet been investigated much is because applications such as hole filling have not
typically not been targeted in deep learning research. However, we note that such an encoding is applicable
to other domains apart from hole patching. Our encoding could possibly be used effectively for other tasks
such as object segmentation and shape correspondence.

Figure 4: Ordering of points in rings: (left) a negative value from signed distance computation, (right)
positive signed distance due to the two vectors’ cross product being along the normal; sorted order of points
points in the ring also shown.

Computer-Aided Design & Applications, 20(2), 2023, 290-305
© 2023 CAD Solutions, LLC, http://www.cad- journal.net


http://www.cad-journal.net

296

3.3 Oversampling to Create 2D Images

With the ordered set of points in each ring, we need to oversample the data in each ring next, to obtain fixed
sized vectors which are then stacked to form the rows of a 2D “image”. Such a 2D image has one more row
than the number of rings, where each of the rows, except the last, corresponds to each ring and the additional
last row to the query point. The number of columns in the image is set to the number of points in the
outermost ring, although a larger or a smaller number can be used depending on the resolution of the point
cloud. Typically, each of the smaller inner rings will contain fewer points than required to fill the image rows.
Therefore, the points in the rings must be oversampled while preserving their order to artificially “stretch” the
data vector and create an equal number of points for each image row. This process is illustrated in Fig. 5.

| 2|3|@|6|6 2|80 ||l
»lol2|2|9|3|@|5 |5 |6 |6
» oo (s(e|a|a|a
o0 o0 o 0o 22|2
® 0000|000 0 00O

Figure 5: Creation of “images” from ordered points in rings: (left) ordered points in each ring, (right) encoding
by oversampling points to fill the columns in the image.

In Fig. 5 we can see 4 rings in the point neighborhood and 4 +1 = 5 rows in the image. The query point
is indicated in red and the rest of the points in each ring are numbered from 1 indicating their clockwise order
within the ring. There are 11 points in the last ring, and let's consider 11 columns for the 2D image. In the
top row of the image, the points from the fourth, the outermost ring, are placed in the order in which they
occur since there are exactly 11 points available. In the second row from the top many points from the third
ring are duplicated, since there are only 6 points in the ring. Similarly in the third row from the top, points
from the second ring are repeated thrice; a similar repetition happens in the fourth row. In the fifth and last
row an estimate of the query point is repeated throughout (i.e. 11 times).

Oversampling the ordered point data in the partial neighborhoods to create 2D images allows us to directly
use standard CNN architectures without having to invent special convolutional kernels and other neural-network
machinery. Such a 2D image representation also preserves much of the structure present in both the circular
and radial directions around the query point. The only structural information loss is due to the nature of
the point distribution inherent in the approximation of the neighborhood as a point cloud which may not be
uniform with respect to our discretization scheme in many cases.

3.4 Data in the 2D Images

The exact data stored in these 2D images will depend on the type of point property to be estimated. Here
some creativity will often be required and some inductive bias should necessarily creep in before the CNN model
can learn from the data and interpolate well. We tried several configurations of input data and combinations
before we found the set of data, i.e. point properties to be stored as data, that works reasonably well for
interpolating point coordinates.

In our first attempt we used the unmodified x, y and z coordinates of the neighborhood points as data to
create three 2D images, similar to (r, g, b) data in input images with CNNs. The label to learn was the correct
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Figure 6: Input and output data of the network - here n represents normals, ¢ the query point, p the absolute
coordinate, and r the relative coordinate of the neighboring points.

(x, y, z) coordinates of the query point. It was very difficult to train this network. One reason was that the
correct coordinates were often very close the query point’s coordinates which were present in the bottom row
of the 2D image. This resulted in a very small error and a correspondingly shallow gradient during training.
The network therefore quickly learnt to assign a high weight to the bottom row and a very low weight to
everything else, and failed to capture the underlying surface structure. We tried to remedy this by normalizing
the point coordinates using various techniques but with little success.

Our first breakthrough involved using the normals of the points instead of the point coordinates of the
neighborhood points and trying to predict the correct normal of the query point. With this change, the network
training improved significantly. Normal data by its very nature is normalized and is thus easier to learn. Second
the normals for the initially estimated query point and the accurate normal were often sufficiently different.
This allowed for a proper gradient based optimization of the network. After estimation the query point was
pivoted about the edge opposite to the point to align its normal with the predicted normal. However, this
procedure was still not accurate enough to patch larger holes smoothly. A few wrong predictions could waylay
the interpolation as errors would magnify with the advancing front.

Two additional elements were required before sufficiently accurate results could be obtained. Some error
in estimation could be attributed to the slightly different placements of the points in the sampled point
neighborhoods. To account for this variation, we added another three layers to the 2D image to store the
relative point coordinates of the points in the neighborhood with respect to the query point. Lastly we
also added the original point coordinate data for the neighboring points. This is required as the network
must ultimately learn several smooth functions over the supporting surface of the hole. However, absolute
coordinate data is needed by the network to be able to decide which function to use at which location on the
surface. The structure of the complete input data and label for our network is illustrated in Fig. 6.

4 CNN MODEL ARCHITECTURE AND TRAINING
4.1 Model Architecture

Once the input data has been converted to 2D images, standard CNN model architectures, that are proven to
work in other domains, can be used for training and prediction. For hole patching we use a simple CNN with
5 convolutional layers with 3 x 3 filters followed by 5 fully connected layers. Our input is a set of 9-layered
2D images, each 8 x 24 in size (7 + 1 = 8 rings each containing 24 point data). The small size of the input
image limits the number of convolution layers we can use without extra padding in each convolution step,
since each convolution pass reduces the size of the image. Padding would not be preferable for hole patching
because it would dilute the point data in the rest of the image and significantly reduce the prediction accuracy.
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Figure 7: CNN network architecture for 2D images of size 8 x 24 created from the encoding.

The number of convolutional and fully connected layers can be chosen by experiment, and depends on the
training time and computational resources available. In general, larger networks would require more data to
train effectively. There is no systematic method for arriving at the best configuration of layers either, and
one must try different combinations of layers and use the model that performs the best. The architecture
we use is illustrated in the Fig. 7. Note the lack of any max-pooling layers as the initial 8 x 24 images are
too small already. There are also no normalization layers since the network is not very deep and so may not
suffer much from vanishing gradients; that said, further experiments would be required to confirm if a form
of normalization or regularization would result in improved performance or accuracy.

4.2 Training the Model

Learning the support surface of a hole for patching it is an unsupervised learning task. However in most
learning-based approaches the problem of patching holes is transformed into a supervised task by creating
artificial holes on patches sampled from the support surface. The network is then trained to recreate the
original patches from the ones with the holes. We take a slightly different approach. In our method an
approximation of the point to be estimated is already included in the input to the model (as the last row of
the 2D image), and the model learns to predict the correct value of the point normal from this approximation
and the neighborhood data. Therefore, during training we need to create such artificial approximations to
train the CNN model.

We first identify the support surface of the mesh hole using edge-angle-based heuristics. The support
surface is then approximated with a dense uniform point cloud. A random point is selected from this point
cloud. With the random point as center, a random partial neighborhood with an angle span between 180° to
270° is selected. We group the points in this neighborhood into 7 uniformly spaced rings with the randomly
selected point as the center. Sometimes, when the selected random point is near the boundary of the surface
or the hole, the neighborhood may not contain enough points in all the rings. We use heuristics to discard
such sparse neighborhoods and only consider dense neighborhoods for training.

In order to create the artificial point and normal approximation we first find the three nearest non-collinear
points to the randomly selected center point. We then use the projection of the center point on the plane
defined by the three points as the initial estimate of the query point and the normal of the plane as the
approximate normal. The approximate point and normal are then used to fill in the bottom row of the point
encoding image, and the original center point normal is used as the ground truth or label to be predicted.

In the results presented below, around 2000 random points and their neighborhoods were sampled from the
support surface of the hole for training. Of these around 300 — 400 sparse neighborhoods had to be discarded
in each case. The model was trained with a learning rate of 10~* and a batch size of 256 for 1000 epochs with
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Figure 8: Trend of training loss with epochs: (left) loss (mean squared error) over 100 epochs, (right) loss
over 500 epochs.

mean squared error as the loss function. The model took about an hour to train on a laptop-grade CPU. The
training time would be reduced to a few minutes on a modern GPU. Slightly better results are obtained with a
lower learning rate of 10~2, but this rate required around 5000 epochs to train, and increased the total training
time by a factor of 7 — 8. Once training is complete, the time required to patch the hole is within a couple
of minutes and is comparable to the time taken when using MLS. Since in the case of MLS no pre-training
is required, a CNN-based approach garners little to no benefits over MLS when patching holes in smooth
surfaces. However, as discussed in the results in section 5, a CNN-based method like ours is better able to
patch holes spanning non-smoothly connected surfaces and approximate the surface texture when patching
rough surfaces. Techniques which are MLS-based or fit smooth surfaces on the other-hand cannot be used at
all in such cases.

Fig. 8 shows the learning graphs for an example support surface over 100 and 500 epochs. These graphs
are fairly typical for deep learning models. For hole patching, the loss stops decreasing beyond 700 — 1000
epochs. One reason for requiring so many training epochs is that the input data has only around 1500 distinct
data points. Even so our network (see Fig. 7) with over 185,915 tunable parameters can learn to generalize
effectively instead of simply memorizing the input data. This is due to the various regularization effects implicit
in the input data and the architecture of the CNN model. In our case we have used the mean squared error
as the loss function, although the cosine distance loss works equally well. The latter makes more sense since
it measure the angle difference between the predicted and correct point normals.

In deep learning, it is standard practice to train the network on a training set and validate it on a smaller
validation set. A validation set ensures that the trained model generalizes to unseen data well. For the hole
patching application, we decided to forego the use of a validation set. Since the amount of training data is
often very small, every bit of additional data helps improve the accuracy of the model.

4.3 Point Prediction and Triangulation

We follow the boundary triangulation scheme described in [22]. The idea is to loop around the boundary of
the hole repeatedly, closing sharp concave corners and creating new triangles on the other edges. For this,
the boundary loop of the hole is first split into smaller resolution-sized edges. In every iteration we first loop
around this segmented boundary to find sharp concave corners and eliminate such corners by joining the end
points of the edges adjoining the concave corner to create a new triangle. The hole boundary is also updated.
It is noted that this triangulation step requires no interpolation.
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Figure 9: Results with small hole on a smooth surface: (left) hole to patch, (centre) results using MLS, and
(right) result from our CNN model.

Next we loop around the boundary once more and next to all the boundary edges we create a new point
on the perpendicular bisector of this edge (at a distance of 1/3/4r from the edge) in the direction of the hole
interior. Using this point as the query point, we find the encoding of the neighborhood using our method and
find the predicted normal using the CNN model. The new point is then “pivoted” about its base edge to align
its normal with the predicted normal. The boundary is again updated. Before a new triangle is added to the
mesh, we additionally check to ensure that these new triangles do not intersect the neighboring triangles of
the mesh. If an intersection is found, the triangle is discarded. These two steps are repeated till the complete
hole is patched. Sometimes a small patch may be left behind near the center of the hole, which may be
triangulated using a simple polygon triangulation algorithm.

5 RESULTS AND DISCUSSION

Figures 9, 10 and 11 show some results of patching meshes using our CNN model alongside the results obtained
using the traditional MLS method, where a bi-quadratic surface is fitted locally. In Fig. 9 it is seen that results
from the CNN model (right) are not as smooth as that obtained using MLS (center). This slight amount of
error may be unavoidable in the case of the CNN model and may be inherent in the pseudo uniform nature of
the point cloud approximation of the surrounding surface, and limited by the complexity of the CNN model.
A deeper CNN model with many more parameters which is also trained on more samples from a denser point
cloud may help to reduce this error. However, the improvement would also entail a longer training time and
a computationally-costlier prediction function at runtime.

The triangulation is similar in both cases since the same triangulation algorithm and code are used. A
resolution of 0.5mm is used for both the point cloud approximation and the triangulation (that is, the average
edge length in the triangulation is 0.5mm) for all the results. Fig. 10 shows the results on a larger hole, and
again we see that the results from the CNN model are not as smooth as that obtained using the traditional
MLS method. The undulations in the result from the CNN though are very small and between 0.1 — 0.2mm.
A post-processing smoothening step can be used on top of the CNN results to obtain patches that are as good
as those obtained from MLS.

Fig. 11 shows the results on a hole spanning a faceted surface where the meeting regions have been filleted
with a 5mm radius. In this case we see that the MLS leads to a more undulating surface as the algorithm
tries to fit a bi-quadratic surface near the edge between the fillet and the flat surface. The CNN model on
the other hand performs much better when patching such holes and is better able to maintain the flat regions
in the patch. The reason for the lesser accuracy of MLS is that it uses only a very small region of the point
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Figure 10: Results with a large hole on a smooth surface: (left) hole to patch, (centre) results using MLS,
and (right) result from our CNN model.

neighborhood when estimating a point and cannot account for sudden changes in the curvature of the surface.
A CNN model, on the other hand, can learn much larger regions of the model during training, and can learn
the varying underlying structure of a non-smooth surface. In fact, the more faceted and noisy the surface
the better the CNN model is likely to perform compared to the MLS. This suggests that these techniques are
somewhat complementary in nature and could possibly be used synergistically for patching different regions of
a large complicated mesh, like those acquired from 3D scanning methods.

Some triangulation errors can be observed in the Figures 10 and 11 which are due to problems with the
robustness of the triangulation algorithm as briefly described in the previous section; we hope that the errors
in triangulation will not detract the quality of the interpolation results from the CNN model. The lack of a
robust triangulation algorithm for noisy point clouds also prevents the illustration of the hole patching results
of the CNN model on a more noisy surface at this time. We hope to remedy these shortcomings in future
work.

5.1 Benefits Over Traditional Techniques

In general, most traditional techniques like MLS try to approximate the point neighborhood by fitting smooth
surfaces on the points in the neighborhood. These techniques therefore are unable to preserve the geometric
texture of the surface to be patched. CNN-based and other learning based methods, on the other hand, can
learn the geometric texture of the surface and reproduce it in the region of the hole (see [15], [19] and [20]). In
this paper we have shown that with proper encoding and training, CNN-based models can also patch smooth
surfaces with good accuracy, although it would take a relatively long time to train such a model.

To get some intuition behind the appropriate applications of traditional techniques and learning-based
methods we consider 2D cross-sections of different surfaces, as shown in Fig. 12. Fig. 12 (a) shows the
cross-section of a low curvature surface. Such surfaces are easily patched using traditional techniques like
MLS, because locally a large neighborhood n, of the surface can be approximated well by a bi-quadratic
surface. Fig. 12 (b) shows a smooth undulating surface with multiple high curvature regions compared to
that in (a). Such surfaces can also be patched using traditional techniques like MLS, albeit a much smaller
neighborhood n;, must be selected and more densely sampled to fit the bi-quadratic surface. It is often difficult
to determine an appropriate size of the neighborhood especially in regions where the curvature changes quickly.
Additionally, for surfaces that combine low curvature regions like (a) with higher curvature portions like (b) it
can be impossible to determine a single fixed-size neighborhood for fitting the bi-quadratic surfaces. In faceted
surfaces like Fig. 12 (c), where the curvature changes abruptly from 0 to infinity, traditional techniques based
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Figure 11: Results for a hole in a filleted meeting region: (left) hole to patch, (centre) results using MLS,
and (right) result from our CNN model.

(@) (b) (©)

Figure 12: Effectiveness of hole patching approaches under different smoothness levels: (a) a low curvature
surface, (b) a surface which a higher curvature, (c) a faceted surface

of surface fitting no longer work well, since it becomes impossible to fit surfaces approximating the area around
the sharp edges. It is in such cases that learning-based methods like CNN models can outperform traditional
methods, since they are able to learn and interpolate across a much more complicated surface. It must be
noted that even in a learning-based method one must choose an appropriately sized neighborhood to train
the model. However, here one can err on the conservative side and choose a large neighborhood like n4 for
training. This makes it possible to patch a surface without having to increase the sampling density, which can
increase the patching time and cause error magnification when using front propagation strategies.

6 CONCLUSIONS

In this paper we describe a simple and easy to implement method for encoding partial neighborhoods of
points for use with CNNs and other deep learning techniques. The encoding allows us to capture the local
structural information without the loss incurred due to aggregation and normalization used for the sake of
orientation and order invariance in other techniques. Instead of considering full rectangular or circular patches
we suggest sampling partial patches from the mesh to train a neural network model. For patching holes in
meshes, we sample patches which occur in a region sized between a semicircle and a three-quarter circle in
size from the support surface of the hole. Choosing a partial neighborhood allows us to order the points in
the neighborhood consistently and prevents structural information loss in the input data fed into the neural
network. The method is designed to predict and interpolate local mesh properties, and can be adapted for use
with different deep learning models. We believe that the idea of partial sampling and ordering can be fruitfully

Computer-Aided Design & Applications, 20(2), 2023, 290-305
© 2023 CAD Solutions, LLC, http://www.cad- journal.net


http://www.cad-journal.net

303

applied and extended to other domains.

Creativity is still required in choosing the right kind of input data to enable the network to learn the
underlying surface structure. For example, it took some ingenuity and much experimentation to discover a
method to accurately predict point coordinates by first predicting the normal instead of directly predicting the
point coordinates. The normal data is by definition normalized and this enables us to quickly train the model
without requiring a lot of data. The results using the CNN model are not as smooth as those by a more
traditional technique like MLS especially for smooth surfaces. However, for non-smooth surfaces a CNN-based
model outperforms MLS and other traditional techniques which were not designed for non-smooth surfaces.

Our encoding approach opens up several avenues for future exploration. It would be interesting to see how
well sequence models like RNNs and transformer networks work with such an encoding. RNNs and transformer
networks would allow for a variable number of rings in our scheme and would thus enable better patching
near hole boundaries where a sufficiently-sized support surface available. We plan to experiment with larger
neighborhoods and other measures such as geodesic distance for grouping the points. Training of the neural
networks with more oriented neighborhoods (for example, where the neighborhoods are all aligned with the
average normal of the curve of the hole's boundary nearest to it) and using pre-trained networks for transfer
learning are likely to lead to better results and faster training times.
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