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Abstract. The safety and reliability of electric vehicle battery packs depend on the 

cooling performance of the fire suppression system affected by uncertainty factors. 
In order to meet the battery pack fire extinguishing demand and ensure the battery 

pack fire safety, an optimization design method is proposed to improve the cooling 
performance robustness of the battery pack fire extinguishing system. A 
simulation-based multi-level robust optimization framework is developed including 
the adaptive surrogate model optimization, worst-case optimization, and final 
design parameter optimization to reduce the risk of maximum battery pack 

temperature and thermal runaway. Meanwhile, the adaptive surrogate model is 
used to build an accurate prediction model with a small number of samples, which 
reduces the simulation calculation workload, saves resources, and improves the 
optimization efficiency. 
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1 INTRODUCTION 

As the core component of an electric vehicle, the battery pack has the high fire safety requirement 
which is a challenge restricting the development of electric vehicles [14]. The cooling performance 
of the fire extinguishing system is critical to the safety and reliability of the battery pack in an 

electric vehicle, which is affected by various factors such as the ambient temperature and battery 
heat production rate [12]. For the battery pack fire extinguishing system to ensure the safety of 
electric vehicles, its performance should not be sensitive to changes in uncertainty parameters 
based on the safety principle, even in the worst case, the performance of the battery pack fire 
extinguishing system should still meet requirements of fire safety. However, in the current battery 
pack fire extinguishing systems, robustness of the system performance is rarely considered under 

the condition of uncertain parameter changes. In this case, the performance of the battery pack 

fire extinguishing system may fail to meet requirements of the fire extinguishing and cooling when 
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uncertainty parameter changes, with serious consequences. Following three approaches are 
commonly used to reduce sensitivity of the system performance to uncertainty factors: analytical 
approach, experiment-based approach, and simulation-based approach [18]. 

The analytical approach is not suitable for complex systems without known mathematical 

relationships [3]. In the experiment-based approach, battery pack fire-extinguishing cooling 
experiments require a large number of experimental samples [5]. Simulation-based robust design 
methods use the Monte Carlo sampling method to simulate the effect of parameter variations on 
the product performance, which requires the sample probability distribution model and a lot of 
time in the process [4]. In a complex system with high input and output dimensions, the training 
sample size will be large and required training time is long. As variations of uncertainty factors 
have not been systematically studied, the worst case of the cooling performance of a fire 

extinguishing system should be considered in the design for safety.  

To improve robustness of the cooling performance of the battery pack fire suppression system 
and reduce the maximum temperature of the battery pack, this study optimizes the cooling 
performance of the battery pack fire suppression system based on the worst-case method and the 
adaptive surrogate model. With limited samples, an accurate surrogate model is built to reduce the 
simulation computation effort and improve the optimization efficiency. The method is verified by 

comparing the cooling performance before and after optimization, as well as findings from 
established optimization methods.  

Following parts of the paper are organized as follows. Section 2 provides a review of pertinent 
studies, and Section 3 explains the robust optimization of the battery pack fire extinguishing 
system's cooling performance. In Section 4, the research conclusion and further efforts are 
discussed. 

2 LITERATURE REVIEW 

The objective of this paper is to improve the robustness of the cooling performance of battery pack 
fire suppression systems for electric vehicles. The requirements and related designs of battery pack 
fire suppression cooling performance are reviewed, as well as the effects of uncertainty factors on 
them. Robust optimization methods based on the worst-case method and adaptive surrogate model 
are also reviewed to provide a reference for this paper. 

2.1 Requirements for Cooling Performance of Battery Pack Fire Extinguishing System 
and Its Influencing Factors 

Cooling is one of the most basic fire-fighting techniques as an excellent way of putting out battery 
fires, limiting thermal runaway propagation in battery packs, and preventing battery re-ignition 
[13]. Liu et al. tested a devised fire extinguishing system and found that the battery's peak 

temperature and high-temperature duration were greatly lowered compared to a scenario with no 

water mist cooling suppression [9]. Currently, most of the automatic battery fire extinguishing 
systems developed directly or indirectly drive the fire extinguishing agent to spray the battery 
monomer and extinguish the fire by cooling. In most situations, the extinguishing system is able to 
stop the spread of thermal runaway, but in a few circumstances, the battery re-ignition is a 
possibility. FM Global conducted a series of tests for the sprinkler fire suppression including fire 
suppression cooling tests using a water spray system on 18650 lithium-ion power batteries in a 
thermal runaway condition. The results showed that the extinguishing system could stop the 

spread of thermal runaway in most cases, but the possibility of re-ignition existed in a few cases 
[6]. As a result, the battery pack fire suppression system's powerful cooling performance is a 
critical need for battery fire safety. 

Although cooling fire extinguishing is an effective method of dealing with battery fires, battery 
fires are typically unexpected and unpredictable, and the cooling performance of the battery fire 

extinguishing system will also fluctuate due to a variety of uncertainties. Liu et al. showed that the 

cooling performance of the fire extinguishing system is affected by the response time and pressure 
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of the system, the longer the response time, the worse the cooling effect [9]. Zhong et al. 
conducted a series of combustion tests on ternary lithium batteries using a modified conical 
calorimeter to study the safety of lithium batteries. The results showed that the higher SOC leads 
the higher temperature and faster the exothermic rate of the battery during combustion, and the 

more difficult to perform cooling [19]. As a result, the cooling performance of the battery pack fire 
suppression system will change in response to uncertainty factors such as ambient temperature, 
pressure, and battery heat production rate. If the system cooling performance is not robust 
enough, it may not be able to meet cooling requirements of the battery fire suppression, resulting 
in serious battery fires and massive losses. 

2.2 Cooling Design of Battery Pack Fire Extinguishing System 

In terms of the emergency safety technology for lithium-ion batteries, fire extinguishing agent 

sprinkler systems are the most commonly used combustible fire safety equipment, with a focus on 
the use and design of cooling technologies. Yim proposed a method for battery self-extinguishing 
capability by incorporating temperature-responsive microcapsules containing an extinguishing 
agent to effectively improve safety, which can release the extinguishing system when the internal 

temperature of lithium-ion batteries rises through the heat absorption reaction [17]. The fire 
extinguishing system disclosed by Jung et al. includes a fire detection sensor, an extinguishing 
agent, and a control unit that injects the extinguishing agent into the battery pack to extinguish 
the fire during the early stages of a battery fire [7]. Kim and Yoon developed a safety device that 
can spray a fire-fighting agent to put out a battery pack fire or explosion [8].  

The existing research, however, mainly focuses on improving the system accuracy in detecting 
fires and developing suitable extinguishing agents. There is a lack of research on the robustness of 

the cooling performance of battery extinguishing systems. According to the description in 2.1, the 
robustness of the battery extinguishing system cooling performance is very important. The ability 

to cool the battery to a safe state is the key to extinguish the battery and prevent re-ignition. As a 
result, we propose a robust design approach to improve the robustness of the battery fire 
suppression system cooling performance in order to ensure that the battery fire can be 
extinguished for the fire safety of the battery pack. 

2.3 Robust Optimization Based on Worst-Case Approach and Adaptive Surrogate Model 

When there is uncertainty in the input of practical engineering systems, the system output also has 
uncertainty, making it difficult to determine the optimal value of design parameters [17]. The goal 
of uncertainty robust optimization is to reduce the impact of such uncertainty on system 
effectiveness and stability. The requirement for robustness is generally determined by the 

engineering application scenario and the level of risk that can be assumed. There are two common 
approaches: a probabilistic approach can be used if a portion of products that do not meet 

requirements is acceptable, and a worst-case approach should be used if all products must meet 
the requirements [1]. 

It is impractical to find the worst case intuitively in complex engineering problems and 
nonlinear systems. How to find the global worst case with a small number of calculations is a 

challenge in this design approach. The surrogate model is a mathematical model proposed to 
reduce the cost of actual engineering computation time while improving the efficiency and 
accuracy of the optimization search [2]. To predict the target response values at unknown points, 
the model establishes a mapping between the input variables and target variables based on 
response relationships of known test sample points. The adaptive surrogate model-based 
optimization method can effectively address the aforementioned challenges by reducing the 
number of sample points required, improving computational efficiency, and design quality. The 

adaptive surrogate model-based optimization is divided into three stages: first, the design for 
experiment method is used to perform initial sampling; second, the approximate model is used to 

construct the surrogate model, and the surrogate model is reconstructed when newer points are 
added to the sample set; and finally, a sample update strategy is constructed for the surrogate 
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model to obtain update points and add them to the sample set. The key of the adaptive surrogate 
model optimization method is to decide how to build an update strategy that will identify the 
optimal value quickly and feasibly. Furthermore, the adaptive surrogate model primarily adds more 
sample points in the region of interest to improve the accuracy of the surrogate model in that 

region [15]. Fig. 1 shows a block diagram of the adaptive surrogate-based model optimization. 

 

 

Figure 1: Robust optimization based on adaptive surrogate model. 

3 ROBUST OPTIMIZATION OF COOLING PERFORMANCE OF FIRE EXTINGUISHING 
SYSTEM 

3.1 Modeling of Battery Pack Fire Extinguishing System 

The structure of a fire extinguishing system in an electric vehicle battery pack is shown in Fig. 2. 
Related parameters affecting the cooling performance are to be optimized for the minimal influence 
of uncertainty parameters.  

The stored liquid carbon dioxide fire extinguishing agent is vaporized into the low-temperature 

carbon dioxide gas due to the pressure drop during battery fire extinguishing and cooling. After 
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being adjusted by the shunt, they enter the battery thermal runaway module from the system pipe 
at the given inlet flow rate and inlet pressure and are ejected from the jet valve port above the 
battery. Air in the battery module container is discharged from the safety valve port. The outlet 
boundary condition is that the outlet pressure is equal to the atmospheric pressure. Design 

parameters are summarized in Tab. 1. 

 
 

Figure 2: Battery pack fire extinguishing system and simplified battery module. 
 

Name Symbol Boundary Unit 

Inner diameter of the safety valve D1 [10,15] mm 

Inlet flow rate of the fire extinguishing surrogate D2 [70,100] m/s 

Inlet pressure of the fire extinguishing surrogate D3 [5.5,6.5] mPa 

Inner diameter of the fire extinguishing system pipeline D4 2/2.5/3 mm 

 

Table 1: Design parameters of the fire extinguishing system. 
 

Uncertainty parameters are summarized in Tab. 2. Boundaries of the uncertainty parameters are 
considered as follows: 

• Surface heat flux of the normal battery: According to experimental studies, the volume 
heat rate of lithium-ion monomers ranges from 7895.33W/m3 to 10079.6W/m3. The heat 
generated by the battery is expressed as the heat flux on the surface of the battery, and its 

value is taken to be in the range of [41.5, 49.5] W/m2 under the principle of safety 
consideration; 

• Surface heat flux of the thermal runaway battery: The surface heat flux of thermal runaway 
battery is expressed as 40 times of the surface heat flux of normal battery; 

• Ambient temperature: In actual conditions, the normal operating temperature of EV battery 

pack is between -20℃ and 50℃; and 
• Ambient pressure: The actual ambient pressure is not fixed, and the change of atmospheric 

pressure is related to uncertain factors such as height, location and gas movement. 
 

Name Symbol Boundary Unit 

Surface heat flux of the normal battery U1 [41.5,49.5] W/m2 

Surface heat flux of the thermal runaway battery U2 [1620,1980] W/m2 

Ambient temperature U3 [253,323] k 

Ambient pressure U4 [0.091,0.111] mPa 

 
Table 2: Design parameters of the fire extinguishing system. 
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3.2 Evaluation of Cooling Performance Robustness 

Design parameters and uncertainty parameters of the battery fire extinguishing system affect the 

cooling performance of the system, and the change of system performance index can be simulated 
according to the system model by determining the value range of system design parameters and 
uncertainty parameters. The maximum temperature (T) is used to measure the cooling 
performance of the fire extinguishing system and evaluate the potential risk of thermal runaway 
behavior of battery cells. Based on the worst-case method and safety principle, this research uses 
the upper bound (TUB) of the maximum temperature of the battery pack after fire extinguishing and 

cooling to evaluate the cooling performance of the fire extinguishing system. Lower value (TUB) 
provides the better cooling performance. TUB should be under safety critical temperature point TNR. 
The safety temperature is the critical point at which the thermal runaway reaction and reignition of 
the battery will not occur, which is determined by the occurrence condition of the decomposition 

reaction of the battery. 

3.3 Robust Optimization Process 

3.3.1 Constructing multi-level optimization function and optimization framework 

Initial 360 sample design points are randomly selected using the Latin hypercube sampling 
method. The response value of each sample point is searched by simulation to build the system 
input and output sample database. Initial sample data are used to build an initial surrogate model 
of the system. In order to minimize the maximum temperature(T) after fire extinguishing and 

cooling, corresponding design parameter set D=(D1,D2,D3,D4) and uncertainty parameter set 
U=(U1,U2,U3,U4) are obtained as follows. 

 

1 2 3 4 1 2 3 4

NR L U L U

Find: , , , and , , , ,

Minimize :

Subject to: , , , , .

Optimized input design parameter set  

m m m n n n

D D D D U U U U

T

T T D D D U U U

D U

 (1) 

where DmL and DmU represent lower and upper boundaries of the allowable interval of the mth design 
parameter in the design parameter set respectively; UnL and UnU represent lower and upper 

boundaries of the allowable interval of the nth design parameter in the uncertainty parameter 
group. The real response value of the optimized design point is obtained through simulation, which 
is added to the sample database as a group of new sample data to update the surrogate model of 
the system. In this process, new sample data are constantly obtained, and the surrogate model is 
updated iteratively until the termination condition is satisfied: coefficient determination R2 > 
0.95[15]. 

For a certain set of design parameters, there are different response values of cooling 

performance evaluation indexes when the value of uncertainty parameters is different. Based on 

the principle of safety, the cooling performance should meet requirements of fire extinguishing in 
the worst case. Therefore, the worst limit of cooling performance corresponding to each design 
parameter set is searched. In this paper, the maximum temperature of the battery pack after fire 
extinguishing cooling is used as the response value of the cooling performance evaluation index. 
The maximum response value corresponding to each set of design parameters is its worst case. In 
order to maximize the response value of cooling performance evaluation index corresponding to 

each design parameter set, the worst case corresponding to each design parameter is searched as 
follows. 
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where iT  is the response value of cooling performance evaluation index corresponding to the ith 

design parameters set. UB
iT  is the upper bound of the response value of the cooling performance 

corresponding to the ith design parameters set, namely, the maximum value of iT . 

Based on the worst case corresponding to each design parameter set, the worst-case 

surrogate model of the system is established. The higher upper bound TUB of the maximum 
temperature after cooling performance represents the higher thermal runaway risk of a battery. 
For minimizing TUB, a set of design parameters is searched for the system sufficiently robust and 
response value of the performance index in the worst case within an acceptable safety range as 
follows. 
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Variables to satisfy constraints and objective functions are searched by optimization for design 
parameters. Fig.3 is a multi-level robust optimization process for the cooling performance of the 
fire extinguishing system considering the variation of uncertainty parameters. 

 

 

 

Figure 3: Multi-level robust optimization considering variation of uncertainty parameters. 
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of sample test design and simulation. The process of fire extinguishing system simulation and 

multi-objective optimization is outlined below. 
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This work selects one module of simplified battery pack fire extinguishing cooling system as 
the research object to create a CFD simulation model of the finite element based on the design 
scheme of modular fire extinguishing system of the battery pack and requirement for the 
simplified calculation. The number of meshes generated is over two million in order to improve the 

calculation accuracy. The mesh division for the fluid domain of the battery module is shown in Fig. 
4. The mesh is imported into the fluid simulation analysis software Fluent for fluid-solid coupling 
heat dissipation analysis when the mesh division of the CFD model is completed. The energy 
equation is used in further calculations to incorporate the heat exchange. 

 

 
 

Figure 4: Finite element meshing. 
 

The cell is regarded as a uniform heat generator; the fire extinguishing agent is defined as carbon 
dioxide. The heat flow density on the surface of the cell is used to represent the heat generation 
rate of the cell monomer, which is set according to parameters in Tab. 2. In the battery pack fire 
extinguishing cooling model, the fire extinguishing agent inlet is set as the velocity inlet boundary 
condition, and the initial flow rate is set. The fire extinguishing agent outlet is set as the pressure 
outlet boundary condition, and the backpressure is ambient air pressure. The fire extinguishing 
agent and battery are fluid-solid coupling surfaces. According to the Reynolds number calculation 

method, the flow state of the fire extinguishing agent is set as the turbulent flow. The process 
selects the pressure-based solver, chooses the "SIMPLE" format for the solution algorithm, and 

sets the initialization method as "Standard Initialization". 

3.3.3 Multi-level robust optimization calculation 

The Latin hypercube design method is used to extract test sample points, which can effectively fit 

the nonlinear response problem by uniformly sampling the pre-defined sample space and 
considering various influencing factors of input parameters and diverse combinations among these 
factors. 360 sets of design point samples are extracted. Values of cooling performance 
optimization indexes corresponding to 360 sets of design point samples are calculated in ANSYS 
software using the fluent module. 

The optimization search method uses the particle swarm optimization algorithm, which is a 

population-based search optimization technique based on the basic principle of mimicking the 
social behavior of a flock of birds [11]. To solve the premature convergence problem of the particle 
swarm algorithm, Shi and Eberhart added a parameter called inertia weight ω to the algorithm 

[10]. ω is defined for adjusting the balance between global and local search as a function that 
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decreases linearly with time. In the inertia weight particle swarm algorithm, the velocity of the 
particles is updated as follows. 

 
1 1 2 2ab ab ab ab ab ab ab ab

ab ab ab

v v c r pbest x c r gbest x

x x v  (4) 

where a denotes a dimension of the variable, a=1,2, … , d, d denotes the dimensionality of the 
problem. a represents each particle in the population (i=1,2, … ,μ). xa and va represent the 

position and velocity variables of the ith particle, respectively. pbesta is the best position of the ith 
particle and gbesta is the best position of the whole population. c1 and c2 are acceleration 
coefficients, and r1a and r2a are randomly generated numbers in the range [0,1]. 

There are three commonly used nonlinear fitting approximation models for complex systems 

with multidimensional variables: radial basis function approximation model, Kriging approximation 
model, and backpropagation neural network approximation model. In order to make the prediction 
results accurate, this paper uses the input and output data of 360 sets of initial sample design 
points obtained from simulation to train the above three approximation models to construct the 
surrogate model of the battery pack fire extinguishing system respectively. By comparing the 
prediction accuracy of the three models, it is found that the accuracy of the surrogate model 

constructed by using the BP neural network approximation model is higher for the optimization 
problem of the battery pack fire suppression system in this paper. The minimum response surface 
sample update strategy can be applied to different types of surrogate models, and it directly uses 
the optimal solution of the surrogate model to update the surrogate model. 

In summary, the proposed uncertainty robust optimization process is as follows: 
• Data samples are designed using the Latin hypercube experimental design method for the 

four design parameters and four uncertainty parameters, respectively. 360 sets of design 

point samples are used; 
• The simulation analysis is carried out in ANSYS software using the Fluent module to obtain 

360 sets of system response values corresponding to 360 sets of design point samples; 
• According to obtained input and output sample data, the initial BP neural network surrogate 

model of the fire extinguishing system is constructed. The particle swarm algorithm is used 
to find the optimum, and sample points are added according to the minimum response 

surface sample update strategy. When the prediction accuracy of the surrogate model 
reaches the requirement, the operation of adding sample points is stopped; 

• The worst limit of the cooling performance corresponding to each design parameter group 
D is calculated based on the surrogate model obtained in the previous step. The Worst-
Case data set is generated; 

• The Worst-Case dataset is used to construct a worst-case surrogate model of the fire 
suppression system. The model and the particle swarm algorithm are used to search for 

the optimized design parameter group D that minimizes the maximum battery pack 
temperature; 

• The effectiveness of this optimization method is decided by comparing evaluation index 
values of the cooling performance of the battery pack fire suppression system before and 
after the optimization and by comparing results of other optimization methods. 

3.3.4 Optimization methods for comparison 

The following two optimizations are performed for a comparison with the proposed method. 

Deterministic optimization method: Under the assumption that the uncertainty parameters do 
not change, design parameters are optimized. The range of the design parameters is referred to 
Tab. 1, and values of uncertainty parameters are the average of values of uncertainty parameters 
in Tab. 2. For the design parameters, hypercubic sampling of 400 groups is used, and the 

simulation generates the relevant index response values, builds the BP neural network surrogate 

model, and searches for the best design parameters using the particle swarm algorithm. 
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Traditional simulation-based optimization method: Under considering uncertainty parameters, 
design parameters are optimized. Tab. 1 lists the design parameter ranges, while Tab. 2 lists the 
uncertainty parameter ranges. The corresponding index response values are obtained by 
simulation, a BP neural network surrogate model is developed, and a particle swarm technique is 

utilized to seek the ideal design parameters while considering uncertainty parameter changes. 

3.4 Robust Optimization Result 

Optimized results of design parameters are shown in Tab. 3 and Fig. 5. Results of two conventional 

parameter optimization methods are compared using UB
iF , the upper limit of the cooling 

performance response value corresponding to the optimized design parameter set, as a 

comparison index for optimization. It is observed that the optimized design parameter by using the 

proposed method reduces the maximum temperature of the battery pack after cooling, which 
improves the robustness and safety of the battery pack. At the same time, comparing with the 
deterministic optimization, this research considers the change of uncertainty parameters in the 
robust optimization according to the worst case. Comparing with the traditional uncertainty 
optimization, this paper adopts the iterative cycle of self-adapting updating sample points to 
constantly reconstruct the surrogate model, which makes the model reach the required prediction 

accuracy quickly, reduces the required number of samples, and improves the optimization 
efficiency. When the number of simulations or experiments is the same, the prediction accuracy of 
this surrogate model is higher, and the prediction of the optimal solution for the system design 
parameter set is more accurate than the traditional simulation-based uncertainty optimization 
method. 
 

 Symbol Initial value Deterministic  

optimization 

Traditional  

simulation-based  
optimization 

The  

proposed  
optimization 

Design  
parameters 

D1 12 14.88 11.75 12.57 

D2 80 86.05 83.24 91.6 

D3 6.0 5.729 6.383 6.370 

D4 2.5 3 3 3 

Comparison index UB
iT  363.34 351.07 348.28 342.78 

Prediction accuracy R2 - - 0.9216 0.9513 

 

Table 3: Comparison of optimization results. 

4 CONCLUSIONS 

This paper presented a robust optimization method based on the worst-case method and adaptive 
surrogate model to optimize the worst-case limit of the cooling performance of the battery pack 
fire suppression system, ensuring that the battery can be cooled to a safe temperature and 
improving the fire safety of the battery pack. An accurate surrogate model is constructed with 
fewer samples to improve the optimization efficiency and predict the optimal solution of the fire 

suppression system design parameter set accurately. The effectiveness of the proposed method is 
verified by comparing it with traditional robust optimization methods. 

Future work will consider more metrics to evaluate the cooling performance of the fire 
suppression system, such as the time required for cooling, so that the cooling of the battery pack 
fire suppression system can be fully and robustly optimized for the safety of the battery pack. 
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Figure 5: Comparison of temperature distribution after cooling: (a) Initial design parameters, (b) 
Deterministic optimization, (c) Traditional simulation-based optimization, (d) Proposed 
optimization. 
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