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Abstract. As the first step of a common case-based design, retrieving a candidate 

CAD model meeting the new requirements quickly and effectively has a profound 
effect on the subsequent product design. Accordingly, a new kind of dual-level re-
trieval approach for CAD models is proposed in this study. It combines geometric 

information with topological information to carry out model retrieval in a coarse-to-
fine manner. In detail, to accurately describe the global and local (geometric) shapes 
of the query model, a new geometric descriptor is designed based on D2 and Point 
Feature Histogram. Using the geometric descriptor to make a coarse retrieval, the 

CAD models that have similar global and local shapes will be found as preliminary 
candidate models. Then, to finely find the one(s) that has the most similar topology 
with the query model from them, as well as see their primarily global and local shapes 
through their geometric details, a new topological descriptor is designed after deter-
mining the key faces of each CAD model. The experiments show that the accuracy 
of our proposed approach is better than that of MVCNN++ based on deep learning 

on average. Compared with the approaches developed based on D2 and attributed 
graph, the precision of our proposed approach is improved by about 10% on average; 
and the recall is improved by 5% on average as well. Moreover, our proposed ap-

proach improves the efficiency of graph-based retrieval. 
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1 INTRODUCTION 

With the continuous development of product digital design, CAD models have gradually become the 
key content of a product design, and their numbers and varieties are also increasing. CAD models, 
indicating plenty of design intent, design experience knowledge, and functional semantics, are one 
of the most outstanding reusable resources for new product development [1]. It is reported that 

there are about 80% of new designs are created by reusing the existed designs directly or adopting 
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them after minor modifications [2]. Thus, to promote the process of a product design, it would be 
reasonable and useful to retrieve reusable CAD models according to the requirements on hand. 

Presently, content-based CAD model retrieval is the most popular manner to do model retrieval 
at the product design stage. The first kind of retrieval approach in this manner is based on geometry, 

whose prominent characteristic is retrieving CAD models based on the statistics information of geo-
metric attributes (i.e., spatial distance [3-7]) of each CAD model. Generally speaking, this kind of 
retrieval approach usually has high efficiency, but relatively low accuracy [2]. One of the main rea-
sons for this problem is that their descriptors are usually difficult to represent a CAD model’s global 
and/or structures. The second kind of retrieval approach related to the above-mentioned manner is 
based on topology, which aims to retrieve CAD models by seeing their essences (structures) through 
the phenomena (geometric shapes), such as the studies based on the attributed graph [8-12]. Alt-

hough this kind of retrieval approach usually has a good discrimination capability in structure and/or 

local shape [11], its efficiency is often vulnerable and sensitive to the geometric details of a CAD 
model which deeply affect the scale and complexity of a topological descriptor [12]. The third and 
most recent kind of retrieval approach related to the above-mentioned manner is based on deep 
learning, which usually studies model retrieval based on multiple views [13, 14]. Yet, their effec-
tiveness usually relies on large-scale training datasets which embody the models of definite/accurate 

labels/classifications (knowledge) respectively. It makes them hard to be implemented in CAD model 
retrieval since most CAD models are customized and difficult to assign a label/classification accu-
rately. 

In this study, we propose a new kind of dual-level retrieval approach for CAD models. The input 
of the proposed approach is a query model whose underlying data structure is Boundary Represen-
tation (B-rep). In particular, to make a CAD model retrieval more general and knowledge-independ-
ent, the proposed approach is mainly developed based on the information on the geometry and 

topology of each CAD model. To be efficient and effective, the proposed retrieval approach is carried 

out in a coarse-to-fine manner. In detail, first, a fast coarse retrieval at the geometric level is applied 
based on the input query model with our new geometric descriptor, which offers the preliminary 
candidate models; then, an accurate fine retrieval at the topological level is applied based on the 
input query model with our new topological descriptor, which offers the final candidate models from 
the preliminary ones.  

2 RELATED WORKS 

2.1 Geometry-based CAD Model Retrieval Approach 

Geometry-based CAD model retrieval approach usually makes a statistical analysis of the geometry 
information related to each CAD model and represents the analysis result by using a histogram or 
vector. Based on these geometric descriptors, the (geometric) similarities between different CAD 

models can be evaluated by distance measurement. For example, Osada et al. [3] constructed a 
shape descriptor, i.e. D2 shape distribution, which can be applied to any three-dimensional model. 
Ip et al. [4] divided distances into IN, OUT, and MIXED to construct D2 histograms. Wang et al. [5] 
proposed an assembly retrieval approach that is based on D2 and Earth Mover’s Distance and enables 
a fuzzy retrieval. Based on D2 and a modified Hausdorff distance, Zhang et al. [6] proposed an 
efficient assembly retrieval method by using an overall and flexible retrieval of the assembly model. 
Renu et al. [7] also used a histogram-based similarity score to retrieve assembly solid models. 

Katayama et al. [15] used a 3D Radon transform and a spherical harmonic transform for the assem-
bly model, which makes similarity evaluation robust to translation and rotation. Generally, although 
the retrieval approach based on geometry has a high retrieval efficiency, it usually cannot exactly 
describe the global and/or local structures of a CAD model, which makes it usually has low accuracy. 
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2.2 Topology-based CAD Model Retrieval Approach 

Topology-based CAD model retrieval approach usually represents each CAD model by using a graph. 

Based on these topological descriptors, the (topological) similarities between different CAD models 
can be evaluated by a graph matching algorithm. For example, El-Mehalawi et al. [8, 9] used an 
attributed graph to represent each CAD model and presented an approach for retrieving and match-
ing similar designs between the CAD models. Giannini et al. [10] exploited the B-rep data of the CAD 
model to build an attributed graph containing geometric, topological, and spatial information. 
Huangfu et al. [11] designed a hierarchical model descriptor that transforms CAD models into labeled 

attribute adjacency graphs by extracting B-rep information. Tao et al. [12] created face adjacency 
graph descriptions for the query models from their B-rep data and proposed a retrieval method for 
3D CAD solid models based on region segmentation. In general, the retrieval approach based on 
topology has a high retrieval accuracy, but it usually has low efficiency because of the time-consum-

ing graph matching algorithm. 

2.3 Deep Learning-based CAD Model Retrieval Approach 

Deep learning-based CAD model retrieval approach usually gets potential knowledge related to the 
shape of each CAD model and represents the shape of each CAD model by using a feature vector. 
Based on these feature vectors, the similarities between different CAD models can be evaluated by 
vector angles. For example, Su et al. [13] first presented multi-view convolutional neural networks 
(MVCNN), which generates shape descriptor to offer even better recognition performance by com-

bining information from multiple views of a 3D shape. Angrish et al. [14] extended MVCNN architec-
ture by adding engineering metadata and proposed MVCNN++ for the classification and retrieval of 
CAD models. Sinha et al. [16] converted the 3D model into geometry images and used convolutional 
neural networks to learn 3D shapes for classification and retrieval tasks. Kim et al. [17] proposed a 
Part Geometry Network, which utilizes complementary properties of the face and volumetric repre-

sentations to learn robust feature descriptors for object classification. Ordinarily, the retrieval ap-
proach based on deep learning is aimed at mesh or point cloud, which is difficult to be directly used 

in a B-rep model. Furthermore, the retrieval accuracy usually depends on the scale of the training 
dataset and the consistency of model labels/classifications. It is not easy to construct a CAD model 
training dataset meeting the above requirements, because the CAD models include a large number 
of personal customized models, which are diverse and widely used.  

3 OVERVIEW 

To make the CAD model retrieval effective, efficient, and knowledge-independent, a new kind of 
dual-level retrieval approach is proposed in this study. The input of the approach is a CAD model 

called query model whose underlying data structure is a manifold B-rep, and its global and local 
shapes reflect the new design requirements. The flowchart of the proposed approach is illustrated in 

Figure 1.  

Step 1. The Coarse retrieval is carried out, and the preliminary candidate models are returned. 
First, a new geometric descriptor is generated for the query model. Then, based on the geometric 
descriptor, the geometric similarity is evaluated between the query model and each CAD model in a 

dataset. According to the geometric similarity value, the retrieved CAD models are ranked. If the 

number of the preliminary candidate models is represented as Rc, the CAD models ranked in the top 

Rc are selected as the preliminary candidate models. 

Step 2. The fine retrieval is carried out, and the final candidate models are returned. First, a 
new topological descriptor is generated for the query model. Then, based on the topological de-
scriptor, the topological similarity is evaluated between the query model and each preliminary can-

didate model. According to the topological similarity value, the CAD models are ranked. If the num-

ber of the final candidate models is represented as Rf, the CAD models ranked in the top Rf are 

selected as the final candidate models. 
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Figure 1: The dual-level CAD model retrieval flowchart. 

4 DESIGNING A NEW GEOMETRIC DESCRIPTOR FOR COARSE RETRIEVAL 

To make the geometric descriptor enable fast coarse retrieval, D2 can be adopted to represent each 
CAD model for its well-known discrimination in describing a model’s global shape; and can efficiently 
realize similarity evaluation in model retrieval. Furthermore, to make the geometric descriptor ef-
fectively describe the local shape of the CAD model as well, we combine D2 with Point Feature 
Histograms (PFH) [18] (for its excellent capability in local shape representation) to form the new 
geometric descriptor D2P in this study. After defining the geometric similarity evaluation method, 

coarse retrieval can be carried out. 

4.1 The Design of D2P 

As a geometric descriptor, D2P consists of two aspects, i.e., D2 and PFH. Figure 2 shows an example 
of D2P for CAD model 1 in Figure 2a. Here, the model’s corresponding D2 histogram and the angle 
histograms [19] of PFH are respectively shown in Figure 2b and Figure 2c. In particular, the horizontal 

axis and vertical axis of these histograms indicate the indexes of the bin and probability, respectively. 
Here, each histogram has 1024 bins. Besides, to effectively construct the D2P, a set of points is 
generated for each CAD model by sampling points uniformly on the face of the model. 
 

 
 

Figure 2: CAD model 1 and its D2P. 

Generate a new topological descriptor Generate a new geometric descriptor 

Evaluate geometric similarity  Evaluate topological similarity 
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Herein, the D2 histogram represents the distribution of Euclidean distances between all pairs of 
sampled points on the face of each model [3], and is computed as follows: (1) Two different points 
are randomly sampled on the face of a CAD model and the Euclidean distance is calculated between 

the above two points. This should be repeated N2 times (2) The values of distances are normalized 

to reduce the difference between different model sizes. (3) D2 histogram with B bins is formed to 

show the distribution of the normalized values of the distances. According to [3], the experiments 
had shown that it can ensure enough resolution and high robustness of the shape description when 

N and B equal 1024. 

D2 histogram is a global description and can’t describe the local shape of a model. PFH is adopted 
to represent the local geometry of each model, which complements the D2 histogram. The calculat-
ing steps of PFH are given in the following: (1) All points in the k-neighborhood of a point are 

selected. According to [18], the distance D and angles (α, φ, θ) are calculated between any two 

points in the k-neighborhood. This should be repeated until all points are visited. (2) The PFH with 
the same bins of D2 histogram is formed to show the distribution of the local geometry of a model. 

In particular, PFH in this study ignores the histogram corresponding to distance D to reduce the 

difference between different model sizes. Table 1 shows the angle histograms of PFH in different 

neighborhoods of CAD model 1. If k is increased, the angle histograms have diverse distribution. In 

this study, k is set at 1024. 

 

k-neighborhood angle α histogram angle φ histogram angle θ histogram 

k = 128 

   

k = 512 

   
 

Table 1: The angle histograms of PFH in different neighborhoods of CAD model 1. 

 

According to the above sense, each D2P describes not only the global shape of a CAD model but also 

the local shape of the model at different levels when changing the value of k. This provides an 

important basis for accurate model retrieval. 

4.2 Geometric Similarity Evaluation Based on D2P 

To carry out a fast coarse retrieval, the geometric similarity between two CAD models can be evalu-

ated by Euclidean distance based on their D2P. The geometric similarity is represented as SimG, and 

two CAD models are represented as Q and T. The geometric similarity SimG(Q,T) between Q and T is 

defined as Equation (4.1) to (4.4).  

 2( , ) (1 ) ( , ) ( , )G D PFHSim QT Sim QT Sim QT  (4.1) 

 2 2 2 2
( , ) 1 ( ) ( )D D DSim Q T F Q F T  (4.2) 
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1

( , ) ( ( , ) ( , ) ( , ))
3PFHSim Q T Sim Q T Sim Q T Sim Q T  (4.3) 

 
2

2

2

( , ) 1 ( ) ( )

( , ) 1 ( ) ( )

( , ) 1 ( ) ( )

Sim Q T F Q F T

Sim Q T F Q F T

Sim Q T F Q F T

 (4.4) 

Here, SimD2 and SimPFH represent D2 similarity and PFH similarity respectively. Simα, Simφ, and Simθ 

represent the similarities of angle α, φ, and θ. FD2, Fα, Fφ, and Fθ represent the vectors of the corre-

sponding histograms. β represents a parameter, and its value is usually set at 0.5. Table 2 shows 

the top 4 candidate models of a retrieval instance based on D2P. The values under the candidate 

models are the geometric similarities between the query model and the candidate models. 
 

Query model The top 4 candidate models 

 
 

 
0.9781 

 
0.9766 

 
0.9688 

 
0.9669 

 
Table 2: Retrieval instance by D2P. 

5 DESIGNING A NEW TOPOLOGICAL DESCRIPTOR FOR FINE RETRIEVAL 

It is considered that describing and using the topologies of the essential characteristics of CAD mod-
els can realize an accurate CAD model retrieve in global and/or local structures. However, if the 
topological descriptor contains too many geometric details (such as the typically attributed graphs 
[8, 10-12]), retrieval accuracy will be sensitive to the difference in geometric detail among CAD 
models; moreover, the retrieval efficiency is usually low. Otherwise, when the topological descriptor 
contains too few geometric details (such as the skeleton graph [20-22]), it is difficult to ensure high 

retrieval accuracy. To balance the retrieve efficiency and accuracy, the key faces (i.e., a set of faces), 
which reflect the primarily global and local (geometric) shapes through geometric details, are found 
first on each CAD model in this study. After that, a key-face-attributed adjacency graph (KFAAG) is 
developed based on the above-mentioned key faces to represent the high-level and concise topology 
(i.e., primary topology) of the CAD model. Finally, after defining the topological similarity evaluation 
method, fine retrieval can be carried out. 

5.1 Key Faces Determination Based on PSO 

The kay faces are defined as those faces that can represent the primarily global and local (geometric) 
shapes of the model. Because D2P can describe the global and local shapes, the shape of each face 
set is described by D2P. The computation of the D2P of each face set is similar to the D2P of the 
model, but the difference is that points are randomly sampled on the faces in the face set. The D2P 

of each face set is compared with the D2P of the corresponding CAD model to find the most suitable 
face set. Here, to make the above process efficient and effective, the particle swarm optimization 
method (PSO) [23] is employed for its potential capability in finding the global optimal solution. 

In PSO, the position of each particle corresponds to a solution (i.e., a set of faces), which is 
represented as an n-dimensional vector. Figure 3b shows an example, where each dimension in the 
position of a particle corresponds to a face of CAD model 2. In particular, if one dimension in the 
position of a given particle equals 1, its corresponding face is deemed as a key face in the current 
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solution. Therefore, all the key faces of a CAD model indicated by a randomly generated particle can 
be collected by analyzing each dimension value in its position. 

 
 

Figure 3: CAD model 2 and particle’s position. 
 

Herein, the i-th particle’s position and velocity are denoted by xi = (xi1, xi2, …, xin) and vi = (vi1, vi2, …, 

vin), respectively. The historical best position of the i-th particle is represented as pi = (pi1, pi2, …, pin). 

The global best position of all particles is represented as g = (g1, g2, …, gn). The i-th particle update 

at iteration t is defined as Equation (5.1) to (5.3). 

 
1, ( ) 0.5

0,
ij

ij

Sigmoid v
x

else
 (5.1) 

 
1

( )
1 ij

ij v
Sigmoid v

e
 (5.2) 

 1 1 2 2( 1) ( ) ( ) ( ) ( ) ( )i i i i iv t wv t c r p t x t c r g t x t  (5.3) 

Here, j represents each dimension of the particle’s position or velocity. w, c1, and c2 represent three 

weights that equal 0.5, 2, and 2 by trying several experiments. r1 and r2 are two random real numbers 

in the range [0,1]. 

To determine the set of faces of a CAD model that has the highest geometric similarity to the 
model (i.e., to determine the key faces of the model), the corresponding fitness function is defined 
as Equation (5.4). 

 * argmin ( , )G
F

F Sim M F  (5.4) 

Here, M represents a given CAD model; F represents a face set on the CAD model; F* represents a 

set of key faces. SimG is the geometric similarity between the face set and the corresponding CAD 

model. If |SimG(M,F)-η| reaches the minimum, all faces in F are key faces. η is a similarity threshold 

that is used to control the degree of geometric similarity between the CAD model and the key faces. 
It equals 0.9 in this study. 

According to the above method, Figure 3b shows the key faces of CAD model 2. The number of 

key faces is 4 which is less than the face quantity of CAD model 2. Furthermore, the key faces of 
CAD model 2 not only represent the primary topology of the model but also reflect the very similar 
global and local shapes to those of CAD model 2.  

5.2 The Design of KFAAG 

After obtaining the key faces of each CAD model, here, we describe the primary topology of the 

model by constructing a KFAAG. Here, Figure 4b demonstrates an example. Each KFAAG = (N, E) is 
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(b) Particle’ position (a) CAD model 2 
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composed of the graph node set N and the graph edge set E. Each graph node represents a key face 

of the CAD model. For example, the graph nodes f2 represents key face f2. The attributes of each 

graph node include face type (such as plane, cylinder, sphere, etc.), area ratio, and D2P. There are 

two kinds of graph edges: real graph edge (connecting two graph nodes with a solid curve) and 
virtual graph edge (connecting two graph nodes with a dash-dot curve). If two key faces have an 
intersection by no extension, two graph nodes corresponding to two key faces connect with a real 

graph edge. For example, the key faces f3 and f4 in Figure 4a intersect at one line, so the correspond-

ing graph nodes f3 and f4 in Figure 4b connect with a real graph edge. If two key faces have an 

intersection by key face extension, two graph nodes corresponding to two key faces connect with a 

virtual graph edge. For example, the extensions of key faces f4 and f5 in Figure 4a intersect at l2, so 

the corresponding graph nodes f4 and f5 in Figure 4b connect with a virtual graph edge. To determine 

whether any two key faces or the extensions of any two key faces intersect, each key face and the 

other key faces need to be visited. If there are n key faces, the time complexity of constructing 

KFAAG is O(n2). 

 

 
 

Figure 4: Construction of KFAAG. 

 
 

Figure 5: KFAAG matching. 

5.3 Topological Similarity Evaluation Based on KFAAG 

After describing the primary topology of each CAD model by using a KFAAG, the topological similar-
ities among CAD models can be evaluated based on graph matching. In particular, it is believed that 

the requirements indicated by the query model should be indicated/reflected by each retrieved can-

didate model as much as possible. Therefore, the pair of the found isomorphic subgraphs having the 

(a) CAD model 2 after face extension (b) KFAAG 
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maximum graph nodes and maximum geometric similarity in the face is deemed as the best-topo-
logical-matched subgraphs between two KFAAGs (respectively belonging to the query model and a 
CAD model). Furthermore, in this study, we assume that the best-topological-matched subgraph of 
the KFAAG of the query model is itself, as it is a common phenomenon that the query model usually 

has a simpler shape (both in topology and geometry) compared to each candidate model. That is, 
each graph node in the KFAAG of the query model has a corresponding graph node in the KFAAG of 
the candidate model, as shown in Figure 5. Accordingly, the Kuhn–Munkres algorithm [1] is employed 
to promote the above-mentioned matching process. Herein, to evaluate the topological similarity 
between two matched subgraphs, Equations (5.5), (5.6), and (5.7) are defined. 

 
,

max
( , )

iji Q j T
T

w
Sim Q T

n
 (5.5) 

 
1
( ( , ) ( , ) ( , ))
3ij FaceType AreaRadio Gw Sim i j Sim i j Sim i j  (5.6) 

 ( , ) 1 ( ) ( )AreaRadioSim i j AreaRadio i AreaRadio j  (5.7) 

Here, SimT represents the topological similarity. Q and T represent two CAD models, and n is the 

minimum number of key faces between Q and T. i represents a key face of the query model, and j 

represents a key face of the candidate model. wij represents the similarity between i and j. SimFaceType 

is used to evaluate whether two faces have the same type or not, that is, if two faces have the same 

type, SimFaceType = 1, otherwise, SimFaceType = 0. The types of face include plane, cylinder, sphere, cone, 

torus, and NURBS surface. SimAreaRadio represents the similarity of area radio, and AreaRadio represents 

the area ratio of a key face area in the surface area of the corresponding CAD model. SimG represents 

the geometric similarity between two key faces. 

The KFAAG can not only describe the essential/primary topology structure information but also 
represent the primary local shapes of the CAD model. Table 3 shows the top 4 candidate models of 

a retrieval instance based on KFAAG. The values under the candidate models are the topological 
similarities between the query model and the candidate models. 
 

Query model The top 4 candidate models 

  
0.9984 

 
0.9951 

 
0.9517 

 
0.9124 

 
Table 3: Retrieval instance by KFAAG. 

6 EXPERIMENTS AND DISCUSSIONS 

The proposed approach has been implemented by using C# based on SolidWorks 2020 whose API is 
adopted to get the B-rep data from CAD models. Generally speaking, the large-scale CAD model 
datasets that can be directly adopted here are still rare (such as the ABC dataset [24]), especially 
the ones where each model has been classified (the model classification is one of the common basis 
to evaluate the precision and recall of a retrieval approach). As a result, we build a dataset to verify 
the effectiveness and characteristics of the proposed approach. In particular, each model in the built 

dataset is downloaded from the publicly accessible Web sites and classified by ourselves. Here, the 
dataset has been shared in https://github.com/YangYunCan/CAD-Models, which has 25 classes and 

1004 parts as shown in Figure 6. 
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Bolt, 66 

 
Nut, 38 

 
Rob, 23 

 
Shaft, 34 

 
Bracket, 35 

 
Elbow, 51 

 
Wrench, 44 

 
Fan, 22 

 
Handle, 33 

 
Hinge, 61 

 
Hook, 61 

 
Joint, 24 

 
Piston, 39 

 
Spring, 51 

 
Block, 23 

 
Pulley, 63 

 
Rim, 17 

 
Chess, 63 

 
Key, 28 

 
Cup, 92 

 
Hammer, 27 

 
Hex, 42 

 
Mount, 22 

 
Drillbit, 13 

 
Wheel, 32 

 
Figure 6: CAD model dataset. 

6.1 Retrieval Cases and Analysis 

Three typical CAD models are selected as query models to retrieve the candidate models. The number 

of preliminary candidate models (retrieved based on D2P) Rc is set at 50. The number of final candi-

date models (retrieved based on KFAAG) Rf is set at 4. 

 

Query model The top 4 candidate models 

 
Bolt 

 
0.7497 

 
0.7465 

 
0.7377 

 
0.7194 

 
Spring 

 
0.9890 

 
0.9288 

 
0.8286 

 
0.7892 

 
Table 4: Two typical cases using dual-level retrieval. 

 

Table 4 shows two cases based on our dual-level retrieval approach. On the one hand, the bolt model 
as one query model has 5 faces without any geometric detail. The candidate models corresponding 
to the bolt model belong to the bolt label and have a bolt head as well as a bolt body. On the other 

hand, the spring model as the other query model has 9 faces. Furthermore, most of them are free-
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form faces. The candidate models corresponding to the spring model belong to the spring label and 
have two hooks at the ends of the spring. 

Table 5 shows a case using different retrieval way. Using only D2P, the spatial distribution of the 
primary local shape (such as the position of blades) is indistinguishable on the candidate models. 

Because the dual-level retrieval adds the topological refinement based on D2P, the blades of candi-
date models have more similar distribution to the fan model as the topological similarity increased. 
 

Query model Retrieval way The top 4 candidate models 

 
Fan 

Using only D2P 

 
0.7671 

 
0.7512 

 
0.7273 

 
0.6893 

Using dual-
level retrieval 

 
0.7161 

 
0.6955 

 
0.6891 

 
0.6780 

 
Table 5: A case using different retrieval way. 

6.2 Retrieval Accuracy Demonstration 

To evaluate retrieval accuracy of our proposed approach, each model in the dataset as the query 
model to study the average precision and recall of our proposed approach compared with D2 [3], 

attribute graph [8], MVCNN++ [14]. The average precision and recall are as shown in Figure 7. Rf 

(the number of final candidate models) varies from 1 to 20. The higher the precision and recall are, 
the more accurate the retrieval approach is. Figure 7 shows that our proposed approach has the 

highest accuracy in the above four approaches.  
 

 
 

Figure 7: The comparison of accuracy. 

6.3 Time Complexity Analysis and Retrieval Efficiency Demonstration 

The proposed approach is carried out in a coarse-to-fine manner. In coarse retrieval stage, the time 

complexity depends on geometric similarity evaluation and geometric similarities ranking. If there 

(a) Average precision curves (b) Average recall curves 
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are n CAD models in dataset, the time complexity is O(n) in geometric similarity evaluation between 

a query model and n CAD models. The time complexity for ranking is O(nlogn) by using Quicksort 

algorithm for n values of geometric similarity. The coarse retrieval including geometric similarity 

evaluation and geometric similarities ranking has a time complexity O(nlogn).  

In fine retrieval stage, the time complexity depends on topological similarity evaluation and top-
ological similarities ranking. The time complexity for topological similarity evaluation between a query 

model and another model is O(m3) by using Kuhn–Munkres algorithm, where m represents the graph 

node number of KFAAG of the query model. If there are k preliminary candidate models, the time 

complexity is O(km3) in topological similarity evaluation between a query model and k preliminary 

candidate models. The time complexity for ranking is O(klogk) by using Quicksort algorithm for k 

values of topological similarity. The fine retrieval including topological similarity evaluation and top-

ological similarities ranking has a time complexity O(km3+klogk).  

The proposed retrieval approach consists of coarse retrieval and fine retrieval, so the proposed 

retrieval approach has a time complexity O(nlogn+km3+klogk). 

 

Query model D2 attribute graph MVCNN++ our proposed approach 

Bolt 25 53322 26 4376 

Spring  26 49990 26 4204 

Fan 25 60437 27 5115 

 
Table 6: The comparison of retrieval time (: millisecond). 

 

To illustrate the retrieval efficiency, the bolt model, spring model, and fan model are selected as 
query models, respectively. For each query model, each retrieval experiment is independently per-

formed 20 times and runs on a PC with i7-9700 CPU 3.00 GHz as well as 16 GB RAM. Table 6 shows 
the average time consumption of D2, attributed graph, MVCNN++ and our proposed approach, re-
spectively. In particular, the time consumption here only contains the one spent on retrieval. 

As seen from Table 6, the average time consumption of D2 is close to the one of MVCNN++, 
and both of them have higher efficiency. This is because D2 and MVCNN++ describe models with 
1024-dimension vectors, respectively; and the evaluating similarity between vectors is fast. At-
tributed graph takes the most retrieval time as it uses time-consuming graph matching to evaluate 

topological similarity. The retrieval time of our proposed approach is composed of two aspects: 
coarse retrieval and fine retrieval. The coarse retrieval time is close to D2 and MVCNN++. The fine 
retrieval time is less than attribute graph, because the number of models used to evaluate topolog-

ical similarity is less. Therefore, the retrieval time of our proposed approach is less than attribute 
graph, but more than D2 and MVCNN++. 

7 CONCLUSION AND FUTURE WORKS 

To make the CAD model retrieval be effective, efficient, and knowledge-independent, this work pro-

poses a new kind of dual-level retrieval approach. The experiments show that the proposed approach 
has a higher retrieval accuracy compared with D2, attributed graph, or MVCNN++. Because of the 
coarse-to-fine manner, the retrieval efficiency of the proposed approach is higher than attribute 
graph, but lower than D2 and MVCNN++. Besides, the proposed approach also has the following 
characteristics: (1) By integrating D2 with PFH, the geometric descriptor, i.e., D2P, can effectively 
describe the global and local (geometric) shapes of a CAD model. (2) By improving the traditional 

PSO, the key faces related to the primarily global and local shapes of a CAD model can be deter-
mined. (3) Aided with the key faces, a high-level and concise topological descriptor (named KFAAG) 
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is proposed for each CAD model, which can be effectively used to accurately retrieve CAD models 
based on their primary/essential topologies. 

Future works can be conducted to make the proposed approach more general. For example, (1) 
The complexity of model shape could be considered when sorting candidate models after retrieving. 

(2) In the construction of KFAAG, all key faces are extensible. The influence of the extension of the 
maximal faces with respect to the global shape could be investigated. (3) The candidate models are 
returned according to the geometric similarity or topological similarity. Future research could explore 
this issue further by combining the topological similarity with geometric similarity. (4) To provide a 
more comprehensive assessment of the retrieval approach, the Engineering Shape Benchmark could 
be considered while expanding the CAD model dataset. (5) The experimental dataset is classified by 
experts, but the classification labels have certain subjectivity. A more objective standard could be 

developed to eliminate the ambiguities of classification. 
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