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Abstract. Reverse Engineering (RE) is an activity which consists in digitizing a real 
part in order to create a numerical or virtual model of it. It is conducted on 

components that does not have any Computer Aided Design (CAD) model, or only a 

semantically poor 3D representation. Industrial applications for RE are: (A) 
manufactured parts inspection and dimensional control, (B) CAD model re-design 
and modifications; and (C) Product Data Management (PDM) system and Data-base 
search for 3D models and relative heterogeneous data retrieval. Aeronautical 
components present several challenges for RE activities, such as complex structures 
and shapes, large volume of data and a high need of precision in CAD models rebuilt. 

Moreover, development of local freeform shapes descriptors remains an area of 
research for applications such as complex surface labeling and retrieval in raw data, 
and for global mesh semantic segmentation (i.e., decomposition of the mesh into 
meaningful regions that can be associated with definition features). 
 This paper presents a study on semantic segmentation techniques for complex 
aeronautical components. Machine Learning and Deep-learning model-based 
methods for geometry processing will be evaluated on a set of real aircraft engine 

parts. 
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1 INTRODUCTION 

Reverse Engineering (RE) is usually considered as a set of activities carried out with the intention of 

recreating a 3D numerical model from digitized data of a physical part [11]. It is conducted on 
components that do not have any Computer Aided Design (CAD) model, or only a semantically poor 
3D representation, such as a mesh or a “freeze” resulting body. More generally, industrial 

applications for RE are: (A) manufactured parts inspection and dimensional control, (B) CAD model 
re-design for new product development or downward application as Computer Aided Manufacturing 
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or simulation; (C) Product Data Management (PDM) system and database search for 3D models and 
relative heterogeneous data retrieval.  

 Knowledge-Based Reverse Engineering (KBRE) methods are interested in coherent data (saved 
in databases) research and reuse during RE activities [7], and use the concept of data “signatures” 

as a means of information extraction and storage in a specific formalism (ie. Knowledge 
capitalization). Not restricted to 3D mesh remodeling, RE activities also include geometry processing 
and Product knowledge management in databases as PDM systems, making RE a reliable solution 
within a company’s strategy for Product data integrity and sustainability.   

 The aeronautic industry context presents several challenges for RE activities, starting with 
complex product structures and freeform shapes with aerodynamic properties. When Reverse-
Engineering digitized models, one must deal with large data volumes and a high need of precision 

in CAD model rebuilt. Moreover, the development of freeform geometric shape descriptor for 

complex shapes recognition remains an open question. These limitations have an impact on classical 
RE methods and tools when considering aeronautical Parts, especially for Part mesh semantic 
segmentation (i.e. mesh decomposition into labelled meaningful regions). 

This paper presents a study on semantic segmentation for complex aeronautical Parts. Model-
based segmentation methods relying on Machine Learning and Deep-Learning tools for geometry 

processing will be evaluated on a set of real aircraft engine parts. A capitalization (learning) phase 
on CAD definition models is used for computing performant geometric shape descriptors, which are 
saved within feature’s signatures for reuse during the semantic segmentation of the mesh. 
Developed tools are compared both in terms of results accuracy and efficiency. Method enforcement 
consistency will be discussed considering technical feasibility as well as application genericity. 

Section 2 presents a quick overview of state-of-the-art methods for RE applications in the 
scientific literature. In section 3, domain specific challenges are introduced and technical aspects are 

covered. Section 4 presents the study and the evaluation of each tested method.   

2 STATE OF THE ART  

2.1 General RE Process 

Classical RE processes can generally be separated into four major steps: (a) Digitizing; (b) Pre-

Processing; (c) Segmentation; (d) Modelling [7]. 

Digitizing a real object consists in creating a 3D virtual representation of it (usually a point 
cloud or a 3D mesh). This can be achieved through various methods (see [2] for an exhaustive 
review). It should be noted that, for some RE needs, 3D data come directly from tessellated CAD 
models and not from real world components. 

Pre-Processing steps -like decimation of the number of acquired points, mesh generation, 

surface smoothing, etc.- are operations available in most acquisition and RE software. Mesh 

“simplification” is usually essential for subsequent steps. When considering sensible aeronautic parts, 
minimum preprocessing should be used to avoid over-modifying the acquired shape. 

Segmentation is the process of sub-dividing a 3D mesh into distinct regions called segments. 
Based on geometry processing, segmentation quality is crucial, since it represents essential - and 
sometimes the only - information for the modeling step and influences the overall reconstruction 
process. Segmentation is called semantic when each identified region can be easily associated with 
a construction operation or a specific surface [7]. See [13], [18] and [23] for exhaustive surveys. 

Modelling operations are used to generate 3D models compatible with CAD-CAM applications. 
Freeform approaches are commonly distinguished from feature-based methods. The former is an 
explicit modelling approach, which consist in describing a solid by its surfaces, and usually result in 
a “frozen” or “dead” solid. Parametric patches are fitted on the mesh by NURBS and b-Splines 

surfaces interpolation. With a fine tuning, freeform fitting allows for the reconstruction of complex 
CAD surfaces with high precision and details [3, 10]. Meanwhile, the term feature is widely used in 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 20(3), 2023, 557-573 

© 2023 CAD Solutions, LLC, http://www.cad-journal.net 
 

559 

the literature to describe implicit modelling, which seeks to recover a parametric and semantic model 
(using a procedural approach with sequences of constructions operations with parenting relations). 
Main methods are primitives fitting [20], 2D sections [14], CAD or CSG template fitting [6] [21]. 
KBRE is a set of methods that consist in capitalizing heterogeneous information about the product 

during an upstream stage for reuse optimization. By using data “signatures”, which saves knowledge 
in a specific formalism, the user is able to retrieve useful information and heterogeneous data during 
the RE application. PHENIX1 [11] project developed a methodology for knowledge capitalization in 
the form of parametric geometric references that are adjusted to the 3D mesh. METIS2 project [5] 
integrates the use of heterogeneous data (drawings, images, instructions, templates) to the RE 
process. Shape descriptors integrated in the signature are used to recognize and label specific 
features which are linked to support databases, providing knowledge that would not be available 

with a geometric analysis of the digitized model only. In this paper, features will be considered as 

generic shapes with which designers can associate certain attributes and knowledge useful for 
reasoning about the product [23].  

The ability to retrieve knowledge on local features is closely linked with the segmentation 
activity, which extract image regions of features in the global mesh. Next sub-section is a review on 
mesh segmentation methods, with a focus on methods performing identification and labeling of local 

features.   

2.2 3D Mesh Segmentation 

The finality of the 3D mesh segmentation process is to cluster points (vertices) with similar 
characteristics into homogeneous meaningful regions [23]. Several state-of-the-art methods are 
based on shape analysis for geometric intrinsic information extraction (low order differential 

properties such as surface curvature and principle directions for example) [18], [22]. Edge-based 
methods detect points which have rapid changes in intensity to identify boundaries between 

segments. Region-based methods use neighborhood information to combine points in groups sharing 
similar properties, either by growing segments with neighboring points (bottom-up method), or by 
dividing large segments according to user driver criteria (top-down method). Attribute-based 
methods first compute specific attributes (distance, density, point distribution) to create group of 

points sharing common attributes. Neither of those technics could really be considered as sufficiently 
semantic, in the sense that segments computing is only based on geometric analysis of the mesh. 
 More precisely, semantic of models is all information in addition to its geometry. Local semantics 
are information on the individual parts which composed the model, as dimensions and driving 
parameters, functional specifications, modeling methods, general Product Manufacturing 
Information (PMI), and design intents. Segmentation is considered as semantic if computed 
segments can be associated with local features of the definition model, and their attributes. It is 

usually based on shapes analysis for general or capitalized knowledge extraction. Model-based 
methods use the analytical definition of geometric primitives (general canonical surface equation) to 

group points together as part of a quadrics. Methods usually detect the type of primitive, and then 
optimize equation’s parameters with a least square fitting algorithm [1], [4], [20]. Because 85% of 
engineering CAD models can be represented by associations of primitive shapes [8], methods for 
the semantic segmentation of more complex surfaces have not been intensively studied in the 
literature. Methods considering “freeform” surfaces segmentation usually consist in predefined 

surfaces (mesh or b-rep) fitting to local regions of the data with a deviation minimization [22], [24]. 

 
1 ANR PHENIX : Product History-Based Reverse Engineering, Programme Cosinus, 2008-2011, DeltaCAD, 
Université de Technologie de Troyes, Université de Technologie de Compiègne  
 
2 ANR METIS : ModElisation Tridimensionnelle de Maquettes Numériques Par l’Intégration de Données 
Géométriques et de Connaissances HétérogèneS, Programme Modèle Numérique 2012 - 2015, DeltaCAD, IFP 
Energies Nouvelles, École Centrale de Nantes, Université de Technologie de Troyes, Université de Technologie de 
Compiègne 
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According to [24], non-regular shape identification in raw data would make shape reuse possibilities 
wider, but freeform features should not depend on a predefined library.  

Machine/deep learning technologies have been applied to geometric shape analysis for several 
applications such as global mesh labeling [9], [12], [26], primitives fitting improvement [16] or 

parametric curve and surface approximation [15]. As opposed to purely analytic model fitting and 
geometric reasoning, deeper methods extract feature descriptors during a supervised learning phase 
to perform shape classification, labeling and semantic segmentation [19]. IA based techniques are 
usually presented as outperforming geometric reasoning in term of completeness, noise robustness, 
and generalization [25].  

The literature survey reveals potential methods limitations for aeronautical meshes segmentation: 
apart from being very sensitive to data noise and user-adjusted parameters, methods based on 

intrinsic geometric properties variations often result in unlabeled regions, and thus cannot isolate 
specific features-associated segments. Model-based methods are more prompt to identify and fit 
features to mesh data, but most are limited to geometric primitives with canonical equations, making 
them unsuitable with the shape typologies of our applications. Machine/deep learning methods 
constitute a good research direction to fill the gap, with more generalizable applications. However, 

technologies such as Artificial Neural Network are known to be computationally expensive, while 
shape descriptors should meet certain requirements in terms of simplicity, easiness of calculation 
and processing speed [17]. The following section presents the study on semantic segmentation 
methods and tools for aeronautic parts.  

3 STUDY ON SEMANTIC SEGMENTATION FOR AERONAUTIC PARTS 

3.1 Context and Challenges 

Following study is part of researches carried out in the context of a PhD thesis in partnership with 
industrials from the aeronautic sector. RE application for aircraft engine parts is characterized by 
heavy meshes (up to 10M vertices) that are to be partially re-modelled with high precision. In this 
work, we will only consider the segmentation step of the overall RE process, considering that digitized 
mesh quality and conformity is ensured by the metrology department providing the digitized data. 

No preprocessing steps shall be applied, in order to keep the mesh the most representative of the 
physical Part. Modelling steps consists of b-rep surfaces fitting and/or deformable templates fitting 
to the mesh, which can be completed with sufficient results by commercial RE software [7], as 
Geomagic design X3 or CATIA V5 RE workbench4. 

 
3 https://fr.3dsystems.com/software/geomagic-design-x 
4 https://www.3ds.com/products-services/catia/products/v5/portfolio/domain/Shape_Design_Styling/ 

Figure 1: segmentation results with a commercial software: a) low-quality 
segmentation resulting in over-segmented mesh; b) valid quality semantic 

segmentation where segments can be labelled and associated with features. 

a) b) 
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Figure 2 illustrates the topology of the example Part. It is composed of inner and outer frames 
supporting multi-instantiated blades, each decomposed in 6 features. When RE a 3D mesh of this 
product, regions corresponding to labelled specific features (label 0 to 6) need to be extracted and 
processed separately.  

Because of the complex feature’s shapes, most traditional methods like [20] are ineffective. As 

an example, Figure 3 illustrates a blade segmentation results using Geomagic Design X: Figure 3.a) 

is the result we would like to obtain after a perfect semantic segmentation. Features 2, 3, 6 are 
identified, labelled, and segments are correctly delimited. Segmentation on the raw mesh (figure 
2.b) results in a highly over-segmented mesh. After automatic preprocessing, results could be usable 
(figure 2.c), only requiring manual merging of segments. However, no preprocessing was allowed in 
our applications to maintain the accuracy of the mesh. Achieving better results with commercial 
tools would be possible by gradually adjusting segmentations parameters, which would require 

skilled user and long processing times. Therefore, methods for the semantic segmentation of aircraft 
engine parts (and more generally any part with complex shapes) still needs to be studied.  

In the continuity of researches on KBRE carried out by research teams at the Universities of 

Technology Compiegne and Troyes, we make the assessment that capitalizing knowledge about 
proprietary components in an upstream stage allows for better knowledge management and reuse 
optimization. More precisely, complex shape signatures can be computed on definitions 3D CAD 
models for in-situ reuse within specialized semantic segmentation tool.  

Three methods for semantic mesh segmentation will be tested and compared on real aircraft 
engine parts. First method is based on a point-to-point distance criteria between a scan and its 3D 

tessellated definition model. Then, model-based methods using Ordinary-Least-Squares nonlinear 
regression5 and Gaussian Process regression6 for complex surfaces approximation will be tested as 
features shape descriptors for automatic freeform surfaces recognition and labelling. The third 
studied method consists in using the neural network Pointnet++ [19] on a private dataset to 
evaluate Deep-learning capacities for semantic segmentations in industrial area. 

 
5 https://towardsdatascience.com/introduction-to-linear-regression-and-polynomial-regression-f8adc96f31cb 
6 https://towardsdatascience.com/gaussian-process-regression-from-first-principles-833f4aa5f842 
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Figure 2: simplified sketch of an aircraft engine exhaust casing and its blade’s topology.     

a) b) c) 

Figure 3: a) targeted segmentation result of a blade; b) low quality segmentation result (no 
preprocessing); c) correct quality segmentation result. 
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3.2 Knowledge Capitalization on 3D Data and Segmentation Method  

𝑃𝑎𝑟𝑡𝑑𝑒𝑓 refers to a definition CAD model, and 𝑆𝑑𝑒𝑓𝑖
 ( 𝑖 ∊ [1, 𝑛]) to 𝑛 local surfaces (ie. B-rep features). 

𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛 is the digitized model (mesh) of one physical component. 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ and 𝑆𝑚𝑒𝑠ℎ𝑖 refer to 

tessellated 3D models of 𝑃𝑎𝑟𝑡𝑑𝑒𝑓 and 𝑆𝑑𝑒𝑓𝑖
, that will be used either directly for segmentation, or for 

shape descriptors computation and/or learning. Finally, 𝑠𝑒𝑔𝑚𝑖 are sub-meshes of 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛. If the 

semantic segmentation perform well, 𝑠𝑒𝑔𝑚𝑖 should be the image of 𝑆𝑑𝑒𝑓𝑖
 in 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛.  

Methods in this study are based on a capitalization (learning) phase that computes “features 

signatures”, called 𝑠𝑖𝑔𝑛𝑖. Those are composed of specific shape descriptors and associated metadata. 

Tools are developed in Python programming language. Basic operations on STL format meshes are 
made using Trimesh API7.     

 Next sub-sections present methods technical aspects for knowledge capitalization and mesh 
segmentation. Experimentations, methods discussions and comparison will be studied in section 4.    

3.2.1 Point-to-Point distance criteria 

This method is based on the assumption that every point 𝑝𝑗 of 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛 can be considered as part of 

𝑠𝑒𝑔𝑚𝑖 if close enough to 𝑆𝑑𝑒𝑓𝑖
, or equivalently to 𝑆𝑚𝑒𝑠ℎ𝑖. In other words: 

 

𝑝𝑗(𝑥𝑗 , 𝑦𝑗 , 𝑧𝑗) ∈ 𝑠𝑒𝑔𝑚𝑖        𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓        𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑝𝑗 , 𝑆𝑚𝑒𝑠ℎ𝑖
) < 𝜀      (1) 

with  𝑚𝑖𝑛𝑑𝑖𝑠𝑡(𝑝𝑗 , 𝑆𝑚𝑒𝑠ℎ𝑖
) being the minimum Euclidean distance between 𝑝𝑖 and every point of the 

tessellated surface 𝑆𝑚𝑒𝑠ℎ𝑖
, and 𝜀 a user-defined threshold. We denote that we use point-to-point 

distance rather than point-to-mesh faces (or even parametric surface) distance for computation 
efficiency. In here, no global segmentation is applied to 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛. The user must query a feature 

(𝑆𝑑𝑒𝑓𝑖
) to be recognized in the mesh, and submesh corresponding to that feature only will be 

extracted. Point-to-point distance criteria segmentation is done as follow:  

(a) Capitalization: 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ is generated by tessellation of 𝑃𝑎𝑟𝑡𝑑𝑒𝑓 using a CAD software. The 

user selects and tessellate local features of interest (𝑆𝑚𝑒𝑠ℎ𝑖). Capitalization can be made in 

an upstream stage, or during the RE activity   

 
7 https://trimsh.org/ 

Figure 4: General RE process. 
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(b) 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛 is registered (align) with 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ (if not already done), using Iterative Closest Point 

algorithm. 

(c) The user inputs 𝑆𝑑𝑒𝑓𝑖
 name (query) and the distance criteria threshold 𝜀. 

(d) 𝑠𝑒𝑔𝑚𝑖 is generated (cf. equation (1)). Result appreciation is left to the user, threshold can 

be adjusted for better results.  

(e) Previous steps (c) and (d) are done for each feature that are to be recovered in 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛. 

 

3.2.2 Surface model approximation   

 
• Polynomial implicit function of surface 

This model-based segmentation technique is based on implicit model of surfaces fitting into the mesh 
vertices. Just like the well-known RANSAC method ([1], [20]) iteratively tries to fit primitives 
(quadrics) to regions of points in a Cartesian space, our method uses more complex surfaces models 
defined by high order polynomial implicit functions.  

An implicit function 𝑓𝑑  (with degree 𝑑) of a surface 𝑆𝑑𝑒𝑓 is defined as follow: 

 

𝑆𝑑𝑒𝑓 =  {𝑝(𝑥, 𝑦, 𝑧)  | 𝑓𝑑(𝑝) = 1 },     𝑓: ℝ3 → ℝ,   𝑓𝑑(𝑥,  𝑦,  𝑧) = ∑ ∑ ∑  𝛼𝑑𝑥,𝑑𝑦,𝑑𝑧
  𝑥𝑑𝑥𝑦𝑑𝑦𝑧𝑑𝑧𝑑

𝑑𝑧=1
𝑑
𝑑𝑦=1

𝑑
𝑑𝑥=1    (2.1) 

with (𝑑𝑥 + 𝑑𝑦 + 𝑑𝑧 ≤ 𝑑). This mean, for any point 𝑝𝑗 of 𝑎𝑟𝑡𝑠𝑐𝑎𝑛 , and for an admitted threshold 𝜀1: 

 

𝑝𝑗 ∈ 𝑠𝑒𝑔𝑚𝑖        𝑖𝑓 𝑎𝑛𝑑 𝑜𝑛𝑙𝑦 𝑖𝑓       (𝑓𝑑,𝑖(𝑝𝑗) − 1)
2

<  𝜀1       (2.2) 

𝑓𝑑,𝑖 parameters are approximated with Ordinary Least Square polynomial regression8 on 𝑆𝑚𝑒𝑠ℎ𝑖 

vertices, and represent the core of 𝑠𝑖𝑔𝑛𝑖. When approximated, 𝑓𝑑,𝑖 is relative to 𝑆𝑑𝑒𝑓,𝑖 Cartesian 

coordinate system. To fit this implicit function of surface (which we call the OLS model of 𝑆𝑑𝑒𝑓,𝑖) to 

random data points, we need to optimize a rigid Euclidean transformation that minimize the squared 

sum of predictions errors. On a set of m points, our program tries to optimize parameters 
(𝜃𝑥,  𝜃𝑦,  𝜃𝑧,  𝑡𝑥,  𝑡𝑦,  𝑡𝑧) that minimize: 

𝑐𝑜𝑠𝑡𝑖 =  ∑ (𝑓𝑑,𝑖(𝑥𝑡,𝑗 ,  𝑦𝑡,𝑗 ,  𝑧𝑡,𝑗) − 1)
2

  𝑚
𝑗=0  with  (

𝑥𝑡

𝑦𝑡

𝑧𝑡

1

) = 𝑀. 𝑝 =  (

𝜃𝑥𝑥 𝜃𝑥𝑦 𝜃𝑥𝑧 𝑡𝑥

𝜃𝑦𝑥 𝜃𝑦𝑦 𝜃𝑦𝑧 𝑡𝑦

𝜃𝑧𝑥 𝜃𝑧𝑦 𝜃𝑧𝑧 𝑡𝑧

0 0 0 1

) . (

𝑥
𝑦
𝑧
1

)   (2.3) 

𝑀 is the transformation matrix computed with parameters (𝜃𝑥 ,  𝜃𝑦,  𝜃𝑧,  𝑡𝑥,  𝑡𝑦,  𝑡𝑧). Whether the 

minimized 𝑐𝑜𝑠𝑡𝑖 is under an admitted threshold 𝜀2 or not, we can determine if randomly selected data 

points can be labeled as 𝑆𝑑𝑒𝑓𝑖
. Neighboring points can iteratively be added to the segment if their 

transformed coordinates (with optimized 𝑀 matrix) verify equation (2.2).      

The method for 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛 semantic segmentation, once features signatures have been capitalized, 

proceeds as follow: 

(a) A random region of the mesh is selected (automatically or by the user).  

(b) Candidate surfaces models (𝑓𝑑,𝑖) are fitted in data points (cf. equation (2.3)).  

(c) If under 𝜀2, best fitting cost gives the label of the region and the fitting matrix 𝑀.  

(d) The segment is extended to each neighboring point that meet the surface model (eq. (2.2)).  

Main goal of this method is to define a shape descriptor that is precise enough to differentiate 
geometrically close features, able to label local regions of features, and that is invariant to 

 
8 https://www.statsmodels.org/stable/generated/statsmodels.formula.api.ols.html 
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transformations (no need of preliminary registration of the scan, and able to recognize every multi-
instantiated feature). This shape descriptor will then be used in a semi-automated semantic 
segmentation tool for complex aeronautics meshes.     
 

• Gaussian Process Regression 

Another way to approximate surfaces descriptor doesn’t use a specific model as (2.1), but rather 
uses Gaussian Process Regression (GPR) to approximate a surface model. Gaussian process is a 
stochastic supervised learning tool that defines a distribution over a function. Advantages in using 
GPR instead of implicit polynomial functions is that they are less parametric and no parameters 

choices (like the degree in (2.1)) are needed. 

As with OLS model, by approximating a GPR model9 𝑔𝑝𝑟(𝑥, 𝑦, 𝑧) =  1 over 𝑆𝑚𝑒𝑠ℎ𝑖
, a specific features 

signature 𝑠𝑖𝑔𝑛𝑖 is capitalized and can be fitted to unknown regions of a mesh (equation (2.3)). 

 

• Methodology for model-based methods evaluation 

The methodology for testing and evaluating OLS and GPR models is as follow: 

(a) Signatures capitalization: As in 3.2.1, 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ and features 𝑆𝑚𝑒𝑠ℎ𝑖 are extracted and 

tessellated from the definition CAD model. 

(b) Model analysis consists in surface models approximations and results analysis to determine 
if OLS and GPR models can be used as implicit representation for complex surfaces. For each 
𝑆𝑚𝑒𝑠ℎ𝑖, regression models are evaluated with Mean Squared Error (MSE), Standard Deviation 

(SD) and the Range of squared predictions errors10. This step allows to tune specific 
parameters (as the degree of 𝑓𝑑,𝑖 , or regressions algorithm parameters)   

(c) Model evaluation: Both models are intrinsically unbounded, and therefore could present a 

lack of precision to differentiate neighboring features points. To evaluate if models are 
restrictive enough, we compute 𝑠𝑒𝑔𝑚𝑖  on 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ (with respect to 2.2). Comparison between 

𝑠𝑒𝑔𝑚𝑖 and 𝑆𝑚𝑒𝑠ℎ𝑖 shows the model’s segregations capabilities. 

(d) Optimization algorithm choice: the fitting of a model in random data points depends on the 
optimization algorithm method that minimizes the 𝑐𝑜𝑠𝑡 value (eq. 2.3). Several minimization 

methods11 are evaluated and compared by fitting approximated models on randomly 
transformed 𝑆𝑚𝑒𝑠ℎ𝑖. The best algorithm in term of result and performance is then selected.  

(e) Method evaluation: after proving the representativeness of the surface model, and the 
optimization program ability to fit OLS and GPR models in data points, it is time to evaluate 

the actual segmentation method. For each tessellated feature 𝑆𝑚𝑒𝑠ℎ𝑖
 of 𝑃𝑎𝑟𝑡𝑑𝑒𝑓, a local region 

of 𝑆𝑚𝑒𝑠ℎ𝑖 is randomly selected and transformed (𝑀′ being the rigid transformation matrix). 

Concurrent feature models are iteratively fitted to the data points, and the best 𝑐𝑜𝑠𝑡𝑖 result 

determines the label and the optimized transform matrix 𝑀.  If the optimized matrix 𝑀 is the 

inverse of 𝑀′, this means we can extend the segment to neighboring points.    

(f) Method testing on real data: For now, method and tools were evaluated on tessellated data 
without noise and defect. For testing the effective usability of the solution, local regions of 
𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛 are manually selected, automatically labelled, and extended as a segment.   

3.2.3 Deep-Learning  

Nowadays, researches have shown the potential of deep-learning in 3D geometry processing [25]. 

Tools such as Artificial Neural Network (ANN) are used to learn deep shape descriptors and apply 
mesh classification and semantic segmentation without shape typology-related limitations. On 3D 

 
9 https://scikit-learn.org/stable/modules/gaussian_process.html 
10 https://towardsdatascience.com/ways-to-evaluate-regression-models-77a3ff45ba70 
11 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html 
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point clouds, Pointnet++ [19] can achieve great results for simple point-clouds segmentation by 
recognizing local features and assigning labels to each point. However, to our knowledge, very few 
works have been applied for real industrial needs. Most studies on Deep learning uses public datasets 
as Shapenet12, which doesn’t fully represent complex shapes typologies of some industrials areas. 

 With this consideration, we tried to use Pointnet++13 on a private dataset. First, we reproduced 
results of the research paper [19] on the public dataset Shapenet. Then, we developed a program 
for private dataset generation, processing as follow:  

(a) Labels are assigned to every vertex of 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ (for example, label 1 if the vertex is part of 

𝑆𝑚𝑒𝑠ℎ1). Every others vertex (not part of any feature of the blades) were set to label 0. An 

original text file with the list of points is extracted as in Figure 5. 

(b) Thousands of training files are generated by applying random rigid transform to data points, 

adding Gaussian noise to coordinates (+/- 2%), making random permutation between lines, 
and randomly sampling the data by removing lines.  

(c) Pointnet++ Part segmentation ANN is trained on 80% of the dataset.  

(d) Trained Pointnet++ is evaluated on the 20% remaining data (metrics are computed by 
labels): True positives is the percentage of points correctly labelled 𝑖. False positives is the 

percentage of points that have been incorrectly labelled 𝑖. Not Recognized is the percentage 

of points that should have been labelled 𝑖. 
 

In the next section, results of the study are presented, and methods and tools are discussed.   

4 RESULTS AND DISCUSSIONS  

This section presents methods evaluations and segmentations results. The part presented figure 2 
is taken here as an example. 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛 is composed of 8089420 vertices and 15923525 faces. The six 

features Smeshi
 (local surfaces composing the blades) are composed with respectively 9810, 10595, 

1874, 1295, 4241 and 2467 vertices. Meshing density was empirically and arbitrary defined to 
approximately one vertex per squared millimeter. Computing works were made on a DELL Precision 

m7520 with an Intel Core i5-11500H, 2.9 GHz, 16 Go RAM. Neural Network training was carried out 
on a supercomputer using NVidia Ampère A100 GPU.  

4.1 Point-to-point Distance Criteria 

The method presented in 3.2.1 is applied to generate the six segments representing the features 
composing one blade of 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛. The user must query the feature and specify the distance threshold 

(iterations with adjusted threshold may produce better results). Each segment processing took an 
average computation time of less than 20 seconds.  

 
12 https://shapenet.org/ 
13 https://github.com/yanx27/Pointnet_Pointnet2_pytorch 

Figure 5: data example 
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 Contrary to model-based methods and Deep-Learning based methods, point-to-point distance 
criteria segmentation method does not need other capitalization step than local features tessellation. 
It has the advantage of being simple, fast, and not restrictive to any king of shape. CAD definition 
model must be available at the time of the RE activity and a registration step is necessary to align 

𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛 with 𝑃𝑎𝑟𝑡𝑑𝑒𝑓, which can be computationally expensive (see [21] for works on CAD model 

fitting to data points). Moreover, registration algorithm as the Iterative Closest Point (ICP) can lead 
to quite important deviation at a local scale. For example, registration took approximately 1 hour in 
our example (with Geomagic Design X), and led to a mean deviation of 1.7 mm with maximum 
deviation up to 2mm for some blades surfaces. High local deviations imply increasing the value of 𝜀 
during the segmentation, which can cause larger segments overlapping each other.  

As an example, figure 6.a) shows 𝑠𝑒𝑔𝑚2 overlapping on what should be 𝑠𝑒𝑔𝑚1, while still missing to 

capture some vertices of the mesh. For improvement, ICP algorithm has been implemented for local 

registration of Smeshi
 with 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛, which greatly improves the results (figure 6.b). 

 During the capitalization activity, every 𝑆𝑑𝑒𝑓𝑖
 must be “manually” extracted and tessellated, 

which makes the solution intrinsically non-automatic. Indeed, for components with multi-instantiated 
features, this method does not allow the complete semantic segmentation of the scan by just 
capitalizing on one instance of 𝑆𝑑𝑒𝑓𝑖

. Either a large quantity of features must be stored in mesh 

format for later use (which would result in a large database), or straightforward segmentations 
(unitary feature tessellation and mesh segmentation at the time of the RE activity) can be applied 

for each instance. Using meshed definition features for mesh segmentation is not efficient for long 
term archival and reuse, either for RE activities automation. However, we consider this method as a 
great choice for unitary RE applications, as it gives good results in short time, but requires high user 
assistance. After computing segments, freeform patch fitting results in high detailed CAD surfaces 
which can be used in downwards applications.     

4.2 Surface Model Approximation 

This section presents the complete study for surface models approximation using OLS and GPR 
models. Followed methodology is presented in 3.2.2.3.  

4.2.1 Model analysis 

Models are approximated on 𝑆𝑚𝑒𝑠ℎ𝑖 vertices. Analysis is performed using MSE, SD and Range 

(minimum and maximum value) of squared errors of predictions. 𝑂𝐿𝑆_𝑓𝑖𝑡() and 𝐺𝑃𝑅_𝑓𝑖𝑡() refers to 

the regression programs.  

 

 

Figure 6: 𝒔𝒆𝒈𝒎2 results on 𝑷𝒂𝒓𝒕𝒔𝒄𝒂𝒏 with point-to-point distance criteria method (segment in green). 

a) b) 
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Table 1: Models approximations analysis on Smeshi features. 

 

Both models can approximate studied surfaces with a high precision. GPR models are better 
representations, but are computationally more expensive in predictions than OLS models (Gaussian 

Processes are known to lose efficiency in high dimensional spaces). If computation time for 
approximation is not crucial (because capitalized in upper stage), prediction time must be the lowest 
possible to be usable in our method. GPR model prediction time depends on the number of training 
data (here, vertices) on which it has been approximated. Figure 8 shows that sampling training data 
before GPR model approximation makes the prediction time (on the original point set) faster, but 
increases the MSE. Therefore, sampling is not a valid option for reducing computation time.  

 

 

 

 

 

Feature 𝑂𝐿𝑆_𝑓𝑖𝑡(): 
best 

degree 

𝑂𝐿𝑆_𝑓𝑖𝑡(): 
MSE 

𝑂𝐿𝑆_𝑓𝑖𝑡(): 
regression 

time 

𝑂𝐿𝑆_𝑓𝑖𝑡(): 
prediction 

time 

𝐺𝑃𝑅_𝑓𝑖𝑡(): 
MSE 

𝐺𝑃𝑅_𝑓𝑖𝑡(): 
regression 

time 

𝐺𝑃𝑅_𝑓𝑖𝑡(): 
prediction 

time 

1 6 4,33E-09 
 

3.390 0.019 4,48E-18 
 

28.041 28.431 

2 6 1,04E-09 
 

13.450 0.019 1,85E-18 
 

38.071 35.642 

3 7 9,02E-08 43.602 0.005 8,71E-21 
 

0.305 0.226 

4 7 1,06E-08 18.865 0.005 1,37E-20 
 

0.182 0.117 

5 7 8,56E-07 15.323 0.015 2,52E-15 
 

2.485 2.261 

6 7 9,46E-07 

 

5.147 0.008 1,49E-20 

 

0.674 0.524 

Figure 7: 𝑆𝑚𝑒𝑠ℎ1 sampling impact on GPR model prediction time (red) and MSE (blue).  

Figure 8: OLS models approximations analysis on 𝑆𝑚𝑒𝑠ℎ1 and 𝑆𝑚𝑒𝑠ℎ2. 
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4.2.2 Model evaluation:  

𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ segmentations results show the segregation capabilities of the models: OLS models have 

high rates of false positive. For example, those represent up to 20% for 𝑠𝑒𝑔𝑚4 and 𝑠𝑒𝑔𝑚5. On the 

other hand, GPR models have very low false positive rates, underlying their high segregation 
capabilities. Model evaluations proved that they could be used as shaped descriptors for specific 
aeronautic features. Next stage consist in testing if those models can identify and precisely label 
features in unknown data.    

4.2.3 Optimization algorithm choice 

Because of the nature of the equation, minimization method must be gradient free or approximate 
it numerically. We first choose to compare “Sequential Least Squares Programming” (SLSQP)14and 
Powell15 algorithm for model fitting on 50 randomly transformed 𝑆𝑚𝑒𝑠ℎ𝑖. (see Table 2).  

 Either with OLS or GPR model, Powell algorithm gives a 100% rate of optimization success on 
every try. SLSQP algorithm gives some wrong optimization results, meaning that 𝑆𝑚𝑒𝑠ℎ𝑖

 would not be 

correctly labelled. However, processing time of the SLSQP optimization algorithm is much faster, 
making it the most suitable choice for this method. If GPR models fitting gives slightly better results 
than OLS ones, processing time makes its use unsuitable for the application.     

 
14 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_slsqp.html 
15 https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_powell.html 

Figure 7: GPR models approximations analysis on 𝑆𝑚𝑒𝑠ℎ1
 and 𝑆𝑚𝑒𝑠ℎ2

. 

Figure 8: 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ segmentation results with OLS and GPR models. 
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Table 2: Model fitting on randomly transformed features. 

4.2.4 Method evaluation 

Random regions of 𝑆𝑚𝑒𝑠ℎ𝑖  (of radius 5 to 100) are generated and transformed. OLS models of 𝑆𝑚𝑒𝑠ℎ1 

to 𝑆𝑚𝑒𝑠ℎ6 are fitted to the data. Labeling is considered as a success if the minimum 𝑐𝑜𝑠𝑡𝑖 correspond 

to the fitting score of the right surface model, and if the optimized matrix 𝑀 is the inverse of 𝑀′ 
(otherwise, the region could be correctly labeled, but extending the segment to neighboring points 
is not possible). Figure 10 shows the success rate for 50 tests with each surface and radius.  

As we can see, small regions (radius under 50mm) are wrongly labelled by model fitting. Because 

the function we want to minimize is highly non-convex, the optimization algorithm converges to a 
local minima, producing a badly optimized transformation matrix 𝑀.  Labeling results are much better 

when random regions cover bigger surface area of 𝑆𝑚𝑒𝑠ℎ𝑖 (radius > 50mm). Labeling of features with 

labels 1, 5 and 2 have success rates of more than 90%. 𝑆𝑚𝑒𝑠ℎ3 and 𝑆𝑚𝑒𝑠ℎ4 have the worst results with 

respectively 46% and 76% of success on the 50 tries. We believe that a more extensive testing and 
tuning of the optimization algorithm would help achieve better results.    

4.2.5 Method testing on real data: 

Method evaluation shows quite good results on tessellated data. We tested the method on a real 

𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛. First, a skilled user manually selects a region of points in the mesh (on any blade of the 

Feature Model Method Result Average time 

1 OLS POWELL 100% 30 

SLSQP 90% 12 

2 OLS POWELL 100% 32 

SLSQP 95% 13 

3 OLS POWELL 100% 63 

SLSQP 70% 4 

4 GPR POWELL 100% 1327 

SLSQP 80% 448 

5 GPR POWELL 100% 1870 

SLSQP 85% 757 

6 GPR POWELL 100% 618 

SLSQP 100% 265 

Figure 9: 𝑆𝑚𝑒𝑠ℎ𝑖 local regions labeling with OLS model fitting method.  
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model). As for method evaluation, label and optimized transformation matrix is automatically given 
by the best fitted model. The transform is applied to 𝑃𝑎𝑟𝑡𝑠𝑐𝑎𝑛 which is then segmented. 

No quantitative evaluation can be given in here. Most model fitting succeeds to find the right 
label when the user inputs a large region. In most tests, the segmentation threshold must be 

iteratively increased to compensate for noise in the data, which ultimately results in large segments 
overlapping on neighbor features with OLS segmentation. However, while GPR model fitting cannot 
be used for labeling (because of fitting time), we can use segmentation with GPR model once OLS 
model fitting succeeds to optimize the mesh transformation. Figure 11.a) shows the local region 
manually selected. This region is automatically labelled as 𝑆𝑑𝑒𝑓1

 by OLS models fitting. Figure 11.b) 

is the segmentation result by growing the segment to neighboring points. This segment overlaps on 
points that belongs to other features. Figure 11.c) shows the computed segment with GPR model. 
For both segmentation steps, iterations may be needed with user assistance for threshold 

adjustment. 

 

Table 3: Computation times for 𝑆𝑚𝑒𝑠ℎ1
 segmentation with surfaces models approximation method. 

This method proved to be valid for a semantic segmentation of aeronautical Parts meshes, but still 
requires improvement for more reliability. If labeling is a fully automated process, user assistance 
is needed during the initial region selection, and iterations with adjusted threshold are necessary 
during the segment generation.  

Some features are wrongly labelled when considering noisy data, or if the originally selected 

region is too small. However, the method succeeds to identify, recognize, and segment local complex 
features in noisy and heavy meshes. Finally, surface models are easy to store in knowledge base 
within features signatures for KBRE applications 

4.3 Deep Learning with Pointnet ++ 

The last studied method for semantic segmentation of aeronautical meshes is the use of the Artificial 
Neural Network Pointnet++. Among latest methods presented in the scientific literatures, the use of 
AI to replace classical geometry processing methods is very promising. ANN presents great 
generalization capacities, as they are not restricted to any typologies of shapes. We chose 
Pointnet++ over others tools because it used Point Clouds as 3D data representations and can 
achieve good results. However, researches on ANN for shapes classifications and/or segmentations 

mostly consider public dataset composed of “light” 3D models, while our applications deal with a 

minimum of 5M points. This section presents the first results of our study, which should be 

Capitalization 𝑷𝒂𝒓𝒕𝒔𝒄𝒂𝒏 region 

selection 

Labeling (OLS 
models fitting) 

Segmentation 
(OLS model) 

Segmentation 
(GPR model) 

manual manual automatic automatic automatic 

~350s 60s 11.5s 22s / iteration 320s / iteration 

Figure 10: automatic labeling and segmentation of 𝑆𝑚𝑒𝑠ℎ1 in real scan mesh. 

a) c) b) 
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considered as a first approach in the use of ANN on heavy industrial dataset rather than a complete 
extended evaluation. Because using Pointnet ++ on large datasets requires extremely large 
computational capacities, training is performed on a supercomputer. First, Pointnet++ was trained 
on the dataset Shapenet and results were very similar with [19]. On this basis, we can evaluate this 

ANN on a private dataset. 

Used dataset (cf. 3.2.3 for dataset generation description) is generated from 𝑃𝑎𝑟𝑡𝑚𝑒𝑠ℎ and is 

composed of 3000 files with shape (910000, 7). Each blade of the model is decomposed in 4 features 
(surfaces with label 3 and 4 were grouped under label 3, and surfaces 5 and 6 were set to label 4). 
Every point belonging to other features of the model were set to label 0. We stopped the training 
after 36 hours, and 6 epochs.  

 

 

 

 

 

 

 

 

Table 4: Pointnet++ training and testing result. 

Part segmentations results on a test data with trained pointnet++ took 5 minutes and is illustrated 
with figure 12. For labels 1 to 4, true positives rates are respectively 5.8%, 6.03%, 3.47% and 0%. 
83.4% of point which have been labelled 0 (brown points) are true positives. Segmentations results 

of the blades features is still poor, but most false positive are located in the neighborhood of the 
actual features.  

Several limitations of our experimentation method must be considered: first, the limited number 
of epochs; then the use of Pointnet++ witout any parameters change (as mlp tuning, or labels 
weights); and finally, the fact that training data are highly unbalanced (label 0 represents 
approximately 83% of each model). To conclude, this first experiment of using the ANN Pointnet++ 
for aeronautical components meshes segmentation shows promising results, as it can approximately 

detect the presence of specific features with complex shapes in the right area. Moreover, as previous 
method, the method is robust to Euclidean transformations and works well for multi-instantiated 
features. Further experimentations and Neural Network parametrization will hopefully give a better 
accuracy. Nevertheless, the use of such technology for industrial needs is questionable, as it requires 
great computations capacities and time.      

 

CONCLUSIONS 

In this article, we presented a study on semantic segmentation for Reverse engineering activities on 
aeronautical components. We compared different technologies for subdividing 3D meshes into 
semantically meaningful sub-meshes that represent features of the definition CAD model. Our major 
proposition is the use of surface models using high degree analytic functions approximation and 
Gaussian process regression to extract and recover geometric information on complex shapes. By 
capitalizing surfaces models on definitions CAD 3D models, those can be later used as shapes 

descriptors for sub-mesh labeling and global mesh segmentations, allowing semi-automatic 
processing of complex aeronautic surfaces in heavy digitized data. Experimentations on real scan 
data demonstrate the ability of surface models to recognize and label local regions of the mesh, and 
to extract sub-meshes corresponding to local complex features. However, this method remains prone 
to errors when used to identify small features, or features with similar shapes.  

 

epoch Train accuracy mIOU 

1 0.85326 0.16683 

2 0.88324 0.166834 

3 0.89263 0.164247 

4 0.89735 0.166835 

5 0.90013 0.166844 

6 0.90366 0.166835 
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Although incomplete, we introduced a study on Deep learning applications in industrial context by 
testing a state-of-the-art Artificial Neural Network called Pointnet++ for point clouds segmentation 

on a private dataset. Results are very promising, but real use of such technologies would require 
optimizations for faster computation.   
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