

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

689

Graphical Assistance for Determining Cutter Axis Directions in

3+2-Axis Machining

Masatomo Inui1 , Shutaro Taguchi2 and Nobuyuki Umezu3

1Ibaraki University, masatomo.inui.az@vc.ibaraki.ac.jp
2Ibaraki University, 21nm459h@vc.ibaraki.ac.jp

3Ibaraki University, nobuyuki.umezu.cs@vc.ibaraki.ac.jp

Corresponding author: Masatomo Inui, masatomo.inui.az@vc.ibaraki.ac.jp

Abstract. Recently, the use of 3+2-axis machining, in which machining is

performed by tilting the direction of the cutter spindle axis, has increased in the
machining of parts with complex shapes, such as impellers and airplane parts. This

paper describes a novel interactive software technique for assisting 3+2-axis
machining. This software computes a range of cutter postures without interferences
with the machine part for each point in the cutter path. The possible cutter
postures for all points are examined, and the number of the machinable points is
determined for each cutter posture. The obtained results are color-coded in the

Gauss map. By referring to the color information of the map, cutter postures
required for machining can be efficiently selected. By repeating the selection of the
cutter posture based on the color display, the operator can semi-automatically
generate the numerical control (NC) data for the 3+2-axis machining.
Computational experiments were then performed to verify the feasible applicability
of the software.

Keywords: 5-axis machining, Gauss map, RT cores, GPU, CAM

DOI: https://doi.org/10.14733/cadaps.2023.689-703

1 INTRODUCTION

Recently, the use of 3+2-axis machining, in which machining is performed by tilting the direction
of the cutter spindle axis, has increased in the machining of parts with complex shape, such as

impellers and airplane parts. In the 3+2-axis machining, the tool length can be shortened by
setting the spindle direction properly. Accordingly, it is feasible to achieve stable machining with
comparatively less tool deformation than that of the conventional 3-axis machining (Fig. 1). This
type of machining enables the minimization of the number of mounting changes in the workpiece;
hence, via this method, machining accuracy can be improved and machining cost minimized.
Unlike simultaneous 5-axis machining with continuous changes in the spindle direction, the spindle

direction is fixed in the 3+2-axis machining. Therefore, it is unnecessary to control the cutter

http://www.cad-journal.net/
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
http://orcid.org/%5bORCID%5d
mailto:masatomo.inui.az@vc.ibaraki.ac.jp
mailto:21nm459h@vc.ibaraki.ac.jp
mailto:nobuyuki.umezu.cs@vc.ibaraki.ac.jp
mailto:masatomo.inui.az@vc.ibaraki.ac.jp

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

690

posture during the machining process, so that the introduction cost of the 3+2-axis milling
machine is less than that of the simultaneous 5-axis machine.

Figure 1: (a) Conventional 3-axis machining and (b) 3+2-axis machining using a shorter tool.

The computation of the numerical control (NC) data for the 3+2-axis machining is usually
performed in two steps.
Step 1 Determine the cutter position: A ball-end cutter is generally employed in the 3+2-axis
machining. The center point of the ball-end cutter is on the surface offset from the part surface by
the cutter radius. At this point, the cutter posture is yet to be determined.

Step 2 Determine the cutter posture: The posture of the cutting tool in the milling process is
then determined for each cutter position, such that a certain clearance is ensured between the tool
and workpiece surface, to prevent collision between them.

When machining a part with complicated shapes, the cutter’s posture must be changed several
times to complete the 3+2-axis machining operation. Owing to inevitable positional errors of the
milling machine, the minute level difference is known to be generated in the part where the

surfaces machined by the tool of different postures connect. Therefore, to realize an optimal good
surface finish, it is desirable to minimize the cutter posture changes.

The determination of the proper combination of cutter postures for the 3+2-axis machining is a
huge burden for machining engineers. In this study, we propose a novel software technique for
assisting the interactive determination of cutter postures for the 3+2-axis machining. To properly
select the cutter posture, the recognition and visualization of the surface region in the part that
can be machined using the cutter in the designated posture are important. To minimize the cutter

posture changes, it is generally desirable to select the cutter posture, such that the tool can
machine the surface area exhaustively. To assist the selection of such cutter postures, a function is
required to visualize the difference in machinable area for each cutter posture. Proper visualization

of the surface area left unmachined by the tool is also necessary because such area becomes the
next machine target area with the tool in a different posture. When interactive use is considered,
the processing speed of the software is required to be sufficiently fast, to avoid interference with
the user's thinking.

In our software, a tool path representing the locus of the center point of a cutter is provided as
input data. Instead of classifying the surface area of the part by the cutter posture, our software
classifies points constituting the tool path. For each point in the path, a range of cutter postures
without interferences with the machine part is computed. The information on the possible cutter
postures for all machining points is “superimposed” in a Gauss map, and the number of
machinable points can be examined for each cutter posture. The obtained results are color-coded

in the display. By referring to the display, the cutter posture in which several points can be
machined is easily identified. When a user selects a cutter posture based on the display, points
machinable by the cutter in that posture are automatically selected from the path data. New tool

path data are obtained by reconnecting the selected points. Simultaneously, the color display is
updated based on the cutter posture information of the remaining points. By repeating the

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

691

selection of the cutter posture based on the color display, the operator can efficiently generate the
NC data required for the 3+2-axis machining.

In the next section, previous studies on the software assistance of the 5-axis and 3+2-axis
machining are briefly reviewed. In Section 3, we present our interactive method for determining

cutter postures. Details on the proposed method are provided in Sections 4 and 5. In Section 4,
we present our detection method for interference-free cutter postures. The graphic interface for
assisting the interactive selection of the cutter posture is discussed in Section 5, while the
experimental computation results are presented in Section 6. Finally, we summarize and present
our conclusions in Section 7.

2 PRIOR STUDIES

In this section, we briefly discuss previous research results on the cutter posture determination in

5-axis machining. Several common subjects exist between the 5-axis machining and the 3+2-axis
machining, and the research results for the 5-axis machining can be directly utilized for the
automation of 3+2-axis machining.

In practice, 5-axis machining has been mostly used for manufacturing turbine blades and
impellers. Several studies have been conducted to determine cutter postures specialized for
machining these parts [1]. The basic NC-data computation method in 5-axis machining can be

found in several studies, such as [2]. Most of the conventional studies on the cutter posture
determination realize efficient computation by considering typical machining patterns [16], limiting
the range of the posture based on the machinability of the tool [15], and determining the posture
based on the geometric properties of the machining surface [3]. Although several commercial
software packages that can generate NC data for 5-axis machining are available in the market, the
technical details of the software are not published. Presently, these systems are limited in their

utilization by the excessive amount of calculation time they incur.

Several research results are known to automatically determine the cutter posture without
triggering collisions between the tool/holder and workpiece. Morishige et al. pioneered a
determination algorithm for the collision-free cutter posture by adopting a two-dimensional
configuration space [18, 19]. A trial-and-error-based method was proposed by Takeuchi et al. to
compute collision-free cutter postures in 5-axis milling [23, 24]. Our research group developed a
cutter posture calculation method using the depth buffer function and frame buffer objects [8].
Kang and Suh [13] employed a visibility cone to determine cutter accessibility in 5-axis milling.

Spitz and Requicha developed a visibility cone computation method for a coordinate measurement
machine using perspective projection and depth buffer [22]. Morimoto and Inui extended Spitz and
Requicha’s method for determining cutter accessibility in 3+2-axis machining [17].

Recently, the parallel processing function of graphics processing unit (GPU) has been widely
adopted as a technique for accelerating complicated geometric processing. For the GPU utilization

in computer-aided manufacturing (CAM) software, known research results include the offset shape

computation of polyhedral models [6], cutter location (CL) surface computation [4], cutter
accessibility analysis [8, 12], Minkowski sum computation [14], and acceleration of the machining
simulation [5]. In the field of 5-axis machining, another previous study realized milling simulation
using a GPU [11]. In this research, a graphics library named OptiX was adopted to implement the
software. The same library was used in this current study. In the CAM software, dexel modeling is
often adopted as a shape representation method. The authors developed a conversion software for
a polyhedral model into an equivalent dexel model using ray tracing (RT) cores of GPU [9]. The

authors also realized technology which determines the tool posture without interfering with the part
using the RT core [10]. This technology is utilized in this current study to accelerate computations.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

692

Figure 2: Definition of cutter shape.

3 INTERACTIVE METHOD FOR DETERMINING CUTTER POSTURES

In this section, the outline of the proposed interactive method for determining cutter posture in the

3+2-axis machining is explained. In the following discussion, the milling operation with a ball-end
cutter is assumed. A milling cutter comprises a cutting-edge part and cutter holder (Fig. 2). The
shape of the holder can be considered a series of cylindrical shapes and/or truncated cone shapes
coaxial with the cutting edge. In addition, the position of a ball-end cutter is usually represented
by the center point of the spherical blade of the cutter. The cutter posture is given by the spindle
axis direction of the cutter, which is specified by two rotational angles around two mutually

perpendicular axes, A and B axes, of the milling machine. In this research, the azimuth and

elevation angles in the world coordinate frame are adopted to define the cutter posture (Fig. 3);

however, the posture can be specified based on the rotation around other axes, such as the A and
B axes of a milling machine.

Figure 3: Definition of cutter posture using azimuth and elevation angles.

For the posture determination of the cutting edge, it is important to consider that the cutting edge
is usually in contact with some parts of the surface for cutting and must not interfere with the
other parts. In contrast, to determine the holder’s posture, it is important that the holder and
workpiece do not collide at any point during machining. The shape of the workpiece changes as

machining progresses; hence, it is difficult to consider the effect of such shape change on the
cutter posture at the time of NC data computation. Therefore, the determination of the holder
posture is often performed, considering the collision avoidance between the holder and the part
shape, and not the workpiece shape. Based on this concept, the cutter posture is determined in our

study by considering the collision avoidance between the holder and the machine part with

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

693

sufficient space between them. In the future, we would like to realize the technology to determine
the tool posture considering the change of the workpiece shape.

Figure 4: Processing flow for selecting the cutter postures interactively in 3+2-axis machining.

Figure 4 illustrates the flow of the selection process of the cutter posture. A polyhedral STL model

of a machine part, shape data of a cutter, and path data representing the position change of the
cutter are provided as input data to the software. The path data represent a series of coordinates
of sufficiently close points. These data can be calculated using the conventional CAM software for
3-axis machining. Based on the given information, our software computes the range of collision-
free cutter postures for each point in the path (Step 1). The cutter posture is then interactively
determined in Step 2. Subsequently, our software determines the number of machinable points in
the path for each cutter posture. The obtained results are color-coded and displayed on a Gauss

map. When the user selects a cutter posture referring to the color information, the machinable

point by the cutter in the posture is selected and path data are reconstructed using the machinable
points. Considering the reduction of the tool posture changes, the spindle axis direction in which as
many points as possible can be machined is generally chosen. The color information on the Gauss
map is then updated based on the remaining points. This selection process for the cutter posture is
repeated until all points in the cutter path become machinable. It finally outputs a combination of
the spindle directions and cutter path data machinable by the cutter in each spindle direction.

Although the software is slow in determining the available cutter postures for all points on the
path, the subsequent interactive processing (Step 2) is sufficiently fast, and the user can select the
required cutter postures with negligible awareness of latency.

Our software adopts color information on the Gauss map to guide the user to select a cutter
posture that can machine as many points as possible. In general, this strategy can determine a
feasible combination of cutter postures; however, the obtained results are not guaranteed to be

the smallest set of cutter posture combinations. For this reason, we did not develop a system to

automatically determine the tool postures based on this strategy. Such an example is illustrated in

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

694

Figure 5. This figure presents a section of a part, and the tool positions for machining its surface
are depicted by green points. Although the maximum number of points can be machined by setting
the cutter posture in the A-direction, further machining from the B- and C-directions is required to
machine the remaining points, and a total of three directions are selected. However, if the B-

direction can be selected first, all machining points can be machined by further selecting the C-
direction.

Figure 5: Section of a machine part and point representing the tool positions.

To obtain such a minimum combination, it is necessary to examine all combinations of the spindle
axis directions in which all points can be machined. This problem is a typical set-covering problem
and is known to be NP-complete. In the future, we hope to implement an algorithm that
automatically and efficiently determines the optimal tool postures. We are currently researching

various technologies required for the automation. This time, as one of such technologies, we have
realized a technology to compute a range of tool postures capable of machining a point. Using this
technique, we developed a color-coded display of the number of points that can be machined for

each tool posture, and realized an interactive system for selecting tool postures by referring to this
display.

4 DETECTION OF CUTTER POSTURES WITHOUT INTERFERENCE

Our software first calculates the range of cutter postures that do not cause tool interference for

each machining point. In this study, the cutter posture is considered a discrete combination of

and angles. In total, 720 angles were considered in 0.5° intervals in the range of 0–360°, while

361 angles were considered in 0.5° intervals in the range from 90° to -90°. Therefore, 720 ×
361 = 259,920 cutter postures are considered for each machining point, and the existence of the

intersection of the cutter and machine-part shapes is checked and recorded for each posture of the
machining point. We prepare a bit sequence 259,920 in length to record the cutter interference
detection results for each machining point. Accordingly, “0” is assigned to a bit corresponding to
the posture in which cutter interference occurs, and “1” is assigned for the posture bit without

interference.

We divide the problem of the cutter interference detection into two sub-problems: interference
detections of the cutting edge and holder part of the cutter. An offset shape M is obtained by
expanding the part shape by the cutter radius r. In a previous study, we developed a fast
offsetting algorithm of a polyhedral object using the parallel processing function of GPU [7]. By
adopting this algorithm, the polyhedral model of the offset shape can be obtained. The
interference detection of the cutting edge whose center point is at point p (Fig. 6(a)) is

geometrically equivalent to the intersection detection of a line segment whose endpoint is at p and
a polyhedron M (Fig. 6(b)).

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

695

Figure 6: Interference detection using offset shape M.

For each candidate direction, a straight line of length l is extended from point p to examine the

intersection with M; here, l denotes the value obtained by subtracting the cutter radius from the
length of the cutting edge. The possible postures of the cutting edge are the directions in which
the line segment and M do not intersect. Therefore, the posture determination problem of a
cutting edge can be considered an intersection detection problem between a line segment and a
set of polygons of the offset shape.

Figure 7: Holder representation using line segments.

For each candidate direction, a holder shape is oriented, such that the center axis of the holder is
on the line originating from p in the cutter posture direction. To ensure sufficient clearance
between the holder and the part, the cylinders and truncated cones, which constitute the holder
shape, are defined to be slightly larger. A holder shape can be regarded as a swept surface
obtained by rotating a series of line segments around the center axis of the cutter; therefore, we

can represent the holder shape as a set of line segments (Fig. 7). The interference between a

holder and a part shape can thus be ascertained by checking the intersection between line
segments in the holder surface and polygons representing the part shape. Hence, the posture
determination problem of a holder can be considered an intersection detection problem between a
line segment and a set of polygons. A range of possible posture that can be taken by the cutting
edge is obtained as a solution to the first problem. Another posture range of the holder is obtained
as a solution to the second problem. Common solutions to both problems represent the appropriate

postures of a cutter at point p.
Intersections between line segments and polygons can be computed at high speeds by

employing the RT core hardware of GPU. The following is a summary of our algorithm represented
in [10]. Current GPUs are equipped with a hardware called RT cores dedicated to an image
processing technique called ray tracing in 3D computer graphics. In the ray tracing process, the
computation of intersection points between half lines (rays) and polygons is frequently required.

The RT core is a special hardware designed to speed up this process. We adopt this RT core

technology to accelerate the intersection detection between a line segment and polygons.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

696

NVIDIA Corporation provides an application programming interface (API) library called OptiX
[21] that implements software for ray tracing. The function of the RT core is automatically available
via its API functions. OptiX processing usually initiates the ray generation program. The starting
point and direction of each ray are defined in this function and the ray tracing processing is

initiated. By harnessing the parallel processing capability of GPU, thousands of threads for ray
generation can be executed in parallel [20]. In the ray generation program, the optixTrace()
function is called to initiate the ray tracing process. In this function, the closest hit or miss program
is automatically invoked depending on whether the generated ray intersects the polygons.
⚫ Closest hit program: This function is called when a ray collides with the nearest polygon

during the ray tracing process. Information about the collision point is recorded using this
function.

⚫ Miss program: This function is called when a ray does not intersect with any polygons during

the ray tracing process.

Figure 8: Intersection detection between a line segment and polygons using OptiX API.

To determine the possible posture of a cutter, it is important to detect the intersection between a
line segment and a set of polygons. Let s denote the coordinates of one endpoint of the line
segment, and e, the coordinates of the other end. The intersection detection of this line segment
s-e and the polygon group can be realized using OptiX as follows. First, a ray generation program
is employed to generate a ray whose starting point is at s and whose direction is a vector from s to

e. The collision between the ray and the polygon group is detected using the closest hit and miss
programs as follows.

⚫ If the miss program is invoked, the segments s-e and polygons do not intersect because
the ray containing s-e, and the polygons do not collide (Fig. 8 (a)).

⚫ If the closest hit program is invoked, the distance d between the obtained collision point p
and s is examined. If d is longer than the segment length l, the segment and polygons do
not intersect (Fig. 8(b)); otherwise, the segment and polygons exhibit an intersection (Fig.

8 (c)).
OptiX has a function for managing a group of polygons using acceleration structure. In this
structure, polygons are recorded using the hierarchical bounding boxes. By adopting this structure,
the collision detection between the ray and polygon groups can be further accelerated [21].

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

697

Figure 9: Determination of number of machinable points for each cutter posture.

5 GRAPHICAL INTERFACE FOR ASSISTING CUTTER POSTURE SELECTION

After recording the interference-free cutter postures for all machining points, obtained bit
sequences are superimposed. For each of the 259,920 cutter postures, the number of machining
points where “1” (= no interference) is recorded in the bit corresponding to the posture is
determined (Fig. 9). Subsequently, the obtained count results are visualized using Gauss map,

which is a spherical surface comprising the end points of unit direction vectors when the start

points of the vectors are given to the origin. For each cutter posture and , a unit vector is

considered and its corresponding point on the map is depicted using a unique color, according to
the number of machinable points for the posture. At this point, the point corresponding to the
cutter posture with the most machinable points is depicted in blue, and the cutter posture point
with the least machinable points is depicted in red. The color changes from blue to green, yellow,
and red, in that order, as the number of machinable points decrease.

When a user clicks on a point on the Gauss map using a mouse, its corresponding cutter
posture is selected. The software then collects points machinable using the cutter in the selected

posture, and then the interference-free NC data for machining the part with the cutter are
generated by appropriately connecting the collected points. The software then recalculates the
number of machinable points for each cutter posture using the remaining points, and updates the
color-coded display using the obtained result. Subsequently, the selection of the cutter posture
using a mouse, generation of the NC data using machinable points, and color-coded display update
are repeated. When all points become machinable, the Gauss map is entirely red, and the NC data

for 3+2-axis machining are completely obtained. To minimize the changes in cutter posture, it is
generally a good strategy to repeat the selection of the cutter posture with most machinable
points; in other words, select the cutter posture with the bluest color in the Gauss map.
In the current software, a tool path data, which is a sequence of point coordinates, is provided as
input. When a set of points machinable by the cutter in the selected posture is obtained, they are
sorted according to the original sequence of the points. When two adjacent points in the sorted
points are also adjacent in the original sequence of the input points, they are connected by a line

segment. Via this processing approach, several short paths are obtained (Fig. 10). A new tool path
available for the tool in the specified posture is generated by properly connecting them. In this
method, two adjacent points in the original tool path are often classified to be machined by the tool
in different postures (Fig. 10(b)). Consequently, these two points belong to different paths, thereby
resulting in a gap between the two points. From the proposed method, the distance between a path
and its neighboring path becomes the same as that of the path at the input. It is necessary to

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

698

change the distance between the paths according to the cutter posture and the surface direction of
the shape to be machined. Solving these issues is a direction for future research subjects.

Figure 10: Reconstruction of the tool path by connecting the points machinable using a cutter in

the selected posture.

6 COMPUTATIONAL EXPERIENTS

We implemented a software for assisting the cutter posture determination using the interactive
aforementioned method. In the implementation, VisualStudio 2017, CUDA 10.2, and OptiX 7.2

were employed. A 64-bit PC with an Intel Core i9 Processor, 32-GB memory, and an nVIDIA

GeForce RTX-3080 GPU was used in the experiments. Presently, we are developing a 5-axis
machining CAM software for dental technicians, and in this case, a tooth model (Model A) was used
as the machining object. We also prepared two small figure models (Models B and C) with complex
shapes. Polyhedral models of the sample objects and the initial cutter paths for contouring the
models are illustrated in Figure 11. Figure 12 presents the tool-shape data (ball-end cutter of 0.5-
mm radius) used in our experiments. These data are fed into our system as input. In the current

implementation, each cylinder and/or truncated cone of the holder shape were represented by 180
line segments covering its boundary. The number of polygons of the models and number of points
in the paths are presented in Table 1.

 No. of polygons No. of points in
path

Offsetting time
(s)

No. of polygons in

offset shape
Time for computing

collision-free

postures (s)
Model A, tooth 15,000 102,841 5.22 1,266,656 1090.67

Model B, dragon 202,520 106,582 5.12 636,084 1207.53
Model C, happy

buddha
67,240 80,064 4.66 769,220 914.47

Table 1: Specifications of input data and necessary time for computing postures free from
collisions for all points in the path.

The time required to use this system can be classified into three categories: (1) the time required
to offset the part shape, (2) the time required to check cutter interferences for 259,920 cutter

postures for each machining point, and (3) the time required to interactively generate cutter paths
and update the color-coded display after the cutter posture selection. The time in (3) is usually 1
to 2 seconds for selecting each cutter posture, which is almost negligible. The time required to
compute the offset shape of the models and time for detecting interference-free cutter postures

are thus only presented in Table 1. In addition, 90% of the time required to determine the
collision-free cutter postures is spent in detecting the tool postures without holder interference. It

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

699

is considered that this is because the intersection detection of line segment and polygons is more
often performed in the holder-interference avoidance.

Figure 11: Sample models and contour-type cutter paths: Models (a) A, (b) B, and (c) C.

Figure 12: Shape data of ball-end cutter for milling the models.

Figure 13: Snapshot of an interactive selection process of the cutter posture for Model A.

In Figure 13, a snapshot of an interactive selection process of the cutter posture is illustrated for

Model A. Based on the computation results of the collision-free cutter postures, initial color-coded

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

700

Gauss map is obtained, as illustrated in Fig. 13(a). The blue-colored region represents the cutter
postures with several machinable points. When the bluest point in the Gauss map is selected by the
mouse (white arrow in Fig. 13(a)), a contour-type cutter path using a cutter in the selected cutter

posture (= 302.5°, = 20.5°) is reconstructed by properly connecting the machinable points (Fig.
13(b)). Simultaneously, the software recalculates the number of the machinable points for each
cutter posture using the remaining points, and the color-coding results of the Gauss map are

updated, as illustrated in Fig. 13(c).

Figure 14: Selection process of the cutter postures for Model A.

Figure 15: Selection process of the cutter postures for Model B.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

701

Figure 16: Selection process of the cutter postures for Model C.

Fig. 14, 15, and 16 illustrate the selection processes of the cutter postures and cutter paths
corresponding to each selected posture for all three models (Models A, B, and C). All the required

cutter postures for 3+2-axis machining are 4, 8, and 4 for Models A, B, and C, as illustrated in Fig.

14, 15, and 16, respectively. Accordingly, we infer that the computation of the tool path for each
selected tool posture and the update of the color information of the Gauss map after the selection
were sufficiently fast, and a smooth interactive work was feasible. This time, we didn't have time
to compare the performance of our system with other tool posture determination technologies. In
the future, we will develop this technology to realize a system that automatically determines the
tool postures. At that time, we plan to compare the necessary calculation time and results with

other systems.

7 CONCLUSIONS

This paper describes a novel interactive software for assisting 3+2-axis machining. This software
requires the polyhedral model of a machine part, shape data of a cutter, and path data
representing the position change of the cutter. It computes a range of cutter postures without

interferences with the machine part for each point in the path. The information on the possible
cutter postures for all points were examined, and the number of machinable points was determined

for each cutter posture. The obtained results were color-coded in the Gauss map. By referring to
the color information of the Gauss map, cutter postures appropriate for the 3+2-axis machining of
the part were efficiently selected, and the NC data for the machining operation were computed. We
would like to provide this system to enterprises, conduct field tests, evaluate its effectiveness, and
investigate necessary functional improvements. We also considered the development of the
technology that can subdivide the part surface into several regions for each cutter posture and

recalculate the tool path for each region. Development of a system for determining the optimal
cutter postures for 3+2-axis machining without human intervention is another research target. Our
proposed technology for determining all possible cutter postures for each point on the path is also
effective in the automation of simultaneous 5-axis machining. Furthermore, the CAM software for
simultaneous 5-axis machining based on this technology is considered our future research subject.

http://www.cad-journal.net/

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

702

Masatomo Inui, https://orcid.org/0000-0002-1496-7680
Shutaro Taguchi, https://orcid.org/0000-0003-2703-1731
Nobuyuki Umezu, https://orcid.org/0000-0002-7873-7833

REFERENCES

[1] Bohez, E.L.J.; Senadhera, S.D.R.; Pole, K.; Duflou, J.R.; Tar, T.: A geometric modeling and
five-axis machining algorithm for centrifugal impellers, J. Manuf. Syst., 16(6), 1997, 422–
436. https://doi.org/10.1016/S0278-6125(97)81700-1.

[2] Choi, B.K.; Jerard, R.B.: Sculptured surface machining, theory and applications, Kluwer
Academic Publishers, Dordrecht, 1998.

[3] Farouki, T.T.; Li, S.: Optimal tool orientation control for 5-axis CNC milling with ball-end

cutters, Comput Aided Geom Des, 30, 2013, 226–239.

https://doi.org/10.1016/j.cagd.2012.11.003.
[4] Inui, M.: Fast inverse offset computation using polygon rendering hardware, Comput. Aided

Des., 35, 2003, 191–201. https://doi.org/10.1016/S0010-4485(02)00052-0.
[5] Inui, M.; Ohta, A.: Using a GPU to accelerate die and mold fabrication, IEEE Comput. Graph.

Appl., 27, January/February, 2007, 82–88. https://doi.org/10.1109/MCG.2007.23.
[6] Inui, M.; Umezu, N.; Kitamura, Y.: Visualizing sphere-contacting areas on automobile parts

for ECE inspection, J. Comput. Des, Eng., 2(1), 2015, 55–66.
https://doi.org/10.1016/j.jcde.2014.11.006.

[7] Inui, M.; Umezu, N.; Tsukahara, M.: Simple offset algorithm for generating workpiece solid
model for milling simulation, J. Adv. Mech. Des. Syst. Manuf., 11(4), 2017.
https://doi.org/10.1299/jamdsm.2017jamdsm0042.

[8] Inui, M.; Nishimiya, K.; Umezu, N.: Accessibility Map for Assisting Cutter Posture

Determination in Five-Axis Mold Machining, 2020 IEEE 16th International Conference on

Automation Science and Engineering (CASE), 2020, 432-437,
https://doi.org/10.1109/CASE48305.2020.9216975.

[9] Inui, M.; Kaba, K.; Umezu, N.; Fast dexelization of polyhedral models using ray-tracing cores
of GPU, Comput. Aided Des. & Appl., 18(4), 2021, 786–798.
https://doi.org/10.14733/cadaps.2021.786-798.

[10] Inui, M.; Kaba, K.; Umezu, N.: Fast Cutter Accessibility Analysis Using Ray Tracing Cores of
GPU, International Journal of Automation Technology, 15(6), 2021, 842-851.

https://doi.org/10.20965/ijat.2021.p0842.
[11] Jachym, M.; Lavernhe, S.; Euzenat, C.; Tournier, C.: Effective NC machining simulation with

OptiX ray tracing engine, Vis. Comput., 35, 2019, 281–288.
[12] Kaneko, J.; Horio, K.: Fast determination method of tool posture for 5-axis control machining

using graphics hardware, J. Japn. Soc. Precis. Eng., 72(8), 2006, 1012–1017, (in Japanese).

[13] Kang, J.-K.; Suh, S.-H.: Machinability and set-up orientation for five-axis numerically

controlled machining of free surfaces, Int. J. Adv. Manuf. Tech., 13(5), 1997, 311–325.
[14] Li, W.; McMains, S.: Voxelized Minkowski sum computation on the GPU with robust culling,

Comput. Aided Des., 43(10), 2011, 1270–1283. https://doi.org/10.1016/j.cad.2011.06.022.
[15] Rao, M.; Ismail, F.; Bedi, S.: Tool path planning for five-axis machining using the principal

axis method, Int. J. Mach. Tools Manuf., 37(7), 1997, 1025–1040.
https://doi.org/10.1016/S0890-6955(96)00046-6.

[16] Makhanov, S.S.: Adaptable geometric patterns for five-axis machining: a survey, Int. J. Adv.

Manuf. Technol., 47, 2010, 1167–1208. https://doi.org/10.1007/s00170-009-2244-z.
[17] Morimoto, K.; Inui, M.: A GPU based algorithm for determining the optimal cutting direction

in deep mold machining, Proc. of IEEE Int. Symp. Assembly Manuf., 2007.
https://doi.org/10.1109/ISAM.2007.4288473.

[18] Morishige, K.; Takeuchi, Y.: 5-axis control rough cutting of an impeller with efficiency and
accuracy, Proc. 1997 IEEE Int. Conf. Robot. Autom., 1997, 1241–1247.
https://doi.org/10.1109/ROBOT.1997.614307.

http://www.cad-journal.net/
https://orcid.org/0000-0002-1496-7680
https://orcid.org/0000-0003-2703-1731
https://orcid.org/0000-0002-7873-7833
https://doi.org/10.1016/S0278-6125(97)81700-
https://doi.org/10.1016/j.cagd.2012.11.003
https://doi.org/10.1016/S0010-4485(02)00052-0
https://doi.org/10.1109/MCG.2007.23
https://doi.org/10.1016/j.jcde.2014.11.006
https://doi.org/10.1299/jamdsm.2017jamdsm0042
https://doi.org/10.1109/CASE48305.2020.9216975
https://doi.org/10.14733/cadaps.2021.786-798
https://doi.org/10.20965/ijat.2021.p0842
https://doi.org/10.1016/j.cad.2011.06.022
https://doi.org/10.1016/S0890-6955(96)00046-
https://doi.org/10.1007/s00170-009-2244-
https://doi.org/10.1109/ISAM.2007.4288473
https://doi.org/10.1016/S0007-8506(07)61263-

Computer-Aided Design & Applications, 20(4), 2023, 689-703

© 2023 CAD Solutions, LLC, http://www.cad-journal.net

703

[19] Morishige, K.; Takeuchi, Y.; Kase, K.: Tool path generation using C-space for 5-axis control
machining, J. Manuf. Sci. Eng., 121(1), 1999, 144–149. https://doi.org/10.1115/1.2830567.

[20] NVIDIA, CUDA C Programming Guide, 2018.
[21] NVIDIA, OptiX™ ray tracing engine, https://developer.nvidia.com/optix

[22] Spitz, S.N.; Spyridi, A.J.; Requicha, A.A.G.: Accessibility analysis for planning of dimensional
inspection with coordinate measuring machines, IEEE Trans. Robot. Autom., 15(4), 1999,
714–727. https://doi.org/10.1109/70.782025.

[23] Takeuchi, Y.; Idemura, T.; Sata, T.: 5-axis control machining and grinding based on solid
model, CIRP Annals - Manufacturing Technology, 40(1), 1991, 455–458.
https://doi.org/10.1016/S0007-8506(07)62028-9

[24] Takeuchi, Y.; Watanabe, T.: Generation of 5-axis control collision-free tool path and

postprocessing for NC data, CIRP Annals – Manuf. Tech., 41(1), 1992, 539–542.

https://doi.org/10.1016/S0007-8506(07)61263-3

http://www.cad-journal.net/
https://doi.org/10.1115/1.2830567
https://developer.nvidia.com/optix
https://doi.org/10.1109/70.782025
https://doi.org/10.1016/S0007-8506(07)62028-
https://doi.org/10.1016/S0007-8506(07)61263-

