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Abstract. Recently, the use of 3+2-axis machining, in which machining is 

performed by tilting the direction of the cutter spindle axis, has increased in the 
machining of parts with complex shapes, such as impellers and airplane parts. This 

paper describes a novel interactive software technique for assisting 3+2-axis 
machining. This software computes a range of cutter postures without interferences 
with the machine part for each point in the cutter path. The possible cutter 
postures for all points are examined, and the number of the machinable points is 
determined for each cutter posture. The obtained results are color-coded in the 

Gauss map. By referring to the color information of the map, cutter postures 
required for machining can be efficiently selected. By repeating the selection of the 
cutter posture based on the color display, the operator can semi-automatically 
generate the numerical control (NC) data for the 3+2-axis machining. 
Computational experiments were then performed to verify the feasible applicability 
of the software. 
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1 INTRODUCTION 

Recently, the use of 3+2-axis machining, in which machining is performed by tilting the direction 
of the cutter spindle axis, has increased in the machining of parts with complex shape, such as 

impellers and airplane parts. In the 3+2-axis machining, the tool length can be shortened by 
setting the spindle direction properly. Accordingly, it is feasible to achieve stable machining with 
comparatively less tool deformation than that of the conventional 3-axis machining (Fig. 1). This 
type of machining enables the minimization of the number of mounting changes in the workpiece; 
hence, via this method, machining accuracy can be improved and machining cost minimized. 
Unlike simultaneous 5-axis machining with continuous changes in the spindle direction, the spindle 

direction is fixed in the 3+2-axis machining. Therefore, it is unnecessary to control the cutter 
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posture during the machining process, so that the introduction cost of the 3+2-axis milling 
machine is less than that of the simultaneous 5-axis machine.  

 

 
Figure 1: (a) Conventional 3-axis machining and (b) 3+2-axis machining using a shorter tool. 

 
The computation of the numerical control (NC) data for the 3+2-axis machining is usually 
performed in two steps.  
Step 1 Determine the cutter position: A ball-end cutter is generally employed in the 3+2-axis 
machining. The center point of the ball-end cutter is on the surface offset from the part surface by 
the cutter radius. At this point, the cutter posture is yet to be determined. 

Step 2 Determine the cutter posture: The posture of the cutting tool in the milling process is 
then determined for each cutter position, such that a certain clearance is ensured between the tool 
and workpiece surface, to prevent collision between them.  

When machining a part with complicated shapes, the cutter’s posture must be changed several 
times to complete the 3+2-axis machining operation. Owing to inevitable positional errors of the 
milling machine, the minute level difference is known to be generated in the part where the 

surfaces machined by the tool of different postures connect. Therefore, to realize an optimal good 
surface finish, it is desirable to minimize the cutter posture changes.  

The determination of the proper combination of cutter postures for the 3+2-axis machining is a 
huge burden for machining engineers. In this study, we propose a novel software technique for 
assisting the interactive determination of cutter postures for the 3+2-axis machining. To properly 
select the cutter posture, the recognition and visualization of the surface region in the part that 
can be machined using the cutter in the designated posture are important. To minimize the cutter 

posture changes, it is generally desirable to select the cutter posture, such that the tool can 
machine the surface area exhaustively. To assist the selection of such cutter postures, a function is 
required to visualize the difference in machinable area for each cutter posture. Proper visualization 

of the surface area left unmachined by the tool is also necessary because such area becomes the 
next machine target area with the tool in a different posture. When interactive use is considered, 
the processing speed of the software is required to be sufficiently fast, to avoid interference with 
the user's thinking.  

In our software, a tool path representing the locus of the center point of a cutter is provided as 
input data. Instead of classifying the surface area of the part by the cutter posture, our software 
classifies points constituting the tool path. For each point in the path, a range of cutter postures 
without interferences with the machine part is computed. The information on the possible cutter 
postures for all machining points is “superimposed” in a Gauss map, and the number of 
machinable points can be examined for each cutter posture. The obtained results are color-coded 

in the display. By referring to the display, the cutter posture in which several points can be 
machined is easily identified. When a user selects a cutter posture based on the display, points 
machinable by the cutter in that posture are automatically selected from the path data. New tool 

path data are obtained by reconnecting the selected points. Simultaneously, the color display is 
updated based on the cutter posture information of the remaining points. By repeating the 
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selection of the cutter posture based on the color display, the operator can efficiently generate the 
NC data required for the 3+2-axis machining.  

In the next section, previous studies on the software assistance of the 5-axis and 3+2-axis 
machining are briefly reviewed. In Section 3, we present our interactive method for determining 

cutter postures. Details on the proposed method are provided in Sections 4 and 5. In Section 4, 
we present our detection method for interference-free cutter postures. The graphic interface for 
assisting the interactive selection of the cutter posture is discussed in Section 5, while the 
experimental computation results are presented in Section 6. Finally, we summarize and present 
our conclusions in Section 7. 

2 PRIOR STUDIES 

In this section, we briefly discuss previous research results on the cutter posture determination in 

5-axis machining. Several common subjects exist between the 5-axis machining and the 3+2-axis 
machining, and the research results for the 5-axis machining can be directly utilized for the 
automation of 3+2-axis machining.  

In practice, 5-axis machining has been mostly used for manufacturing turbine blades and 
impellers. Several studies have been conducted to determine cutter postures specialized for 
machining these parts [1]. The basic NC-data computation method in 5-axis machining can be 

found in several studies, such as [2]. Most of the conventional studies on the cutter posture 
determination realize efficient computation by considering typical machining patterns [16], limiting 
the range of the posture based on the machinability of the tool [15], and determining the posture 
based on the geometric properties of the machining surface [3]. Although several commercial 
software packages that can generate NC data for 5-axis machining are available in the market, the 
technical details of the software are not published. Presently, these systems are limited in their 

utilization by the excessive amount of calculation time they incur.  

Several research results are known to automatically determine the cutter posture without 
triggering collisions between the tool/holder and workpiece. Morishige et al. pioneered a 
determination algorithm for the collision-free cutter posture by adopting a two-dimensional 
configuration space [18, 19]. A trial-and-error-based method was proposed by Takeuchi et al. to 
compute collision-free cutter postures in 5-axis milling [23, 24]. Our research group developed a 
cutter posture calculation method using the depth buffer function and frame buffer objects [8]. 
Kang and Suh [13] employed a visibility cone to determine cutter accessibility in 5-axis milling. 

Spitz and Requicha developed a visibility cone computation method for a coordinate measurement 
machine using perspective projection and depth buffer [22]. Morimoto and Inui extended Spitz and 
Requicha’s method for determining cutter accessibility in 3+2-axis machining [17].  

Recently, the parallel processing function of graphics processing unit (GPU) has been widely 
adopted as a technique for accelerating complicated geometric processing. For the GPU utilization 

in computer-aided manufacturing (CAM) software, known research results include the offset shape 

computation of polyhedral models [6], cutter location (CL) surface computation [4], cutter 
accessibility analysis [8, 12], Minkowski sum computation [14], and acceleration of the machining 
simulation [5]. In the field of 5-axis machining, another previous study realized milling simulation 
using a GPU [11]. In this research, a graphics library named OptiX was adopted to implement the 
software. The same library was used in this current study. In the CAM software, dexel modeling is 
often adopted as a shape representation method. The authors developed a conversion software for 
a polyhedral model into an equivalent dexel model using ray tracing (RT) cores of GPU [9]. The 

authors also realized technology which determines the tool posture without interfering with the part 
using the RT core [10]. This technology is utilized in this current study to accelerate computations. 
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Figure 2: Definition of cutter shape. 

3 INTERACTIVE METHOD FOR DETERMINING CUTTER POSTURES 

In this section, the outline of the proposed interactive method for determining cutter posture in the 

3+2-axis machining is explained. In the following discussion, the milling operation with a ball-end 
cutter is assumed. A milling cutter comprises a cutting-edge part and cutter holder (Fig. 2). The 
shape of the holder can be considered a series of cylindrical shapes and/or truncated cone shapes 
coaxial with the cutting edge. In addition, the position of a ball-end cutter is usually represented 
by the center point of the spherical blade of the cutter. The cutter posture is given by the spindle 
axis direction of the cutter, which is specified by two rotational angles around two mutually 

perpendicular axes, A and B axes, of the milling machine. In this research, the azimuth  and 

elevation  angles in the world coordinate frame are adopted to define the cutter posture (Fig. 3); 

however, the posture can be specified based on the rotation around other axes, such as the A and 
B axes of a milling machine.  

 
Figure 3: Definition of cutter posture using azimuth  and elevation  angles. 

 
For the posture determination of the cutting edge, it is important to consider that the cutting edge 
is usually in contact with some parts of the surface for cutting and must not interfere with the 
other parts. In contrast, to determine the holder’s posture, it is important that the holder and 
workpiece do not collide at any point during machining. The shape of the workpiece changes as 

machining progresses; hence, it is difficult to consider the effect of such shape change on the 
cutter posture at the time of NC data computation. Therefore, the determination of the holder 
posture is often performed, considering the collision avoidance between the holder and the part 
shape, and not the workpiece shape. Based on this concept, the cutter posture is determined in our 

study by considering the collision avoidance between the holder and the machine part with 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 20(4), 2023, 689-703 

© 2023 CAD Solutions, LLC, http://www.cad-journal.net 
 

693 

sufficient space between them. In the future, we would like to realize the technology to determine 
the tool posture considering the change of the workpiece shape. 

 

 
 

Figure 4: Processing flow for selecting the cutter postures interactively in 3+2-axis machining. 
 
Figure 4 illustrates the flow of the selection process of the cutter posture. A polyhedral STL model 

of a machine part, shape data of a cutter, and path data representing the position change of the 
cutter are provided as input data to the software. The path data represent a series of coordinates 
of sufficiently close points. These data can be calculated using the conventional CAM software for 
3-axis machining. Based on the given information, our software computes the range of collision-
free cutter postures for each point in the path (Step 1). The cutter posture is then interactively 
determined in Step 2. Subsequently, our software determines the number of machinable points in 
the path for each cutter posture. The obtained results are color-coded and displayed on a Gauss 

map. When the user selects a cutter posture referring to the color information, the machinable 

point by the cutter in the posture is selected and path data are reconstructed using the machinable 
points. Considering the reduction of the tool posture changes, the spindle axis direction in which as 
many points as possible can be machined is generally chosen. The color information on the Gauss 
map is then updated based on the remaining points. This selection process for the cutter posture is 
repeated until all points in the cutter path become machinable. It finally outputs a combination of 
the spindle directions and cutter path data machinable by the cutter in each spindle direction. 

Although the software is slow in determining the available cutter postures for all points on the 
path, the subsequent interactive processing (Step 2) is sufficiently fast, and the user can select the 
required cutter postures with negligible awareness of latency.  

Our software adopts color information on the Gauss map to guide the user to select a cutter 
posture that can machine as many points as possible. In general, this strategy can determine a 
feasible combination of cutter postures; however, the obtained results are not guaranteed to be 

the smallest set of cutter posture combinations. For this reason, we did not develop a system to 

automatically determine the tool postures based on this strategy. Such an example is illustrated in 
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Figure 5. This figure presents a section of a part, and the tool positions for machining its surface 
are depicted by green points. Although the maximum number of points can be machined by setting 
the cutter posture in the A-direction, further machining from the B- and C-directions is required to 
machine the remaining points, and a total of three directions are selected. However, if the B-

direction can be selected first, all machining points can be machined by further selecting the C-
direction.  
 

 
Figure 5: Section of a machine part and point representing the tool positions. 

 

To obtain such a minimum combination, it is necessary to examine all combinations of the spindle 
axis directions in which all points can be machined. This problem is a typical set-covering problem 
and is known to be NP-complete. In the future, we hope to implement an algorithm that 
automatically and efficiently determines the optimal tool postures. We are currently researching 

various technologies required for the automation. This time, as one of such technologies, we have 
realized a technology to compute a range of tool postures capable of machining a point. Using this 
technique, we developed a color-coded display of the number of points that can be machined for 

each tool posture, and realized an interactive system for selecting tool postures by referring to this 
display.  

4 DETECTION OF CUTTER POSTURES WITHOUT INTERFERENCE 

Our software first calculates the range of cutter postures that do not cause tool interference for 

each machining point. In this study, the cutter posture is considered a discrete combination of  

and  angles. In total, 720  angles were considered in 0.5° intervals in the range of 0–360°, while 

361  angles were considered in 0.5° intervals in the range from 90° to -90°. Therefore, 720 × 
361 = 259,920 cutter postures are considered for each machining point, and the existence of the 

intersection of the cutter and machine-part shapes is checked and recorded for each posture of the 
machining point. We prepare a bit sequence 259,920 in length to record the cutter interference 
detection results for each machining point. Accordingly, “0” is assigned to a bit corresponding to 
the posture in which cutter interference occurs, and “1” is assigned for the posture bit without 

interference. 

We divide the problem of the cutter interference detection into two sub-problems: interference 
detections of the cutting edge and holder part of the cutter. An offset shape M is obtained by 
expanding the part shape by the cutter radius r. In a previous study, we developed a fast 
offsetting algorithm of a polyhedral object using the parallel processing function of GPU [7]. By 
adopting this algorithm, the polyhedral model of the offset shape can be obtained. The 
interference detection of the cutting edge whose center point is at point p (Fig. 6(a)) is 

geometrically equivalent to the intersection detection of a line segment whose endpoint is at p and 
a polyhedron M (Fig. 6(b)). 
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Figure 6: Interference detection using offset shape M. 

 

For each candidate direction, a straight line of length l is extended from point p to examine the 

intersection with M; here, l denotes the value obtained by subtracting the cutter radius from the 
length of the cutting edge. The possible postures of the cutting edge are the directions in which 
the line segment and M do not intersect. Therefore, the posture determination problem of a 
cutting edge can be considered an intersection detection problem between a line segment and a 
set of polygons of the offset shape. 

 

 
Figure 7: Holder representation using line segments. 

 
For each candidate direction, a holder shape is oriented, such that the center axis of the holder is 
on the line originating from p in the cutter posture direction. To ensure sufficient clearance 
between the holder and the part, the cylinders and truncated cones, which constitute the holder 
shape, are defined to be slightly larger. A holder shape can be regarded as a swept surface 
obtained by rotating a series of line segments around the center axis of the cutter; therefore, we 

can represent the holder shape as a set of line segments (Fig. 7). The interference between a 

holder and a part shape can thus be ascertained by checking the intersection between line 
segments in the holder surface and polygons representing the part shape. Hence, the posture 
determination problem of a holder can be considered an intersection detection problem between a 
line segment and a set of polygons. A range of possible posture that can be taken by the cutting 
edge is obtained as a solution to the first problem. Another posture range of the holder is obtained 
as a solution to the second problem. Common solutions to both problems represent the appropriate 

postures of a cutter at point p. 
Intersections between line segments and polygons can be computed at high speeds by 

employing the RT core hardware of GPU. The following is a summary of our algorithm represented 
in [10]. Current GPUs are equipped with a hardware called RT cores dedicated to an image 
processing technique called ray tracing in 3D computer graphics. In the ray tracing process, the 
computation of intersection points between half lines (rays) and polygons is frequently required. 

The RT core is a special hardware designed to speed up this process. We adopt this RT core 

technology to accelerate the intersection detection between a line segment and polygons.  
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NVIDIA Corporation provides an application programming interface (API) library called OptiX 
[21] that implements software for ray tracing. The function of the RT core is automatically available 
via its API functions. OptiX processing usually initiates the ray generation program. The starting 
point and direction of each ray are defined in this function and the ray tracing processing is 

initiated. By harnessing the parallel processing capability of GPU, thousands of threads for ray 
generation can be executed in parallel [20]. In the ray generation program, the optixTrace() 
function is called to initiate the ray tracing process. In this function, the closest hit or miss program 
is automatically invoked depending on whether the generated ray intersects the polygons. 
⚫ Closest hit program: This function is called when a ray collides with the nearest polygon 

during the ray tracing process. Information about the collision point is recorded using this 
function.  

⚫ Miss program: This function is called when a ray does not intersect with any polygons during 

the ray tracing process.  
 

  
Figure 8: Intersection detection between a line segment and polygons using OptiX API. 

 
To determine the possible posture of a cutter, it is important to detect the intersection between a 
line segment and a set of polygons. Let s denote the coordinates of one endpoint of the line 
segment, and e, the coordinates of the other end. The intersection detection of this line segment 
s-e and the polygon group can be realized using OptiX as follows. First, a ray generation program 
is employed to generate a ray whose starting point is at s and whose direction is a vector from s to 

e. The collision between the ray and the polygon group is detected using the closest hit and miss 
programs as follows. 

⚫ If the miss program is invoked, the segments s-e and polygons do not intersect because 
the ray containing s-e, and the polygons do not collide (Fig. 8 (a)). 

⚫ If the closest hit program is invoked, the distance d between the obtained collision point p 
and s is examined. If d is longer than the segment length l, the segment and polygons do 
not intersect (Fig. 8(b)); otherwise, the segment and polygons exhibit an intersection (Fig. 

8 (c)). 
OptiX has a function for managing a group of polygons using acceleration structure. In this 
structure, polygons are recorded using the hierarchical bounding boxes. By adopting this structure, 
the collision detection between the ray and polygon groups can be further accelerated [21].  
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Figure 9: Determination of number of machinable points for each cutter posture. 

5 GRAPHICAL INTERFACE FOR ASSISTING CUTTER POSTURE SELECTION 

After recording the interference-free cutter postures for all machining points, obtained bit 
sequences are superimposed. For each of the 259,920 cutter postures, the number of machining 
points where “1” (= no interference) is recorded in the bit corresponding to the posture is 
determined (Fig. 9). Subsequently, the obtained count results are visualized using Gauss map, 

which is a spherical surface comprising the end points of unit direction vectors when the start 

points of the vectors are given to the origin. For each cutter posture  and , a unit vector is 

considered and its corresponding point on the map is depicted using a unique color, according to 
the number of machinable points for the posture. At this point, the point corresponding to the 
cutter posture with the most machinable points is depicted in blue, and the cutter posture point 
with the least machinable points is depicted in red. The color changes from blue to green, yellow, 
and red, in that order, as the number of machinable points decrease. 

When a user clicks on a point on the Gauss map using a mouse, its corresponding cutter 
posture is selected. The software then collects points machinable using the cutter in the selected 

posture, and then the interference-free NC data for machining the part with the cutter are 
generated by appropriately connecting the collected points. The software then recalculates the 
number of machinable points for each cutter posture using the remaining points, and updates the 
color-coded display using the obtained result. Subsequently, the selection of the cutter posture 
using a mouse, generation of the NC data using machinable points, and color-coded display update 
are repeated. When all points become machinable, the Gauss map is entirely red, and the NC data 

for 3+2-axis machining are completely obtained. To minimize the changes in cutter posture, it is 
generally a good strategy to repeat the selection of the cutter posture with most machinable 
points; in other words, select the cutter posture with the bluest color in the Gauss map.  
In the current software, a tool path data, which is a sequence of point coordinates, is provided as 
input. When a set of points machinable by the cutter in the selected posture is obtained, they are 
sorted according to the original sequence of the points. When two adjacent points in the sorted 
points are also adjacent in the original sequence of the input points, they are connected by a line 

segment. Via this processing approach, several short paths are obtained (Fig. 10). A new tool path 
available for the tool in the specified posture is generated by properly connecting them. In this 
method, two adjacent points in the original tool path are often classified to be machined by the tool 
in different postures (Fig. 10(b)). Consequently, these two points belong to different paths, thereby 
resulting in a gap between the two points. From the proposed method, the distance between a path 
and its neighboring path becomes the same as that of the path at the input. It is necessary to 
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change the distance between the paths according to the cutter posture and the surface direction of 
the shape to be machined. Solving these issues is a direction for future research subjects. 

 

 
Figure 10: Reconstruction of the tool path by connecting the points machinable using a cutter in 

the selected posture. 
 

6 COMPUTATIONAL EXPERIENTS 

We implemented a software for assisting the cutter posture determination using the interactive 
aforementioned method. In the implementation, VisualStudio 2017, CUDA 10.2, and OptiX 7.2 

were employed. A 64-bit PC with an Intel Core i9 Processor, 32-GB memory, and an nVIDIA 

GeForce RTX-3080 GPU was used in the experiments. Presently, we are developing a 5-axis 
machining CAM software for dental technicians, and in this case, a tooth model (Model A) was used 
as the machining object. We also prepared two small figure models (Models B and C) with complex 
shapes. Polyhedral models of the sample objects and the initial cutter paths for contouring the 
models are illustrated in Figure 11. Figure 12 presents the tool-shape data (ball-end cutter of 0.5-
mm radius) used in our experiments. These data are fed into our system as input. In the current 

implementation, each cylinder and/or truncated cone of the holder shape were represented by 180 
line segments covering its boundary. The number of polygons of the models and number of points 
in the paths are presented in Table 1. 
 

 No. of polygons No. of points in 
path 

Offsetting time 
(s) 

No. of polygons in 

offset shape 
Time for computing 

collision-free 

postures (s) 
Model A, tooth 15,000 102,841 5.22 1,266,656 1090.67 

Model B, dragon 202,520 106,582 5.12 636,084 1207.53 
Model C, happy 

buddha 
67,240 80,064 4.66 769,220 914.47 

 
Table 1: Specifications of input data and necessary time for computing postures free from 
collisions for all points in the path. 
 

The time required to use this system can be classified into three categories: (1) the time required 
to offset the part shape, (2) the time required to check cutter interferences for 259,920 cutter 

postures for each machining point, and (3) the time required to interactively generate cutter paths 
and update the color-coded display after the cutter posture selection. The time in (3) is usually 1 
to 2 seconds for selecting each cutter posture, which is almost negligible. The time required to 
compute the offset shape of the models and time for detecting interference-free cutter postures 

are thus only presented in Table 1. In addition, 90% of the time required to determine the 
collision-free cutter postures is spent in detecting the tool postures without holder interference. It 
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is considered that this is because the intersection detection of line segment and polygons is more 
often performed in the holder-interference avoidance. 

 
Figure 11: Sample models and contour-type cutter paths: Models (a) A, (b) B, and (c) C. 

 

 
Figure 12: Shape data of ball-end cutter for milling the models. 

 

 

 
Figure 13: Snapshot of an interactive selection process of the cutter posture for Model A. 

 
In Figure 13, a snapshot of an interactive selection process of the cutter posture is illustrated for 

Model A. Based on the computation results of the collision-free cutter postures, initial color-coded 
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Gauss map is obtained, as illustrated in Fig. 13(a). The blue-colored region represents the cutter 
postures with several machinable points. When the bluest point in the Gauss map is selected by the 
mouse (white arrow in Fig. 13(a)), a contour-type cutter path using a cutter in the selected cutter 

posture ( = 302.5°,  = 20.5°) is reconstructed by properly connecting the machinable points (Fig. 
13(b)). Simultaneously, the software recalculates the number of the machinable points for each 
cutter posture using the remaining points, and the color-coding results of the Gauss map are 

updated, as illustrated in Fig. 13(c). 
 

 
 

Figure 14: Selection process of the cutter postures for Model A. 
 

 
 

Figure 15: Selection process of the cutter postures for Model B. 
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Figure 16: Selection process of the cutter postures for Model C. 

 

Fig. 14, 15, and 16 illustrate the selection processes of the cutter postures and cutter paths 
corresponding to each selected posture for all three models (Models A, B, and C). All the required 

cutter postures for 3+2-axis machining are 4, 8, and 4 for Models A, B, and C, as illustrated in Fig. 

14, 15, and 16, respectively. Accordingly, we infer that the computation of the tool path for each 
selected tool posture and the update of the color information of the Gauss map after the selection 
were sufficiently fast, and a smooth interactive work was feasible. This time, we didn't have time 
to compare the performance of our system with other tool posture determination technologies. In 
the future, we will develop this technology to realize a system that automatically determines the 
tool postures. At that time, we plan to compare the necessary calculation time and results with 

other systems. 

7 CONCLUSIONS 

This paper describes a novel interactive software for assisting 3+2-axis machining. This software 
requires the polyhedral model of a machine part, shape data of a cutter, and path data 
representing the position change of the cutter. It computes a range of cutter postures without 

interferences with the machine part for each point in the path. The information on the possible 
cutter postures for all points were examined, and the number of machinable points was determined 

for each cutter posture. The obtained results were color-coded in the Gauss map. By referring to 
the color information of the Gauss map, cutter postures appropriate for the 3+2-axis machining of 
the part were efficiently selected, and the NC data for the machining operation were computed. We 
would like to provide this system to enterprises, conduct field tests, evaluate its effectiveness, and 
investigate necessary functional improvements. We also considered the development of the 
technology that can subdivide the part surface into several regions for each cutter posture and 

recalculate the tool path for each region. Development of a system for determining the optimal 
cutter postures for 3+2-axis machining without human intervention is another research target. Our 
proposed technology for determining all possible cutter postures for each point on the path is also 
effective in the automation of simultaneous 5-axis machining. Furthermore, the CAM software for 
simultaneous 5-axis machining based on this technology is considered our future research subject. 
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