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Abstract. This paper presents a CAD-based shape optimization process which 
exploits the capabilities of modern CAD systems to enforce assembly constraints 
within the optimization process. The assembly constraints are imposed using 

adjacent components in the CAD model assembly, which the component being 
optimized is not allowed to overlap with. This is important in industrial workflows, 
where unwanted interference can often result during the final product assembly. 
Here, an optimization framework is presented where the parameters defining the 
features in a feature-based CAD model are used as design variables, and their 
gradients are computed by combining design velocities with sensitivities computed 

using adjoint methods. The benefits of this framework are three-fold: (1) the use of 
adjoint methods makes the computational cost essentially independent of the 
number of design variables, (2) the optimized geometry is available as a feature-
based CAD model that can be easily used for downstream processes, (3) the 
optimized geometry respects space constraints imposed by other parts in the 
assembly. In this paper, the developed framework is demonstrated for the 
optimization of models created in CATIA V5, to be assembled with other components 

defined in the CATIA V5 assembly workbench. 
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1 INTRODUCTION 

With advances in the field of computers, and their progressive use within the industrial design 
process, the need for physical design prototypes has been extensively reduced and replaced with 
digital models which are constructed and analyzed using computers. Nowadays product design 
typically starts with the construction of a computer-aided design (CAD) geometry of an initial concept 

and the goal is to deliver an optimized geometry as a CAD model which can be used for 
manufacturing. In recent years, optimization has become an essential and integrated part of an 
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industrial design process. The need for optimizing designs led to the development of various 
stochastic methods like genetic and evolutionary algorithms [14],[18]. The main benefit of these 
methods is that the probability of obtaining a global optimum with a smaller design space is higher 
(but not guaranteed) compared to other methods such as gradient-based methods. The main 

limitation is the high computational cost associated with the large number of function evaluations 
required to reach the optimum. Gradient-based methods have advantages in terms of efficiency 
when optimizing designs with a large number of design variables. The choice of the optimization 
algorithm is problem dependent. In this paper, gradient-based optimization methods are used for 
the problem of shape optimization. This requires an efficient methodology for computing the gradient 
of an objective function as well as the constraints (if any) with respect to the design parameters. 

Modern CAD systems like CATIA V5, SIEMENS NX, Solidworks etc. use feature-based modelling 

strategies to create a parametric CAD model. This enables the designers to create relationships 

between different CAD features, and sometimes between different parts or assemblies, to integrate 
the design intent for the product. The main advantage of the CAD-based optimization approaches is 
that the optimized model can be directly used for downstream applications including manufacturing 
and process planning. In this work, a CAD-centric adjoint optimization approach [5] is used, which 
enables the use of commercial feature-based CAD systems within the optimization. 

In general, mechanical design processes are not only driven by performance but are also 
subjected to constraints. These constraints may include the size of geometric features like the trailing 
edge radius of the turbine blade, volume or mass constraints, constraints on cross-sectional area, 
constraints on flow fields to account for a minimum lift, fixed exit-flow angle etc. Mader and Martins 
[21] used constraints such as bending moment, static and dynamic stability to examine optimal wing 
shapes in subsonic and transonic flows. Walther and Siva [34] presented an adjoint-based shape 
optimization for a multistage turbine design, with the objective to maximize the efficiency while 

constraining the mass flow rate and the total pressure ratio. Kontoleontos et al. [20] presented a 
constrained topology optimization approach for ducts with multiple outlets. The flow constraints are 

enforced at each outlet defining the volume flow rates, flow direction and/or mean temperature of 
the outgoing flow. In terms of geometrical constraints, Xu et al. [36] presented an approach 
employing a set of test points to impose the thickness and trailing edge radius constraint for the 
optimization of a nozzle guide vane.  

When optimizing an industrial design, one of the important factors to consider is the packaging 

space in which the optimized component is expected to fit. This is typically constrained by other 
components in the product assembly which define the regions the optimized shape is not allowed to 
violate due to the existence of the other parts. Since individual components are designed and 
optimized by different designers, when these are assembled together, issues such as interference 
often occur, requiring engineering changes late in the product development cycle [11]. Thus, it is 
important for designers and manufacturers to devise methods to ensure that the optimized 

component can be assembled within the space available before the actual component is 
manufactured. With the advances in CAD systems and development of the Digital Mock-Up (DMU) 

for complex CAD model assemblies, it is now possible to replace the physical prototypes with virtual 
ones and do the assembly of components in a virtual environment before any prototype is built. The 
DMU is a product assembly workbench where different components are positioned in 3D space 
relative to each other. Interference checks can be made in the DMU. An obvious step to stop 
interference appearing in the first place would be to include constraints imposed by adjacent 

components in the assembly during the design optimization of individual components, or to apply 
clash detection and fix the interferences during the product assembly.  

Some of the early works in the field of interference detection between two solids are found in 
[6],[8]. Recent developments in this field include [27], which enabled interference detection directly 
using CAD models. Zubairi et al. [37] developed a sensitivity approach to eliminate interference (if 
present) in a 3D CAD assembly, by identifying parameters defining the CAD features which needs 

to be modified and calculating the amount of change required to eliminate interference. The 
approach is effective in eliminating interferences but the effect of the resulted shape change on the 

performance of the individual components was not considered, meaning that the process of 
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eliminating interference could reduce the performance of a product, or even make it unsuitable for 
its role. Recently, a 2D shape optimization of a NACA0012 aerofoil based on a polynomial response 
surface model was presented in [19], where product assembly constraints were formulated to 

consider the presence of a fuel-box in the interior of the wing profile. The constraints were enforced 
as constant upper and lower bounds for the design parameters. Although the approach was 
successfully applied for optimization, using only the parameter bounds may be highly restrictive 
when the number of design variables increase. 

In this paper, research has been set out to propose a novel optimization framework which 
interacts with the CAD assembly design to obtain the information of the available packaging space 
constrained by the presence of other components in the CAD model assembly. The developed 

approach is demonstrated on 2D and 3D parametric CAD models built in CATIA V5 and assembled 
with other components in CATIA V5 assembly workbench. Here, SU2 [26] is used for flow simulations, 

and Python 3.5 is used as the programming interface. 

2 BACKGROUND 

2.1 Adjoint Methods 

The primary attraction of adjoint methods is their ability to compute gradient information at a 
computational cost which is essentially independent of the number of design parameters. This, in 
turn, opens the possibility to explore significantly larger design spaces than those possible with 
traditional approaches, in time-scales which are acceptable for industrial design. 

The development of adjoint methods started with the works of Pironneau [31] in the field of 
optimal shape design, and have followed two different paths, i.e. continuous adjoint 

[7],[10],[12],[13],[25],[28-30],[35], and discrete adjoint [9],[16],[22],[23],[32]. These 

formulations are based on the process followed to mathematically formulate the adjoint equations 
from the flow field equations. In the continuous adjoint formulation, the adjoint equations are 
derived directly from the governing partial differential equations and then discretized, while in the 
discrete adjoint formulation the governing partial differential equations are discretized first and then 
the adjoint equations are formulated. In [24] the continuous and discrete adjoint approaches for 

aerodynamic optimization were compared and it was found that the discrete adjoint gradients are in 
closer agreement with the gradients computed using finite differences than those computed using 
continuous adjoint methods. But the difference is not significant, and it is further reduced as the 
mesh resolution increases. Also, it was commented that the computational cost of deriving the 
discrete adjoint is greater than the continuous adjoint. Full details on the use of the adjoint approach 
to design are given by Giles and Pierce [17]. In this work, the adjoint surface sensitivities produced 
using the Open-source adjoint solver SU2 are integrated within a CAD-based gradient optimization 

framework by calculating the parametric design velocity, i.e. the boundary shape movement 
resulting from a change in CAD parameter. 

2.2 Parametric Design Velocity 

Parametric design velocity (𝑉𝑛) quantifies the boundary movement with respect to a change in the 

parameter value. In this work, design velocity is defined as the normal component of shape 
displacement on the boundary of the model caused by a parametric perturbation. Where the motive 
is to use a parametric CAD model in an optimization framework, the availability of a robust and 

efficient way of calculating parametric design velocity is of utmost importance. This work is 
concerned with computing 

𝑉𝑛 = 𝛿𝑋𝑠 ⋅ �̂�, (1) 

where, 𝛿𝑋𝑠 is the movement of surface nodes and �̂� is the outward unit normal. 

In Figure 1, the arrows represent the design velocities as the boundary changes from the solid 
brown to the translucent airfoil. The convention adopted throughout this work is that a positive 

design velocity represents an outward movement of the boundary, and negative is inward. The 
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approach used in this work for computing design velocity for CAD-based design parameters is 
developed by [5], and is applicable to any feature-based CAD modelling package. The approach 
places no constraints on boundary topology changes which often occurs after parametric changes 
and which hampers the alternative approaches. Also, it does not require any special access to the 

source code of the CAD modeler. 
 

 
(a)      (b) 

Figure 1: (a) CAD model of the original and perturbed geometry, (b) design velocity vectors. 

2.3 Gradient Computation 

For the optimizer to establish a new search direction it is necessary for the gradient to be evaluated 
with respect to each design variable. In this case, it means evaluating the change in each objective 
function and each constraint due to unit perturbation of a CAD parameter. This can be achieved using 
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(2) 

and provides flexibility for the use of different parameterization methods and function evaluations. 
Here n and m are the number of design variables and surface mesh points, respectively; f, represents 
the current function of interest (the objective or constraint functions). The variables 𝑥𝑖 represent the 

normal displacement of discrete points on the surface. The second term ∂x/∂θ is known as the 
geometric sensitivity matrix and measures the influence that each design variable (𝜃𝑖) has on the 

position of each grid point on the surface mesh (𝑉𝑛) computed using Eqn. 1. The third term represents 

the surface sensitivities for a change in the function of interest with respect to the change in the 

position of surface grid points.

3 INTERFERENCE DETECTION 

Interference occurs when some components in the product assembly violate others by occupying 
the same physical space. The interference detection system in CATIA V5 provides capabilities to 
obtain the penetration depth between the interfering components. This is the minimum distance 
required to translate a product to avoid interference. In addition, the clearance distance between 
two components can be obtained. 
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(a)    (b)    (c) 

Figure 2. Interference between two boxes as in CATIA (a) interference, (b) contact, and (c) 
clearance. 

Figure 2 displays the part-to-part interference detection in CATIA V5. It shows examples where the 
selected parts are in clash (Figure 2(a)), are in contact (Figure 2(b)), or have a clearance between 
them (Figure 2(c)). A CAD system application programming interface (API) is developed in this work 
to automatically calculate the interference between the component being optimized and other 
assembly components. In this work, a positive value of interference defines the amount of 
penetration distance between the components, while the negative value defines the clearance 
distance. 

From the perspective of optimization, the objective is to optimize a model such that the 
optimized shape has no interference with other components. It is therefore necessary to 
automatically compute the amount of interference between the CAD model being optimized and 
other components in the CAD model assembly. This is achieved by using a CAD system API which is 
configured to detect the components (other than the component being optimized) in the CATIA V5 

product assembly module (i) and use the interference tool to compute the individual interferences 

with the initial CAD model (𝛿𝑖
𝑖𝑛𝑖𝑡𝑖𝑎𝑙). At each optimization step, the CAD system API records the name 

of different components in the CAD product assembly and computes their interference values (used 

as assembly constraints). The other requirement is the computation of gradients of each assembly 
constraint with respect to the parameters used to define the initial CAD model. CATIA V5 offers 
capabilities to access the part model’s parameterization through the assembly workbench. So, to 
compute the gradients of constraints, each parameter of the CAD model (j) is perturbed by a small 

amount (Δ𝜃𝑗), and the interference tool is used to obtain the new interference values (𝛿𝑖
𝑗
) for all 

components. In practice this is done at the same time as the design velocity computations. The 
respective gradients of the constraints are then obtained using a finite difference method as 

𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 =
𝛿𝑖

𝑗
− 𝛿𝑖

𝑖𝑛𝑖𝑡𝑖𝑎𝑙

Δ𝜃𝑗

(3) 

4 OPTIMIZATION FRAMEWORK 

In this work, a gradient based optimization technique is used to guide the design towards a local 
optimum over multiple optimization steps. Within each optimization step, the design variables are 

set to new values, causing a change in the objective function. A general optimization with product 
assembly constraints can be defined as: 

                                                             Minimize:         objective function, 

  Subject to:          𝛿𝑖
𝑗
< 0                                                        (4) 

    design variables:  vector of CAD parameter values 

The flow diagram for the optimization process is shown in Figure 3. The constraints due to 
interference with the adjacent components in the product assembly are enforced through an 

inequality constraint for the optimizer such that the value of interference is less than zero.  

- 
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Figure 3. CAD-based optimization using constraints from product assembly. 

 
The optimization starts with a parametric CAD model, which is exported in a neutral CAD format i.e. 

STEP for creating the mesh and performing the CFD and adjoint analysis. A series of CAD system 
APIs are created to modify the CAD model parameters and compute the design velocities using the 
approach described in [5]. The design velocities and adjoint sensitivities are then used to obtain the 
performance gradients with respect to CAD design parameters. Moreover, CAD system’s API are also 
created to modify the CAD parameters and subsequently use the modified part model in the assembly 
workbench to compute the interference from other components. This helps to compute the geometric 

interference and its gradient to be used within an optimization algorithm SLSQP (sequential least 
square programming) implemented in Scipy [4]. SLSQP is a gradient based optimization algorithm 

which minimizes a function with any combination of bounds, equality and inequality constraints. In 
this work, the CAD models are created in CATIA V5, while optimization framework and CAD system 
API’s are created in Python. Note, that while the STEP files are used in the computation of gradients, 
optimization is based on the native CAD file.  

5 RESULTS 

In this work, the use of product assembly constraints during optimization is demonstrated for two 
test cases with increasing complexity. 

5.1 NACA0012 Optimization 

The first test case considered is the benchmark two-dimensional NACA0012 aerofoil [1],[33]. 

NACA0012 represents a symmetrical airfoil with zero chambers and 12% thickness to chord ratio. 

Here, the aerofoil is constructed using two Bézier curves, one defining the upper surface and one 

defining the lower surface. Each Bézier curve is defined by seven control points. The design variables 

are the 𝑌-coordinates of the five-control point defining the upper and lower curves with the following 

constraints: the leading edge and trailing edge points are fixed, and the control points on each curve 
after the leading edge are constrained to move in equal and opposite directions, vertically offset from 
the leading-edge point. These constraints ensure C2 continuity at the leading edge. The initial profile 
of Bézier control points and resulting airfoil profile are shown in Figure 4. Here, the airfoil is optimized 

(at zero angle of attack) using five design variables resulting in a symmetrical flow around the airfoil.  

The flow conditions are defined as: 
• Freestream Temperature = 273.15 K 
• Freestream Mach number = 0.80 
• Angle of attack (AOA) = 0 deg 

• Objective Function = 𝑚𝑖𝑛(𝐶𝑑) 
• Design variables = 5 
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Figure 4. NACA0012 airfoil with B�́�zier control points and fuel-box. 

 
 

Figure 5. NACA0012 product assembly in CATIA V5. 
 

The product assembly constraint in this example is a rectangular fuel-box around which the optimized 
airfoil must fit. Here, the 2D model was extruded by ±1mm to create 3D geometry which was 

assembled with a solid model of the fuel-box in the CATIA V5 product assembly workbench (Figure 
5). The CFD mesh is created in ICEM-CFD [2] using a multi-block strategy with 300 points on the 
airfoil and 51 points in the direction normal to the airfoil. A detailed view of the mesh around the 
aerofoil is shown in Figure 6(a). The contour plot of the pressure coefficient (𝐶𝑝) is shown in Figure 

6(b), where it can be seen that a strong shock-wave is formed at the upper surface of the airfoil, 
which contributes to increased drag on the airfoil. The automatic optimization framework described 
in section 4 is used to minimize the aerodynamic drag on the airfoil.  

For each optimization step, a new CFD mesh is created in ICEM-CFD using an automated blocking 
script. The optimization history of the aerofoil with the product assembly constraint is shown in Figure 
7(a), where it is compared with the optimization when no such constraint exists. The drag coefficient 
is reduced from 0.04605 to 0.0091 when subjected to the product assembly constraint compared to 
0.00013 for an un-constrained optimization (with parameter bound). The optimized geometries are 
compared in Figure 7(b), where the Y-axis is amplified to enhance visual comparison. The un-

constrained optimization results in a thinner aerofoil, compared to that obtained in the presence of 
product assembly constraints, but it clearly violates the space occupied by the fuel-box. The pressure 
distributions around the aerofoil are shown in Figure 8. It should be noted that the ideal solution for 
the un-constrained optimization problem is a very thin airfoil but using the parameter bounds 
restricts the optimizer to result in such geometry. 

 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 20(4), 2023, 749-762 

© 2023 CAD Solutions, LLC, http://www.cad-journal.net 
 

756 

          

 (a)     (b) 

Figure 6. (a) Mesh around NACA0012 airfoil. (b) 𝑪𝒑 distribution at the start of optimization. 

 

  

(a)      (b) 

Figure 7. NACA0012 optimization with and without assembly constraints. (a) function evaluations, 
(b) geometry comparison. 

   

(a)     (b) 

Figure 8. 𝑪𝒑 contours on optimized NACA0012. (a) un-constrained, (b) with product assembly 

constraint. 
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5.2 ONERA M6 Wing Optimization 

The second test case is the ONERA M6 wing model [3], which is a swept, semi-span wing with no 

twist. A parametric CAD model for the wing is constructed using four different cross-sections along 
the wing span. Each cross-section is defined using the same parameterization strategy as used for 
NACA0012. In order to keep the shape of the wing tip fixed only the first three sections are 
parameterized, resulting in a total of 27 CAD parameters. The 3D wing is then constructed by 
sweeping a surface through the section curves as shown in Figure 9. Here, the optimization is 
performed with product assembly constraint of a 3D rectangular fuel-box that is to be contained 

within the wing volume as shown in Figure 10. 
 

  
Figure 9. ONERA M6 CAD model showing B�́�zier control points for section profiles. 

 
The following flow conditions are defined for CFD analysis: 

• Freestream Temperature = 288.15 K 
• Freestream Mach number = 0.8395 
• Angle of attack (AOA) = 3.06∘ 

• Objective Function = 𝑚𝑖𝑛(𝐶𝑑) 
• Design variables = 27  

 

 
Figure 10. ONERA M6 wing with fuel-box. 

 
An unstructured mesh was created in GMSH [15] with 154,617 nodes and 707,115 tetrahedral 
elements, the respective surface mesh is shown in Figure 11(a) and used for both primal and adjoint 
analysis. The mesh density near the leading and trailing edge of the wing is controlled by 
implementing a background mesh field with refinement boxes. The adjoint sensitivity for minimizing 

aerodynamic drag over the ONERA M6 wing is shown in Figure 11(b), which indicates how the mesh 

nodes on the wing’s upper surface should move to minimize the drag. 

Bézier 
curve 
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(a)       (b) 

Figure 11. (a) ONERA M6 CFD mesh, and (b) adjoint sensitivity map. 
 
For each optimization step, a new mesh was created in GMSH using density box and background 
field functionality in GMSH. The pressure distribution on the initial and ONERA M6 wing model 
optimized in the presence of product assembly constraints is shown in Figure 12. During the 

optimization the drag coefficient was reduced from 0.01232 to 0.0045, compared to 0.0032 for an 
un-constrained optimization (with parameter bounds) as shown in Figure 13. A comparison between 
the initial and optimized geometry at two different cross-sections are shown in Figure 14, where the 
𝑍-axis is amplified to enhance visual comparison. In each case, the optimized result for the 

constrained optimization is very close to the contact with the fuel-box, while the un-constrained 
optimization result violates the space occupied by the fuel-box. 

        
Figure 12. 𝑪𝐩 distribution on ONERA M6 wing, initial (left) and optimized with product assembly 

constraint (right). 

 

Figure 13. Optimization history for ONERA M6 with product assembly constraint. 
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 (a)      (b) 

Figure 14. ONERA M6 wing optimized section at (a) 𝟑𝟎% span, (b) 𝟔𝟎% span. 

 
6 DISCUSSION AND CONCLUSIONS 

In this work, a constrained shape optimization framework was successfully demonstrated which uses 
the prior information from product assembly components. The objective function was optimized 
without violating the space available for storing other components in the assembly. This was achieved 

by a series of Python CAD system APIs which interact with the product assembly module of CATIA 
V5 through its API to extract interference distances between the component being optimized and 
other components to be assembled together. In this paper, the models created in CATIA V5 were 
used as the product assembly constraint, but the framework can also be used for models created in 
other CAD systems (e.g. SIEMENS NX, SolidWorks etc.) to define these constraints. 

For the test cases analyzed in this paper, the CFD analysis was performed using the open-source 

CFD solver SU2, and the objective was to minimize the aerodynamic drag. The product assembly 
constraint for the two cases was imposed using a rectangular fuel-box. In a broader perspective, 
these constraints could represent any region of space the CAD model is not allowed to occupy. The 
developed optimization framework successfully optimized the component without introducing 
interference during the optimization. It was interesting to note that for all the examples, optimizing 
the models without considering adjacent components, resulted in optimized shapes which would have 
caused fit issues when the product assembly would have been attempted. 

Since the optimization algorithm SLSQP uses a least-square formulation to compute the 
Lagrangian multipliers to incorporate the constraints in the optimization, the efficiency of this 
constrained optimization framework depends on the number and types of constraints. Here, the 
complexity arises from the perspective of optimizer but not from the methodology described in this 
paper for the computations of product assembly constraint and their respective gradients. In future, 
the applicability of the developed framework would be tested for the optimization of an industrial 
component in the presence of significantly larger number of other components in the product 

assembly. 
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