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Abstract. This paper investigates a higher order generalization of signed distance fields
in a high performance context. The data within these constructs approximate the distance
function over a larger area. Algebraically, a straightforward realization of this is derived from
formulating the general sampling and reconstruction process as a function approximation
problem that combines local Taylor approximations. The degree of these approximations is
referred to as the order of the field. By noting that the error bound of a combination of Taylor
approximations is closed under convex barycentric combination, we derive a characterization
of accuracy for arbitrary sampling topologies and interpolation schemes. We extend this
discussion to least squares fit polynomial fields. In case of regular grids, we show that
GPU filtering can be utilized to implement highly efficient queries on both types of fields.
Additionally, we investigate the direct storage of partial derivatives in combination with
Hermite interpolation. Although the latter type of fields are more expensive in terms of
query times, they provide higher accuracy.

We evaluate the performance-storage trade-off of these generalizations and show vari-
ous optimization techniques to balance it. We propose a general framework that converts
traditional, zero order signed distance fields to higher order representations. We present an
empirical analysis of the first, second, and third order constructs in terms of storage and query
efficiency, and propose optimizations in both regards, such as decreasing filtering footprint
size via simplical interpolation schemes. Finally, we show how higher order filtering tech-
niques can leverage the presence of higher order derivative data in the samples to improve
quality without increasing the filtering footprint, and how higher order geometric properties
can be inferred from these data, such as surface normals.
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1 INTRODUCTION

Signed distance functions (SDFs) form a special subset of implicit functions. For each x ∈ En point in space,
an f : En → R SDF maps the signed distance of the argument x to the {y ∈ En | f(y) = 0} zero level-set.
As such, they go beyond merely encoding volumes, they also convey global geometric information about the
scene. This versatility makes SDFs ubiquitous in various venues of computing. However, this power comes at
the cost of representation, as a closed-form formulation of the exact SDF is infeasible for all but the simplest
geometries and configurations. In practice, we have to rely on approximate SDFs.

In high performance real-time applications, the most common approximation is a collection of SDF samples
combined with an interpolation method. The latter is used to infer a continuous approximation to the SDF
from the samples. We refer to the combination of data and interpolation as a discrete signed distance field
(DSDF). Usually, the samples are arranged in a two or three dimensional regular grid [21, 42] or stored in a
more adaptive spatial subdivison structure, such as octrees [17, 25].

We propose a theoretical generalization of discrete signed distance fields to higher orders via the samples and
investigate three particular realizations of our formulation. This requires us to first establish our interpretation
of a single sample. Due to the domain of application, one can either treat it algebraically, i.e. as an isolated
function sample, or geometrically, as a volume.

The most prominent application of the latter is Hart’s paper on sphere tracing [22]. He used the SDF
values to form unbounding spheres around sample positions. These are open volumes that do not contain
any boundary points which facilitates robust and efficient empty space skipping during ray tracing. This is
the most widely used visualization algorithm for rendering SDFs and their approximations, it illustrated in
Figure 1. Recently, this approach was generalized to quadrics of revolution in the form of quadric tracing
[5], as they offer a richer vocabulary to express the inside/outside partitioning of space induced by the shape.
Unfortunately, inferring a continuously differentiable approximation to the SDF from a set of such samples is
difficult as it is not evident how to combine geometric unbounding entities in a correct and nontrivial way, a
topic not yet addressed in the literature. Traditionally, sphere tracing simply takes a linear combination of the
centers and radii of the unbounding spheres of the enclosing cube of samples.

In this regard, treating signed distance values purely algebraically, that is, as function samples simplifies
the reconstruction of smooth SDFs. We can apply any filtering to them from function approximation and
interpolation theory. However, this also means that there are no guarantees that an arbitrary combination of
SDF values yields a geometrically valid distance everywhere, e.g. a valid unbounding sphere. When invalid
unbounding spheres are inferred for points in space during sphere tracing, they are identified as view-dependent
visual artifacts, often referred to as flickering or floating geometries. These are usually heuristically mitigated
by choosing appropriate step size multipliers, an art form on its own right [32, 33].

Our paper focuses on the algebraic interpretation of an SDF sample. This choice also implies that the
majority of our discussion is independent of SDFs, it can be applied to the approximation of arbitrary functions.
In the constructs we propose, a higher order sample expresses the behaviour of the source function in an area
around the sample position.

A straightforward realization of such a descriptor is the Taylor expansion of the target function. In Section
3.1, we show that the error bound of a convex barycentric combination of Taylor approximations is within the
convex hull of the per-sample error bounds. By choosing an appropriate polynomial basis, we also show how
GPU hardware filtering can be used to accelerate inference.

A higher order approximation over an area may be also achieved by polynomial regression. In our case, we
show that least squares fitting to a fine grid of SDF values yields a higher order sample. In Section 3.2, we
present an efficient GPU implementation of such a fitting framework. It can be applied to any representation
for which point-surface distance queries are defined.

We investigate Hermite interpolation in Section 3.3 for higher order field construction and propose a
particular Ferguson-like [44] solution to the underlying underdetermined interpolation problem. We show that
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Figure 1: Sphere tracing computes the intersection between a p(t) = p + tv, t ≥ 0 ray (dashed green half
line) and the scene (purple blended circles). At each iteration, sphere tracing evaluates the SDF and takes a
step equal to the radius of the current unbounding sphere (dashed red circles). The trace terminates if either
the ray enters a volume, i.e. the SDF is negative, or if the ray is very close to a boundary. Entering a volume
is possible because the interpolation of SDF values may not yield a correct unbounding sphere.

these provide superior accuracy and efficient storage at the expense of greatly increased evaluation times.
We also address the issue of sample representation and interpolation in Section 4. We propose filters that

preserve the higher order data at the samples based on Hermite interpolation that are akin to geometrically
continuous blending of implicit surfaces [23].

The overall goal of this paper is to present high performance, GPU-friendly higher order DSDF represen-
tations. As such, we mainly consider regular grids of samples, however, we do discuss the advantages and
drawbacks of combining samples from enclosing tetrahedrons instead of cubes within these regular structures
and also briefly compare our constructs to non-regular grids. Additionally, we enumerate several optimization
techniques in Section 6 to speed up the query of these fields on the GPU in general, and their rendering in
particular. Finally, we present our experimental results in Section 7.

2 PREVIOUS WORK

Signed distance functions have applications in a broad range of fields, from geometric modeling through
computer graphics to physics [1, 21, 42, 15, 4, 28, 18, 41, 11]. Recently, deep learning applications have also
started utilizing SDFs [29], or their generalizations such as medial fields [34].

Sampled signed distance functions have been used with great efficiency in high quality real time font
rendering [21]. For three dimensional applications, an attractive property of a distance field is that it can resolve
multiple ray-surface intersection queries via cone-tracing [22]. This was used in [42] and [8] to approximate
soft shadows from spherical light sources more accurately. Recently, distance fields have been shown as a
viable primary geometric representation for real time games [2]. Storage improvements were also studied
in the literature via hierarchical space partitioning [17] and the idea of incorporating gradient data into the
samples has been presented as well [13, 9]. Our main contribution in this regard is noting that higher order
samples allow us to reduce total distance field memory storage even on regular grids.

Using higher order polynomials for DSDF representation has been proposed by Koschier et al. [25] in the
context of collision detection. They chose shifted normalized Legendre polynomials as their polynomial basis
so that fitting can be implemented via projections onto the basis functions. This, combined with an adaptive
spatial subdivision strategy such as in [17], resulted in a compact representation of shapes. Unfortunately, high
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degree polynomials require hundreds of coefficients which is not suitable for real time rendering. Moreover,
although their fitting strategy proved to be sufficient for collision detection, they have undesirable visual
discontinuities along cell boundaries in rendering, even with high polynomial degrees. Changing their fitting
to LSQ resolved this in our experiments. In this sense, their approach can be considered as a nearest neighbor
filtered special case of our LSQ constructs but they offer better spatial adaptability.

A similar spatial subdivision was used by Song et al. in [38] to construct hierarchical polynomial splines
over T-meshes with a C1 Hermite interpolation at the vertices. We propose a similar solution to this problem
in our Ferguson-Hermite formulation over regular grids and generalize it to second order.

Pottmann and Hofer used quadratic approximations to the squared distance function in [31]. Discarding
the sign as such makes set theoretic operations inapplicable except for unions, that are otherwise elegantly
handled by implicit representations [43, 35, 20]. Pottmann and Hofer’s construction assumes a continuous
representation of the underlying geometry and in practice uses the squared distance from the tangent plane at
the footpoint as means of approximation. Our least squares approach differs in that it can be generalized to
higher orders, generates a signed distance field, and can be applied to any representation where point-boundary
signed distance queries can be carried out.

In real time computer graphics, filtering distance fields is usually restricted to nearest neighbor and trilinear
filtering. In volume rendering, there are several higher order filtering schemes [14] showing that carefully
selected and combined trilinearly filtered samples can be used to achieve a higher quality. The drawback of
this and related [37] higher order filtering approaches is the increased filtering footprint, i.e. they require
more samples per query. We propose a higher order filtering technique, similar to blending in geometric
modeling [23], that does not fetch extra samples, instead, it utilizes the higher order information available in
the generalized Taylor samples. These results hold for arbitrary f : Rn → R functions. We also show that
a Ferguson-type solution to the resulting Hermite interpolation problem produces superior error metrics and
visuals for first and second order fields.

Hart showed that sphere tracing provides robust means to the high quality rendering of signed distance
lower bounds [22]. There have been several advances in making sphere tracing more efficient in how it takes
steps [24, 6] or how sharper bounds can be achieved [19], and how other unbounding geometries [5] or proxy
shapes may be used. We show that higher order samples can contribute to performance by replacing finite
difference methods for surface normal computation with the exact gradient of the interpolated higher order
polynomial approximations, making certain fields not only more performant but also more memory efficient.

The motivation for the investigation of Taylor DSDFs is their maximum error bounds that can be used
to quantify the accuracy of a particular reconstruction from a set of samples. Most other work in this topic
relies on a frequency-based argument for accuracy analysis [12], but other approaches, e.g. based on an initial
polygonization of the represented geometry and R-functions [30, 36] have been also presented. We prove
that Taylor’s theorem provides a convenient, local characterization of accuracy that does not require any fixed
sampling topology or homogeneous sample order.

A first and second order geometric generalization of DSDFs to planar curves can be found in [10]. Tangent
lines and osculating circles were used as first and second order sample data and interpolation was carried out
in the range, that is, by using the barycentric combination of the signed distances taken separately from the
samples. Our paper provides an algebraic generalization to this that works in arbitrary dimensions and orders.

3 HIGHER ORDER SAMPLE FIELDS

Let f : Rn → R be a function that is sampled at an xi ∈ Rn set of points, i ranging over an appropriate
set of multi-indices; please refer to Appendix A for a short summary on multi-index notation. A sample field
refers to a {si = (xi,di)} set of position and data pairs.

The data part may consist of simple sample values, i.e. di = f(xi), or mappings defined over Rn

itself, such as polynomials, or data that can be used to construct a fi(x) mapping that approximates f in
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(a) Bilinear interpolation over the rectangle. (b) Barycentric interpolation over two triangles.

Figure 2: Comparison between tensor product and simplical linear interpolation. The input colors are denoted
by the red, green, blue, and black circles on the vertices. The rectangle is decomposed into the top-left and
the bottom-right pair of triangles on the right. Note the more pronounced diagonal on the right and the
absence of the fourth interpolated color.

the neighborhood of xi, potentially using additional data from other samples. In general, a field query is
decomposed into the following steps:

1. Fetch all si, i ∈ J samples under the filtering footprint

2. Create a fi : Rn → R inference mapping from di, i ∈ J

3. Evaluate fi(x), i.e. the inference at the query position

Step 1 determines the memory bandwidth of the query. We investigate two types of footprints: that of
the smallest enclosing cube and tetrahedron of samples. In Rn, the former requires 2n samples, whereas the
latter only fetches n+ 1.

In practice, Step 2 and 3 are usually carried out simultaneously, for example using bi- or trilinear interpola-
tion. We consider two different strategies to create inference mappings: blending of higher order polynomials
and per-cell Hermite interpolation.

3.1 Taylor Polynomial Fields

The degree k multivariate Taylor approximation of an f : Rn → R, f ∈ Ck+1 function about x0 in multi-index
notation is

Tk,x0(x) =
∑

|α|≤k

∂αf(x0)

α!
(x− x0)

α . (1)

Sample field queries usually aggregate several samples to construct an approximation to the sampled
function. It can be easily shown that the error of a convex barycentric combination of Taylor approximations
can be bounded by the largest individual local error of the members of the combination.

Indeed, given an arbitrary λi(x) collection of barycentric weight functions, i.e. λi : Rn → R such that
∀x ∈ Rn :

∑
i λi(x) = 1, we have∣∣∣f(x)−∑

λi(x)Ti(x)
∣∣∣ = ∣∣∣∑λi(x)Ri(x)

∣∣∣ ≤∑
|λi(x)| · |Ri(x)| ,

where Ri(x) are the Lagrange error terms about sample positions xi. If the query position x is within the
convex hull of the xi collection of samples, i.e. ∀i : λi(x) ≥ 0, then∣∣∣f(x)−∑

λi(x)Ti(x)
∣∣∣ ≤∑

λi(x) · |Ri(x)| ≤ max
i
|Ri(x)| . (2)

This shows that the error bound of the combination is always within the convex hull of the individual
errors. This suggests that by carefully selecting barycentric weight functions, we may improve the cumulative
error of the combination.
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(a) a00 (b) a10x+ a01y + a00 (c) a20x
2+a11xy+a02y

2+a10x+
a01y + a00

Figure 3: Error heatmaps of planar signed distance fields extrapolated from single order zero (a), one (b),
and two (c) Taylor samples. The samples are represented by the aij ∈ R coefficients shown in the subfigure
captions. The sample position is denoted by the red X. The geometry is the origin centered, radius 1 circle
(in red). Blue corresponds to low error, yellow is high error.

Moreover, Inequality (2) also demonstrates that the number of samples in the combination does not
necessarily improve the precision. Thus, combining the samples of the enclosing simplex (d+ 1 samples Rn)
instead of the enclosing hypercube (2d samples in Rn) may yield the same, or even better Taylor error bounds
as it may rule out potentially far away samples from the combination. However, using enclosing simplices
results in more boundaries along which continuity issues may arise. See Figure 2 for a visual comparison
between bilinear interpolation of colors over a rectangle versus the barycentric interpolation of the same colors
over two triangles constructed from the rectangle.

In theory, the remainder term itself may be used to correct the Taylor approximation of SDFs such that
they never infer invalid unbounding sphere radii. This, however, requires the ability to bound the higher order
derivatives of the SDF. As an example, let us consider the interpolation of a single SDF sample.

By definition, traditional sample fields contain sample values, i.e. zero order Taylor approximations, since
T0,x0(x) = f(x0). Following the above argument, the error bound of an order 0 sample is derived as

f(x) = f(xi) +
∑
|α|=1

∂αf(x̃)

α!
(x− xi)

α = f(xi) +∇f(x̃) · (x− xi)

which is arranged as

|f(x)− f(xi)| = |∇f(x̃) · (x− xi)| = ∥∇f(x̃)∥2 · ∥x− xi∥2 · | cosα| ≤ ∥x− xi∥2 (3)

since ∥∇f(x̃)∥2 ≡ 1 for all regular points of the SDF. According to this, the maximum radius of an unbounding
sphere at x is fi − ∥x − xi∥2. Interestingly, this is the exact same step sphere tracing would make, thus
unbounding spheres can be derived from the Lagrange form of the remainder as above.

Nevertheless, the actual error may be lower than the one given by Taylor’s bound. Figure 3 visualizes the
real absolute error of order 0, 1, and 2 Taylor signed distance field samples taken from the origin centered unit
circle. Note the expansion of the high precision areas (in blue) around the higher order sample positions.

The Taylor expansion of the SDF to a mesh can be analytically computed. The key observation is that the
SDF of a mesh can be decomposed into particular instances of three classes of distance functions: one induced
by a vertex, an edge, and a planar face. All three of these have exact SDF realizations, i.e. the distance

Computer-Aided Design & Applications, 20(5), 2023, 1005-1028
© 2023 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


1011

function of a point, a line segment, and a plane. This demonstrates that even piece-wise and discontinuous
geometric representations can be converted to higher order discrete signed distance fields (DSDFs).

If a parametric or implicit representation of the target function is available, the partial derivatives can be
computed analytically. If a sample lies on the cut locus of the distance function, the Taylor expansion simply
falls back to an order zero sample. For procedural representations, the analytic derivatives may not be readily
available. In this case, numerical approximation schemes can be used to compute the necessary derivatives or
one could use automatic differentiation. We propose an alternative in the next subsection.

3.2 Least-Squares Polynomial Fields

To overcome the difficulties of obtaining exact analytical or approximate numerical derivatives of the target
function, we fit a higher order polynomial fi(x) =

∑
|α|≤k ai,α ·xα to an fi,j = f(xi,j) collection of function

values taken around xi.
A bound on the accuracy of an LSQ polynomial approximation may be derived by considering the LSQ

polynomial as an approximation to a collection of zero order Taylor samples.
If the xi,j samples are arranged in a regular grid, the spacing between them determines their individual

Taylor error bounds. Let S denote the length of the diagonal of the V (xi,j) ⊂ R3 Voronoi box around an
xi,j sample and D > 0 an upper bound on the magnitude of ∇f(x) in V (xi,j). Then from (3) we have

∀x ∈ V (xi,j) : |f(x)− fi| ≤ D
S

2
.

Let M denote the residual sum of squares. Then the maximum deviation of the fi(x) LSQ fit from the
samples over a Voronoi cell is

√
M + E S

2 , where E is an upper bound on ∥∇fi(x)∥2. The above combined
give the bound on the maximum deviation of the LSQ fit from the target function f over the union of the
Voronoi cells as

max|f(x)− fi(x)|≤
√
M +

S

2
(D + E) . (4)

As the number of xi,j samples increases, the Voronoi diagonals shrink. This means that S decreases,
however, the increase in the number of samples is more likely to cause the increase of the residual error as
well, once it is larger than the number of points that the polynomial can interpolate.

We show a practical, high performance algorithm for the construction of LSQ DSDFs in Section 5.

3.3 Hermite Interpolation Fields

Unlike the previous two local higher order approximations, Hermite interpolants cannot be separated from the
interpolation method. However, they also offer better accuracy over an interval at a reduced degree [40].

A tri-cubic tensor product patch possesses 43 = 64 control data. These data cover the entire cube of the
enclosing 8 vertices of the query position. An order 1 sample constraints 4 of these control data per vertex,
leaving us 64− 32 = 32 scalar degrees of freedom.

Ferguson phrased this in terms of partial derivatives at the vertices of a parametric surface and set all the
missing partial derivatives to 0 [16]. Doing the same with our data and storing the SDF values and first partial
derivatives per vertex results in an Hermite interpolant that first fetches the control data of the 8 vertices
([f(xi), fx(xi), fy(xi), fz(xi)], i ∈ {0, 1}3), then uses the Hermite basis to reconstruct the approximated
function, essentially setting the missing coefficients to zero.

Using the basis functions α0(x) = 1 − 3x2 + 2x3, α1(x) = 3x2 − 2x3, β0(x) = x − 2x2 + x3 and
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β1(x) = −x2 + x3, the reconstructed value at x = [x, y, z]T ∈ R3 is

f̂(x) =
∑
i

[f(xi)αi(x)αj(y)αk(z) + fx(xi)βi(x)αj(y)αk(z)+

+fy(xi)αi(x)βj(y)αk(z) + fz(xi)αi(x)αj(y)βk(z)] .

The main drawback of this method is that it cannot be accelerated with hardware interpolation as the
Hermite interpolant cannot be expressed as a blending of local polynomials. However, it is straightforward to
extend the above method to second order interpolation. The number of unconstrained coefficients grows even
more and setting them to zero proved to offer less improvement in accuracy compared to other second order
filtering methods than it was in the first order. Due to performance limitations, we did not pursue the third
order solution to this problem.

4 FILTERING HIGHER ORDER FIELDS

4.1 Sample Representation

A sample of a Taylor or LSQ higher order algebraic field stores a degree k multivariate polynomial. Filtering
is a barycentric combination of the values of these polynomials evaluated at the query position.

There are multiple bases to represent a polynomial. By choosing one where evaluation is invariant under
barycentric combination, we can optimize evaluation and leverage GPU hardware filtering.

In the 1D case, the above invariance means that (1−λ(x))fi(x)+λ(x)fi+1(x) can be reduced to a single
evaluation after interpolating the coefficients of fi(x) and fi+1(x). It follows immediately that, for example,
the global power basis satisfies this property, that is

(1− λ(x))
∑
j

ai,jx
j + λ(x)

∑
j

bi,jx
j =

∑
j

(
(1− λ(x))ai,j + λ(x)bi,j

)
xj

holds. As a result, the evaluation of an arbitrarily filtered higher order sample reduces to the following steps:

1. Fetch the coefficients of all di samples in the filtering footprint.

2. Apply higher order filtering to the coefficients of the samples.

3. Evaluate the resulting polynomial at x.

This is a considerable performance gain: instead of evaluating all N polynomials under the footprint and
weighting the N results by the filter, we filter the coefficients of the N samples under the footprint and
evaluate the resulting single polynomial once.

There are various bases for representing polynomials, each with various properties. Any global basis is
applicable to our use case, however, power bases are the most efficient for GPU evaluation. In our tests
with [−1, 1]3 normalized sample positions they exhibited no numerical issues with 32 bits floating point, i.e.
binary32, textures. Occasionally, binary16 caused visual artifacts for high resolution higher order fields, even
with range compression of the coefficients. A global Legendre basis exhibited the same visual artifacts with
binary16. Using a per-sample normalized basis alleviates this problem, however, it also means that the samples
are no longer in a global basis, as such, manual interpolation has to be implemented for their filtering.

Orthonormal bases have various numerical and computational advantages over power bases, however, note
that tensor product constructs can not be trivially used. For example, the 3 dimensional tensor product
of quadratic basis polynomials requires 33 = 27 coefficients, whereas a second order Taylor polynomial only
constrains 10. One either stores the extra coefficients or computes them from the data of the Taylor expansion,
for example using techniques similar to Ferguson’s cubic tensor product Bézier surfaces that reconstruct first
order Hermite data, as shown in Section 3.3.
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4.2 Higher Order Filtering

By filtering, we refer to the interpolation scheme that combines samples into a local approximation to the
sampled function. GPUs offer hardware accelerated uni-, bi- and trilinear interpolation of 1D, 2D, and 3D
textures.

Even though the filtering techniques presented in this section can leverage these units, GPUs may carry
out the hardware accelerated interpolation using more coarsely quantized subtexel texture coordinates than
desired [27], that may necessitate manual interpolation of the data. This could be the case for low resolution
higher order fields where the filtering cells span a large spatial extent.

As discussed in the previous subsection, Taylor and LSQ higher order samples consist of coefficients of
multivariate polynomials in a global basis. Interpolating these coefficients yields another polynomial that can
be evaluated to compute the approximation to the function at the query position.

More generally, filtering can be formulated as a
∑

j λj(x)fj(x) barycentric combination of fj(x) higher
order sample functions with some, not necessarily linear, barycentric weighting functions λj(x) that satisfy∑

j λj(x) ≡ 1.
The λi(x) barycentric filtering functions have to be such that they preserve the higher order derivatives

specified by the samples at the sample positions, that is

∂α
∑
j

λj(xi)fj(xi) = ∂αfi(xi) , ∀0 ≤ |α| ≤ k (5)

should hold under the J filtering footprint, i ∈ J . This can be done by combining univariate Hermite solutions
to the problem of

λ(1) = 0 , ∀i ∈ {0, 1} : ∀m ∈ {1, . . . , k} : ∂m(i) = 0 (6)

The degree 1, 3, 5, and 7 polynomial solutions to this are

h1(t) = t , h3(t) = −2t3 + 3t2

h5(t) = 6t5 − 15t4 + 10t3 , h7(t) = −20t7 + 70t6 − 84t5 + 35t4 .

These blending functions retain the zero, first, second, and third order derivatives, respectively, at the sample
positions xi.

Let us first consider the case of cubical filtering footprints. In this case interpolation uses the samples at
the vertices of the enclosing hypercube. Thus, we can decompose the n-variate λi(x) functions into a tensor
product of single variable smoothing functions.

To use GPU hardware interpolation in conjunction with these blending functions, one has to replace the
u, v, w ∈ [0, 1] fractional part of the texture coordinates by λ(u), λ(v), λ(w). In our experiments, this only
caused a minor increase in query times.

In addition to satisfying the partial derivative reconstruction constraints of (5), higher order filtering may
be also used to increase the continuity of the reconstructed surface. It is important to note, however, that
by Inequality (2), the filtered error is within the convex hull of the individual errors. As such, higher order
interpolation may result in higher error than nearest neighbor sampling.

Let us now consider the problem of defining a multivariate blending function from 1D functions for the case
of arbitrary sample positions in Rn and the restricted filtering footprint of the simplex formed by the closest
n+1 samples. Let {xα}|α|≤1 = {x0, . . . ,xn} be the vertices of this simplex and u = (u0, u1, . . . , un) ∈ Rn+1

the n dimensional barycentric coordinates of x with respect to {xα}|α|≤1, i.e. x =
∑n

i=0 uixi.
Then the multivariate blending functions that satisfy (6) can be constructed from a single variable λ : R→

R blending function as

λi(u) = λ(ui) (i = 1, . . . , n), λ0(u) = 1−
n∑

i=1

λi(u) .
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by direct computation, provided λ(t) is a solution to (6).

5 LEAST SQUARES DISTANCE FIELD GENERATION ALGORITHM

Taylor and Hermite sample field generation is a straightforward process, as we only have to evaluate or
approximate the partial derivatives of the target function at the sample positions. Moreover, on the data level
these constructs only differ in the manner in which these derivative data are stored. Hermite constructs use
them directly, while Taylor fields first construct local Taylor polynomials and then expand them in a global
basis and store those coefficients.

In contrast, least squares fields require a fitting and there are various construction parameters that affect
the quality of the fit. Let us now derive a GPU-friendly fitting algorithm for LSQ fields.

For every xi sample position of the grid, let us construct a small fine grid, that collects a number of
distance samples in the neighborhood of xi. Let this fine grid be sij = xi + [i · ∆a, j · ∆b, k · ∆c]T ,
j = (i, j, k) ∈ {−H, . . . ,H}3, i.e. symmetric about xi and let us denote the collection of fine grid distance
samples by fij . Let N denote the total number of samples, N = (2H + 1)3.

The best fit polynomial satisfies the following∑
|k|≤n

aiks
k
ij ≈ fij , j ∈ {−H, . . . ,H}3 (7)

where (ai1, ai2, . . . , aiK), K =
(
k+3
3

)
are the sample coefficients and the fine grid distance samples are

fi1, fi2, . . .
The best fit polyomial can be sought in various norms. For the ease of GPU implementations, we propose

the use of the least-squares (LSQ) optimal fit, as optimization simplifies to a matrix-vector multiplication in
this case. Moreover, the matrix in question only needs to be computed once.

To show this, recall that the Moore-Penrose pseudoinverse is the least-squares solution to (7). If XT
i ·Xi

is invertible, it can be written as X+
i = (XT

i ·Xi)
−1 ·XT

i and the optimal coefficients are

ai = X+
i · fi .

Weighting can be also incorporated to lessen the impact of samples far away from the sample position. The
pseudoinverse can be computed even if XT

i ·Xi is not invertible, e.g. via SVD. As we are only dealing with
GPU-friendly degrees, i.e. up to 3, the condition number of the normal matrices is low enough to avoid
numerical precision issues during fitting.

Now, consider the zero centered pre-computed pseudoinverse X+
0 . Then X+

0 · fi is the best fit as if the
origin was at xi, that is, in a power basis that changed origins from [0, 0, 0] to xi. All that remains is to
expand the coefficients of the polynomial after a translation by xi. In terms of memory and computation, this
is more efficient and robust than precomputing the pseudoinverse for every sample position individually.

Algorithm 1 summarizes the proposed general construction of order k algebraic signed distance fields.
Figure 4 illustrates the fitting process.

Regardless of the norm chosen, the best fit polynomial converges to the Taylor polynomial as the fine grid
extent tends to zero. Intuitively speaking, the size of the fine grid acts as a low pass filter on the geometry.
In this sense, the fine grid is a level-of-detail control.

We found that the estimated gradients for first order samples are almost always of unit-length. They only
deviate around the cut locus, where the samples collapse to piece-wise constant approximations consisting of
the distance to the boundary.
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In : distance query f from input geometry;
k ≥ 0 distance field order;
xi distance field sample positions;
∆x,∆y,∆z > 0 grid sizes;
s0j origin centered fine grid, j ∈ {−H, . . . ,H}3;
X+

0 zero centered pseudoinverse
Out:

(
ai1, ai2, . . . , ai(k+3

3 )
)
, order k distance field samples.

for all xi sample position do
1. Sample distance function on translated fine grid
∀j : xij = xi + s0j : fj ← f

(
sij

)
= f

(
xi + soj

)
2. Flatten fine grid samples into f ← [f1, . . . , f(2H+1)3 ]

T

3. Compute xi centered approximation ã←X+
o · f

4. Translate ã to global power basis and store as fi

end
Algorithm 1: Uniform higher order distance field construction.

Figure 4: The first order grid sample xi (in red) uses distance samples on the fine grid (in black) to fit a
plane (blue line).

6 IMPROVEMENTS

6.1 Bit Packing of Samples

This optimization holds for first order fields. A first order sample only possesses 3 scalar degrees of freedom,
since the gradient of the SDF is of unit length at regular points. Using e.g. octahedral encoding [26], ai, bi, ci
can be represented by two scalars with high precision, reducing the per-sample scalar storage requirements
from 4 to 3.

The remaining 3 scalars of a first order sample can be further compressed by packing them into 32 bits. In
our particular test scenes, a 10-10-12 encoding in the sense of allocating 10+10 bits to an octahedral direction
plus 12 bits for the constant term in signed normalized integer format provided the highest accuracy. Note
that this approach increases the arithmetic load due to unpacking and hardware interpolation cannot be used.

Packing remains a way to decrease the per-sample payload sizes regardless of the target function. However,
it must be noted that the coefficients are arbitrary signed real numbers. We suggest range compression with
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(a) Original mesh (b) ϵ = 0.01 differences (c) ϵ = 1.0 differences (d) Polynomail normals

Figure 5: Comparison of different surface normal estimation techniques. Note the effect of ϵ in central
differences. (a) The original mesh with face normals (5K triangles). (b) and (c) calculate the normal with
central differences (6 samples) with ϵ = 0.01 and ϵ = 1.0, respectively, on a second order DSDF with 163

resolution. (d) Taylor approximation for the normal on the same 163 second order SDF as (b) and (c).

per coefficient ranges and using signed normalized packing in these cases.
If manual packing is used, it is possible to redistribute the bits among the coefficients unevenly. To maximize

precision, recall that perturbations in the lower order coefficients introduce the largest error according to the
Taylor bound. As such, using less bits for the higher-order terms is preferred.

6.2 Polynomial Normals

Traditional techniques rely on finite differences, usually central differences, to estimate the partial derivatives
of the SDF and the surface normal or store them directly in the field. In our constructs, order 1 and above,
we can use the gradient of the filtered polynomial as the surface normal approximation at the ray-surface
intersection point x. Let f̂(x) =

∑
i+j+k≤d aijkx

iyjzk be the interpolated order d approximation. Then the
surface normal is approximated by evaluating

∇f =


∑

i · aijkxi−1yjzk∑
j · aijkxiyj−1zk∑
k · aijkxiyjzk−1

 .

For a aix+ biy + ciz + di interpolated first order sample, this simplifies to [ai, bi, ci]
T .

Figure 5 shows the visual difference between surface normals estimated by central differences and the
higher order samples.

6.3 Tetrahedral Tracking

As noted in Section 3.1, the error bounds are independent of the sampling topology and Section 4.2 shows
that the filter footprint topology is not restricted to rectangles or boxes. By tetrahedral tracing we refer to
the technique of combining samples of the enclosing simplex – a tetrahedron – instead of a cube.

The distance field itself is still composed of a regular grid, but we only fetch the 4 vertices of the tetrahedron
instead of the 8 required for tensor interpolation. This allows us to efficiently compute barycentric weights.
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Figure 6: Decomposition of a grid cell into 6 tetrahedra. All of them share an edge which is one of the cell’s
main diagonals (A000A111).

To do so, first we have to identify which tetrahedron contains the query position, then compute the
barycentric coordinates with respect to the vertices of that tetrahedron. The calculations are done in normalized
cell coordinates (x = (x, y, z) ∈ [0, 1]3). The enclosing tetrahedron can be found by ordering the coordinates,
since the six tetrahedra are

z ≤ y ≤ x, y ≤ z < x, z < x ≤ y, x ≤ z < y, y < x ≤ z, x < y < z. (8)

Let us consider the configuration shown on Figure 6 and derive the weights for the first tetrahedron,
highlighted with red in the figure. The vertices are A000, A111, A100, and A110, where the coordinates of Aijk

is [i, j, k]T ∈ {0, 1}3. The two equations defining the weights are[
x y z

]T
= w0

[
0 0 0

]T
+ w1

[
1 1 1

]T
+ w2

[
1 0 0

]T
+ w3

[
1 1 0

]T
, (9)

1 = w0 + w1 + w2 + w3. (10)

The solution is w0 = 1− x, w1 = z, w2 = x− y, w3 = y − z. The weights in the remaining five tetrahedra
can be calculated similarly but we can write this more concisely. Let a ≤ b ≤ c, where a = min(x, y, z),
c = max(x, y, z) and b the remaining coordinate. Then

w0 = 1− c, w1 = a, w2 = c− b, w3 = b− a. (11)

The vertices are in a similar order: A000 and A111 are always the first two, w2 corresponds to the remaining
vertex closer to A000 and w3 to the vertex closer to A111.

7 TEST RESULTS

The tests focused on three aspects of distance fields: accuracy, storage, and query performance. The latter
was measured in DSDF rendering scenarios.

Increasing the order can be considered as means to optimize computation localization: the higher order
the sample, the more descriptive power it has and its evaluation cost increases respectively. The trade-off
to be made is how much computation we distribute through the samples of the field and how much is done
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(a) Best ∥·∥1 fit. (b) Best ∥·∥2 fit. (c) Best ∥·∥∞ fit.

Figure 7: Comparison of best LSQ fits in different norms. The field is a second order DSDF with the resolution
of 32 × 32 × 32. Note the subtle differences in reflections. Since both visual and error metric results were
similar, we chose ∥·∥2 due to its simplicity and efficiency for field generation.

locally. Our results suggest that algebraic signed distance fields up to order 2 are viable in real time graphics
applications, while order 3 with its 20 scalars per-sample payload is less fit for real time graphics, unless used
with nearest neighbor sampling.

We implemented the proposed higher order signed distance field construction framework in C++, using
OpenGL 4.6. For meshes, we resolved the distance query of Algorithm 1 by converting models into a high
resolution (5123) distance field and filtering it trilinearly to obtain the fine grid samples. In the procedural scenes
the distance functions were evaluated directly. The performance tests used perturbed texture coordinates in
conjunction with GPU hardware interpolation as described in Section 4.2, except for tetrahedral and Ferguson-
Hermite solutions that necessitated manual interpolation.

Our tests were carried out on an AMD RX 5700 and an NVIDIA GeForce RTX 2080 video card.

7.1 Least-Squares Field Construction Parameters

The number of fine grid samples had a small effect on the error beyond size 53. We tested grids up to size
513. The finer grids had slightly better error metrics, 1− 2% on average, depending on the models. For the
tests we chose 233 as a default, but in general 53 is usually a sufficient choice.

We tested the effect of the fine grid extend with an α ∈ [0, 1] parameter, that controlled whether the fine
grid was a singular point (α = 0) or if it extended all the way to the neighboring sample positions (α = 1).
On first, second, and third order fields the optimum for this parameter was found at about 0.6 by fitting these
fields to various models.

An interesting note is that by using small values, or even exact Taylor expansions, lower resolution higher
order fields can maintain geometric detail that are otherwise unattainable by the same resolution zero order
fields. This comes at the expense of the overall approximation precision.

We compared ∥·∥1, ∥·∥2, ∥·∥∞ norms for the fit, but there were no statistically significant differences in
field inference precision. As such, we have chosen ∥·∥2, as fits with respect to it can be easily and efficiently
implemented on the GPU. Please refer to Figure 7 for a visual comparison.
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(a) Procedural
SDF1.

(b) Procedural SDF3. (c) Armadillo mesh.

(d) Teapot. (e) Head.

Figure 8: The test models used in our accuracy and performance tests.

7.2 Accuracy Tests

Accuracy tests resampled lower resolution (83 to 1283) higher order DSDFs to 2573 zero order ground-truth
DSDFs. The geometries were normalized to be zero centered and within the bounds of [−1, 1]3. We computed
the mean absolute error between the ground truth and the upsampled distance fields. The geometries used
for accuracy measurements are shown on Figure (8) and the detailed results can be found in Appendix C. The
Teapot and Human Head models are from the dataset published in [39].

As established in the section on filtering, the interpolated field values may not necessarily be more precise
than the results of nearest point sampling. In general, trilinear interpolation does improve accuracy, but an
interesting observation deserves specific mention. Other than the Ferguson-Hermite construction, no other
filtering could boost accuracy as much as trilinear interpolation of zero order samples. One could argue that
this is due to the fact that the latter can be considered as a zero order Ferguson-Hermite solution.

The most important aspect of accuracy for our purposes is whether the per sample accuracy increase is
enough to reduce the overall storage requirements, given a set precision. The baseline for these measurements
were trilinearly filtered zero order fields. We measured at what resolution do higher order fields match the
precision of 323, 643, 963, . . . , 2563 trilinearly filtered zero order DSDFs and averaged the scalar storage ratio.

The table below shows our average storage percentages such that the higher order field with the given
filtering produces at most the same maximum error. We used the Armadillo model in the measurements below.
O1, O2, O3 refers to DSDFs of order 1, 2, and 3. H1, H3, H5, H7 are blending based interpolation over
cubical domains, as presented in Section 4.2. O1F and O2F are tensor tricubic and triquintic Ferguson-like
solutions to first and second order Hermite interpolation problems.
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Armadillo O1 H3 O1F O2 H5 O2F O3 H7

Maximum 95.85% 52.55% 50.65% 51.76% 52.76%

Mean 137.49% 55.95% 100.21% 56.35% 102.56%

Median 130.07% 31.16% 96.63% 37.62% 118.63%

As noted in the Section 4.2, reconstruction of all higher order partial derivatives at the data points with
the Hermite blending may not necessarily improve on the error metrics. Its main purpose is to increase the
order of continuity between the cells formed by the samples. Indeed, comparing the cubic, quintic, and septic
Hermite blended errors with trilinear interpolation of the the first, second, and third order polynomials, Hermite
blended error is actually worse in maximum error. Please refer to the table below. More interestingly, nearest
point sampling yields consistently better error metrics than the blended Hermite solutions for order 3 fields,
and performs similarly in some for order 2.

Armadillo O1 nearest O1 linear O2 nearest O2 linear O3 nearest O3 linear

Maximum 300.71% 82.76% 75.58% 46.71% 52.96% 56.64%

Mean 174.25% 156.09% 105.52% 116.59% 103.66% 135.46%

Median 156.09% 132.44% 70.58% 106.86% 76.95% 131.80%

Let us compare these statistics to the ones taken on a torus. The mean and median error statistics are an
order of magnitude better for DSDF order appropriate filtering.

Torus O1 cubic O1F O2 quintic O2F O3 septic

Maximum 21.24% 21.26% 26.05% 22.60% 25.40%

Mean 105.12% 6.60% 12.48% 5.27% 9.83%

Median 102.73% 2.92% 6.17% 2.63% 5.20%

The nearest and trilinear filtered data is as follows. Note the precision of the nearest neighbor sampled
second and third order fields.

Torus O1 nearest O1 linear O2 nearest O2 linear O3 nearest O3 linear

Maximum 46.05% 19.56% 25.41% 24.38% 25.02% 21.52%

Mean 184.91% 104.70% 12.06% 13.98% 6.83% 11.46%

Median 184.91% 101.18% 4.94% 4.86% 1.48% 2.35%

In general, the best storage is attained by using Ferguson-Hermite fields, however, the DSDF order ap-
propriate blending proved to be close to them in maximum error metrics. For median and mean errors, the
blended filtering falls behind, for complex models rather significantly.

On the same resolution, higher order fields provide higher accuracy. The trend roughly follows that order
N + 1 nearest sampling is more precise than order N trilinear. Order 3 nearest neighbor sampling is a unique
case in the sense that even though it fetches 20 scalars per query, the visual quality is still very high given
enough resolution, see Figure 9. Recall that 20 scalars are still only 62.5% of the data a trilinearly interpolated
first order field requires per query.

Additionally, polygonal models consisting of a small number of large planar faces, such as a dodecahedron,
do not benefit from higher order fields. This can be explained by the fact that large portions of the space

Computer-Aided Design & Applications, 20(5), 2023, 1005-1028
© 2023 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


1021

Figure 9: Comparison between a nearest point sampled (left) and trilinear filtered (right) third order DSDF
of dimensions 32×32×32 DSDF with a trilinearly filtered first order field of dimensions 51×51×51 (center).

in the small neighborhood of the model possess linear distance functions that can be exactly represented by
trilinearly interpolated zero order fields.

For simple models, tetrahedral interpolation did not increase error metrics considerably (about 3.3%),
however, for complex models it tends to fall significantly behind.

Overall, our numbers show that the theoretically expected storage reduction based on Taylor bounds (see
Appendix B) was not met on complex models, but simple ones did approach it. Other than these fields being
only least-squares fits, the most likely cause to this is the cut locus and the non-differentiability of the signed
distance function along it. This hinders the capacity of higher order samples to accurately cover larger areas.

7.3 Performance Tests

We compared the run time costs of rendering various DSDF geometries. O0-3 corresponds to DSDF order, TN
denotes that the normals were computed using the gradient of the interpolated polynomial instead of central
differences. Render times are in milliseconds, averaged over 100 frames each on 1920x1080 resolution with
the SDF spanning the majority of the scene. The tables below used binary32 components.

On average, using binary32 components over binary16 increased render times by 7.1% on AMD with
higher order polynomial normals (3.75% with central differences), while NVIDIA average frame render duration
increased by 34.7% with higher order polynomial normals (26.86% with central differences). However, it must
be noted that due to precision artifacts the renders were not equivalent, and as such the trace durations may
not be comparable.

On an AMD RX 5700 and NVIDIA 2080 GPU, our measurements are summarized as
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AMD TN FP32 NV TN FP32

Sampling O0 O1 O2 O3 O0 O1 O2 O3

Nearest 0.33 0.3 0.35 0.41 0.24 0.17 0.26 0.49

Trilinear 0.3 0.52 0.92 1.61 0.24 0.74 1.82 3.64

Cubic Hermite 0.56 0.94 1.64 0.73 1.79 3.7

Quintic Hermite 0.98 1.68 1.86 3.53

Septic Hermite 1.69 3.52

Tetrahedral linear 0.71 0.55 0.69 0.92 0.6 0.4 0.99 1.81

Ferguson-Hermite 1.02 1.94 1.08 2.90

Polynomial normals are a considerable performance boost on both vendors. Compared to central differences
normals, they reduced frame times to 79.83% on AMD and 77.98% on NVIDIA.

In terms of manual interpolation, a particular AMD specific optimization we applied was related to fetching
samples. The RDNA architecture provides a fast direct path to GPU RAM for image load operations [3] as
long as they are not mixed with filtered texture accesses. Although it improved performance on AMD, our
NVIDIA tests took a performance hit compared to the texture gather approach.

Note that tetrahedral tracing and Ferguson-Hermite figures in the above two tables correspond to manual
filtering, without GPU interpolation hardware. Yet, tetrahedral interpolation improved performance over
hardware accelerated interpolation on NVIDIA even for first order fields, and second order and up on AMD.

The cost of higher order blended filtering is minimal. These were implemented by changing the fractional
part of the lookup texture coordinate.

We also implemented Koschier et al.’s hp adaptive construction [25], however, the resulting query times
were very high. Rendering a 1920x1080 image of a non-uniform grid of second order polynomials took 14ms
on average. This already used a LUT optimization to avoid the full traversal of the space division octree. We
modified their approach by replacing projection by LSQ fitting. This produced higher visual quality at orders
of magnitude reduced construction times.

8 CONCLUSIONS

We presented a general higher order sample field framework and showed three realizations of it: Taylor
polynomials, least squares polynomials, and Ferguson-Hermite interpolants. Theses constructs were validated
by applying them to signed distance functions.

We presented a higher order distance field construction framework that converts arbitrary distance query-
able representations to order 1-3 fields. The least squares fit version can be trivially implemented on the GPU.
We also evaluated ∥·∥1, ∥·∥∞ best fits but they did not improve on our particular error metrics and test scenes.

With appropriate filtering, both first and second order distance fields can be rendered within 1ms at FullHD
resolutions on an AMD RX 5700 and an NVIDIA 2080. Third order fields are only viable in real time scenarios
with nearest neighbor sampling, however, in this case these are almost always more performant than first order
filtered fields.

As the distance field samples now store higher order data, filtering needs to be adjusted so that these pieces
of information are preserved at sample positions upon reconstruction. To this end, we proposed blend-like
combination of samples both for tensor product and simplical interpolation approaches. We showed that the
tensor product constructs can be used with hardware interpolation by re-adjusting the texture coordinates.
Alternatively, we explored the Ferguson-type solution to the Hermite interpolation problem of interpolating
first and second order partial derivatives of the signed distance function. We showed that this creates a visually
improved interpolated result with significantly better accuracy, even compared to higher order fields, however,
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they are also more expensive to evaluate. Overall, blending based Hermite interpolation did not improve the
error metrics of reconstruction, it mainly contributed to the visual smoothness of the reconstructed surfaces.
In terms of accuracy, the Ferguson-Hermite fields performed the best, however, second order already showed
overflattening due to the increasing number of zero partial derivatives.

Our results showed that higher order distance fields enable more efficient storage due to their higher per-
sample accuracy. In practice, carrying this generalization to even higher orders is hindered by the coefficient
explosion of the Taylor polynomials used as samples. Additional research is required into decreasing the per-
sample payload sizes, either via compression, hierarchical storage, or alternative higher order constructions
that still possess theoretically sound approximation order properties.

We showed that the performance hit of higher order samples can be mitigated by estimating surface normals
from the gradient of the interpolated polynomials, and using simplical interpolation in the form of tetrahedral
tracing.
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Appendices
A Notation and theoretical background

We denote the components of a vector x ∈ Rn by x = [x1, x2, . . . , xn]
T . In case of 2D and 3D vectors, we

also use i = [i, j]T , x = [x, y, z]T . Let x · y denote the dot product of x,y ∈ Rn.
An α = (α1, .., αn) ∈ Nn tuple is a multi-index. Multi-indices are convenient tools for the manipulation

of multivariable expressions. Let f : Rn → R be a sufficiently smooth function and let us define the following
operations:

|α| = α1 + α2 + · · ·+ αn ,

α! = α1! · α2! · . . . · αn! (where 0! = 1),

xα = xα1
1 · x

α2
2 · . . . · xαn

n ,

∂αf = ∂α1
1 ∂α2

2 . . . ∂αn
n f =

∂|α|f

∂xα1
1 ∂xα2

2 . . . ∂xαn
n

.

The order of a multi-index is |α| = α1 + α2 + . . .+ αn.
If f : Rk → R is k times continuously differentiable on a set A ⊂ Rn, we denote it by f ∈ Ck[A].

Definition 1 Let f : Rn → R be f ∈ Ck+1. The degree k multivariate Taylor approximation of f about x0

is
Tk,x0

(x) =
∑

|α|≤k

∂αf(x0)

α!
(x− x0)

α . (12)

We omit the degree k in expressions involving multiple Taylor polynomials of the same degree. If the Taylor
polynomials are taken about a fixed {xi} set of samples, we also denote them by Ti(x).

Theorem 1 (Taylor’s theorem) Let S ⊂ Rn convex and f : Rn → R, f ∈ Ck+1[S]. Then ∀x0 ∈ S : ∀x ∈
S :

f(x) = Tk,x0
(x) +Rk,x0

(x) ,

where ∃t ∈ (0, 1) : x̃ = x0 + t · (x− x0) such that

Rk,x0(x) =
∑

|α|=k+1

∂αf(x̃)

α!
(x− x0)

α .

The above statement of the Taylor theorem uses the Lagrange form of the remainder. We default to it
because it will provide the most insight into the nature of our constructions. However, a very convenient result
of the above is the following

Corollary 1.1 Let S ⊂ Rn convex and f : Rn → R, f ∈ Ck+1[S]. Let M ≥ 0 such that ∀x ∈ S : ∀|α| =
k + 1 : |∂αf(x)| ≤M . Then

|f(x)− Tk,x0(x)| ≤
M

(k + 1)!
∥h∥k+1

1 ,

where h = x− x0 and ∥h∥k+1
1 = (|h0|+ |h1|+ · · ·+ |hn|)k+1.

We denote the set of all distance functions by SDF [Rn]. We call x ∈ Rn a regular point of
f ∈ SDF [Rn] iff the derivative of f exists at x. All f ∈ SDF [Rn] are continuous [7], but f ̸∈ C1[x] if there are
more than one boundary points closest to x. F is the volume represented by f , that is f = {x ∈ Rn | f(x) ≤
0}. The zero level-set of an arbitrary f : Rn → R is denoted by ∂F , i.e. ∂F = {x ∈ Rn | f(x) = 0}.
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B Storage analysis

Storing higher order polynomial approximations increases the per-sample and filtered accuracy alike. This
enables sparser sampling without affecting the error. On the other hand, storing these higher order polynomials
increases the per-sample payload. This section investigates the superposition of these two trends.

A degree k Taylor polynomial in n variables requires
(
n+k
n

)
coefficients. Numerically, this translates to

degree 0 1 2 3 4 5 . . . k

R 1 2 3 4 5 6 . . . k + 1

R2 1 3 6 10 15 21 . . . (k+1)(k+2)
2

R3 1 4 10 20 35 56 . . . (k+1)(k+2)(k+3)
6

Thus, N order k samples require a storage of N ·
(
n+k
n

)
scalars.

For the sake of simplicity, let us consider a regular grid of samples in the remainder of this section, i.e.
xi = o+

∑n
j=1 ∆j · ej , ∆j > 0, where ej are the canonical basis vectors of Rn.

Let us investigate how much sparser the grid spacing ∆1,∆2, . . . ,∆n can become when increasing the
order from k to k + 1 without inflating the error.

The ratio of the number of per-sample coefficients between the orders k + 1 and k is n+k+1
k+1 .

Let Mi > 0 denote the upper bound on the i-th derivative of f : Rn → R and let dk = xi+1 − xi =
[∆1, . . . ,∆n]

T . We assume that the farthest a query uses a sample is ∥dk∥2 away from the sample.
Let us find all sk > 0 multipliers such that if dk+1 = sk · dk, the error bound does not increase. From

Corollary 1.1, this means

Mk

k!
∥dk∥k1 ≥

Mk+1

(k + 1)!
∥dk+1∥k+1

1 =
Mk+1

(k + 1)!
sk+1
k ∥dk∥k+1

1 ,

should hold, that is,

k+1

√
Mk · (k + 1)

Mk+1 · ∥dk∥1
≥ sk .

Solving the above for equality allows us to evaluate the maximum decrease of sample counts and total
scalar storage as we use higher order fields while retaining the accuracy of the denser lower order field. These
numbers also depend on the dimensionality n and the value of ∥di∥1 > 0.

Since the bound in Corollary 1.1 uses the Manhattan norm, sk corresponds to the multiplier of spacing,
i.e. xk+1

i = o+
∑n

j=1 sk ·∆j ·ej . As such, in n dimensions, the ratio of the number of cells of the order k+1

field and that of the order k field is 1
snk

, while the increase in the per-sample payload is n+k+1
k+1 . Combining

these, the total scalar storage multiplier as we increase the field order is

n+ k + 1

(k + 1) · snk
.

As long as spacing increase satisfies sk > n

√
n+k+1
k+1 , the total storage requirements decrease as the order goes

from k to k + 1.
The following tables illustrate the potential decrease in sample counts when increasing the field order to

1 − 5 from 0, assuming ∥h∥1 = 0.1 and a common M > 0 : ∀i : M ≥ Mi upper bound to replace all order
specific Mi-s in the error bounds of Corollary 1.1:

Computer-Aided Design & Applications, 20(5), 2023, 1005-1028
© 2023 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


1028

field order order (k + 1) : 0 sample ratio

∥h∥1 = 0.1 R R2 R3

0 → 1 22.36% 5% 1.118%

0 → 2 11.86% 1.41% 0.17%

0 → 3 8.03% 0.65% 0.052%

0 → 4 6.083% 0.37% 0.023%

0 → 5 4.9% 0.24% 0.012%

If we take into account the increased per-sample scalar storage requirements, we get the following figures
for the comparison of total scalar storage requirements between order 0 and 1− 5:

field order order (k + 1) : 0 storage ratio

∥h∥1 = 0.1 R R2 R3

0 → 1 44.72% 15.00% 4.47%

0 → 2 35.57% 8.43% 1.67%

0 → 3 32.14% 6.45% 1.04%

0 → 4 30.42% 5.55% 0.79%

0 → 5 29.42% 5.05% 0.66%

For example, the above table shows that even though per-sample payload sizes increase fourfold in R3 as
the order increases from 0 to 1, the same precision can be attained with 4.47% of the original storage space.
In practice, partial derivatives have different bounds, the numbers above only serve as a general outline of the
expected accuracy and storage trends.

C Accuracy measurement data

Storage usage compared to trilinearly filtered order zero fields with matching accuracy.

mean median max
O1c O1F O2q O2F O3s O1c O1F O2q O2F O3s O1c O1F O2q O2F O3s

T
or

us

64 105% 7% 19% 8% 13% 98% 3% 8% 2% 4% 21% 14% 31% 19% 31%
128 105% 6% 10% 4% 8% 98% 2% 4% 1% 1% 21% 13% 26% 20% 26%
192 — 4% 7% 3% 5% 108% 2% 2% 0% 1% 21% 14% 25% 17% 21%

A
rm

a. 64 139% 65% 114% 67% 105% 139% 41% 125% 53% 119% 98% 50% 53% 41% 61%
128 139% 60% 103% 60% 105% 121% 32% 88% 38% 99% 98% 55% 46% 50% 57%
192 — 50% 96% 53% 97% 119% 25% 78% 31% 89% 79% 39% 37% 34% 42%

SD
F
1 64 149% 55% 103% 60% 105% 130% 14% 75% 26% 81% 27% 24% 41% 19% 44%

128 149% 45% 88% 50% 93% 98% 6% 28% 7% 31% 41% 20% 41% 14% 26%
192 — 47% 96% 48% 97% 88% 4% 14% 4% 16% 31% 12% 18% 15% 28%

SD
F
3 64 158% 55% 125% 67% 119% 202% 21% 125% 46% 150% 71% 55% 53% 46% 52%

128 169% 60% 119% 63% 127% 139% 8% 43% 13% 52% 50% 35% 31% 28% 26%
192 — 57% 125% 62% 124% — 6% 24% 6% 26% 47% 57% 28% 29% 24%

T
ea

po
t 64 121% 33% 60% 31% 61% 98% 9% 31% 10% 31% 84% 65% 93% 46% 81%

128 113% 22% 43% 20% 37% 91% 5% 16% 4% 13% 77% 48% 41% 43% 44%
192 108% 18% 34% 16% 29% 88% 3% 9% 2% 7% 64% 33% 28% 35% 28%

H
ea

d 64 84% 16% 31% 13% 26% 65% 5% 13% 5% 10% 60% 31% 61% 98% 9%
128 91% 12% 20% 9% 17% 65% 3% 6% 2% 5% 34% 16% 29% 88% 3%
192 88% 10% 17% 7% 14% 64% 3% 4% 1% 3% 31% 13% 26% 65% 5%
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