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Abstract. We present an explicit representation of the exact signed distance function of
polygons. We bound the generalized Voronoi regions of the vertices and edges by polygons
and approximate them by employing planar cuts. The signed distance function within these
regions is explicitly represented by either a point-point or a point-line distance formula. We
show that the triangulations of these polygonal bounds can be e�ciently rendered using
rasterization and used in real-time applications. We also present conservative optimizations
to the region generation algorithm.
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1 INTRODUCTION

Signed distance functions (SDF) are used in a wide range of applications, for example in high-quality text
rendering [7], geometric representation for collision detection [11, 12], 3D printing, additive manufacturing [4],
and advanced real-time graphics e�ects [20]. Most of these applications rely on representations that evaluate
approximations of the scene SDF.

Although the signed distance function is continuous everywhere, it is not di�erentiable at points that do
not have a unique closest boundary point. The set of these points is the cut locus, and SDF approximations
struggle in its neighborhood. Neither spatial subdivision nor higher-order algebraic SDF approximations can
adapt to the structure of the cut locus without enlisting other means to resolve the ambiguity of the closest
boundary entity. In this sense, the main challenge in high accuracy SDF representations is to properly handle
the complexity of the cut locus and the regions it de�nes.

We propose an exact SDF representation for planar polygons by noting that the SDF of a polygon consists
of instances of two di�erent classes of elementary regions, depending on the topological type of the closest
boundary point. Regions have a circular SDF if the closest point of the boundary is a vertex of the polygon;
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(a) The SDF of an edge a�ects three regions, two corner
and a linear edge region with increasing SDF values from
the inside negative values to positive outside values.

(b) The exact signed distance function and Voronoi di-
agram of a concave quadrilateral. Note the parabolic
boundaries between V1 and E3, and around V4.

Figure 1: The exact signed distance function (SDF) of a line segment within a triangle (a) and a concave
quadrilateral (b). Vertex regions are red and blue and line regions are orange and sky-blue colored. Distance-
based coloring highlights their linear and circular nature.

that is, the exact SDF of the polygon is evaluated by a signed point-point distance computation. Regions,
where the closest point is an interior point of an edge, possess a linear SDF; thus, the exact signed distance of
the polygon is linear. Both of these elementary SDF region types possess only two scalar degrees of freedom.
The way these partition the plane is where the algebraic complexity of the SDF lies, as these regions are
separated by parabolic and linear boundaries.

We propose an algorithm that constructs conservative polygonal bounds for these regions. First, we
compute the initial in�nite vertex and edge regions of the polygon without considering the neighbors. Then
our algorithm performs a series of cuts to determine the bounding polygons to represent the elementary SDF
regions. During these cuts, the boundaries of the regions may become parabolic. We approximate these by a
prede�ned number of tangent polylines that produce a conservative bound on the exact boundary. The exact
SDF can be evaluated using these polygons and their associated SDF computations.

Section 2 provides a short overview of the related work in the literature. Section 3 de�nes the vertex
and edge SDF region types and investigates their geometric and analytic properties. We present our main
algorithm in Section 4 and propose generation and render time improvements in Section 5. Finally, we present
our test results on generation times and rendering performance in Section 6.

2 PREVIOUS WORK

This overview considers two approaches to represent the signed distance function of a composite geometry.
Direct or explicit methods generate data at prescribed positions and construct local approximations or exact
representations of the SDF in an area. Indirect or procedural approaches employ proxy entities or acceleration
structures to evaluate the exact SDF on a smaller subset of the initial geometry or their approximations.

Most direct methods only o�er approximations albeit at a �xed evaluation cost. Procedural or indirect
methods are more often exact, however, their evaluation cost may depend on the complexity of the signed
distance function around the query position.

In real-time graphics, SDF representations are predominantly explicit [1, 7, 20]. The most common tech-
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(a) Vertex regions are initially cut along
neighboring edge normals from the ver-
tex. The red regions have positive SDF
values, these outside regions have convex
angles.

(b) A single edge region contains
both inside and outside regions.
They are initialized as the re-
gion between these perpendicular
lines.

(c) Overlapping edge regions after the
edge regions have been cut with every
other entity. The regions remain convex
and the overlap is resolved by the Z-bu�er
algorithm.

Figure 2: Although vertex (a) and edge (b) regions are initially unbounded, the sign of the SDF is determined
already. The regions remain convex throughout the cutting process.

niques sample the SDF of the scene on a regular grid or a more adaptive spatial subdivision [6] and use
interpolation, usually trilinear hardware-accelerated �ltering, to infer an approximation to the true distance.
These samples may be augmented by gradient data [3, 5]. Wu and Kobbelt [21] proposed binary space par-
titioning for subdivision and stored linear approximations to the SDF in each cell. Sud et al. [17] proposed a
linear factorization of the SDF for e�cient distance �eld computation of piece-wise linear input geometries.

A more functional approach uses higher-order interpolation and approximation schemes to estimate the
exact signed distance values. Koschier et al. [11] proposed an octree subdivision of space where each cell
contained a best �t polynomial of di�erent degrees. The reconstructed SDF was discontinuous along cell
boundaries. Song et al. [16] constructed globally continuously di�erentiable hierarchical spline approxima-
tions using Hermite interpolation over T-meshes. Our algorithm generates an exact continuous SDF without
enforcing C1 continuity everywhere.

Procedural methods store closest entities, often referred to as sites, to reconstruct the exact signed distance
function on a smaller data set. A bounding volume hierarchy-based evaluation was proposed in [14], while all
closest sites were stored explicitly in [9] for each cell. In both cases, the evaluation of the SDF required �nding
the smallest distance on a restricted number of entities. Machine learning methods have also been applied to
extract SDF representation of shapes for processing and various other tasks [13, 19].

In contrast to the previous methods, we store the exact signed distance functions of piece-wise linear planar
shapes. We explicitly compute the Voronoi regions of the topological entities of the geometry, i.e., all sets of
points closest to either a particular vertex or interior point of a particular edge. The SDF within these regions
is trivial and resolved precisely by evaluating either a point-point or a point-plane signed distance computation.
The boundaries of these regions are composed of linear and parabolic segments. We bound these regions by
convex polygons, so computing the closest point requires the SDF evaluation of overlapping polygons.

E�cient algorithms were proposed [8, 22] to compute the generalized Voronoi diagram of planar shapes
composed of vertices, line segments, and optionally circular arcs. These Voronoi diagrams and medial axis
computations are related to these SDF regions. The cut locus is the set of points with a non-unique closest
point to the boundary and separates the elementary SDF regions. The medial axis is restricted to the interior
of the polygon [18]. Aichholzer et al. [2] proposed using biarcs to approximate the boundary and computed
the exact medial axis of this biarc approximation. This paper does not consider circular arcs, but the SDF
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(a) Vertex regions are
cut with the perpendic-
ular bisector.

Algorithm 1 VertexRegion.VertexCut

Input: a ∈ E2, Va a vertex and its polygonal region; b ∈ E2

another vertex.
Output: V ′a region that has been cut
v = b− a . This will be the normal of the line we cut with
if ‖v‖ ≤ 10−13 then

return Va . Safeguard for duplicate vertices.
else

m = 1
2 (a+ b) . Midpoint

return polycut(Va,
1
2 (a+ b),v) . Convex polygon cut

end if

(b) Vertex region cuts
leave no overlap be-
tween vertex regions.

Figure 3: Cutting a vertex region Va with the perpendicular bisector from another vertex b.

values are stored in the Voronoi cells.
We propose a similar approach to compute an approximate SDF to planar shapes with nonlinear parametric

boundaries by �rst approximating the boundaries by polylines and computing the exact SDF of the resulting
polygons. The cut locus can be trivially extracted from our representation by enumerating the boundaries of
the vertex and edge SDF regions.

3 VORONOI INTERPRETATION

Let us consider an arbitrary polygon, de�ned by its vertices vi ∈ E2, i = 1, . . . , N . Let

ei = {(1− t)vi + tvi+1 | t ∈ (0, 1)} ⊆ E2

denote the open line segments between vi and vi+1, where vN+1 = v1. Then the SDF of a polygon is
interpreted as the extension of Voronoi regions to line segments, that is, it consists of two types of sets: vertex

regions Vi and edge regions Ei. Let us denote the set of points that are closest to vi as:

Vi =
{
x ∈ E2 | ∀ j ∈ {1, . . . , N} : ‖x− vi‖ ≤ d(x, ej)

}
⊆ E2 .

where ‖x‖ = ‖x‖2 is the Euclidean norm and d(x, A) = inf
a∈A
‖x − a‖ denotes the point-set distance. We

cannot de�ne edge regions analogously since the distance to an endpoint is the same as to the edge. Thus,
we exclude the endpoint vertex regions:

Ei =
{
x ∈ E2 | ∀ j ∈ {1, . . . , N} : d(x, ei) ≤ d(x, ej)

}
\ (Vi ∪ Vi+1) ⊆ E2. (1)

Figure 1a depicts an edge region E1 of a triangle with the two neighboring vertex regions V1 and V2. Every
point in an edge region is strictly closer to its closest edge than to any vertex. There are always 2N regions
for a given polygon with N vertices: N vertex and N edge regions.

3.1 Vertex Regions

Vertex regions inherit the following important property from Voronoi regions that edge regions do not.

Proposition 1. For any n-dimensional ∅ 6= Q ⊆ En closed set, the vertex region generated by a p ∈ Q point

Vp =
{
x ∈ En | ‖x− p‖ ≤ d(x, Q)} ⊆ En

}
is convex.
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(a) Cutting parabola tangents are the dashed
green lines between vertex a and edge b1b2.

Algorithm 2 VertexRegion.EdgeCut

Input: a ∈ E2, Va a vertex and its polygonal region
b1, b2 ∈ E2 another edge.

Output: V ′a region that has been cut
if ‖a− b1‖ ≤ 10−13 or ‖a− b2‖ ≤ 10−13 then

return Va . If a ≈ b1 or a ≈ b2 then skip cutting
end if

for t = { 1
M , 2

M , . . . , 1− 1
M } do . Parabola tangents of Fig. 4a

n = b1 + t · (b2 − b1)− a . Points to dividend point
p = a+ 1

2n . A point of the parabola tangent
Va = polycut(Va,p,n) . Perform the current cut

end for

return Va

Figure 4: The bounding polygon of a vertex region is cut with an approximation of the parabolic cut-locus
between the vertex and another edge. Larger number of cuts (M −1) yields tighter convex bounding polygon.

Proof. Let us prove by contradiction. Assuming that Vp is concave means that

∃a, b ∈ Vp,∃ t ∈ (0, 1) : (1− t)a+ tb = x 6∈ Vp .

Therefore, to have ‖x − p‖ > d(x, Q) there must exist a q∗ ∈ Q point such that ‖x − p‖ > ‖x − q∗‖.
However,

a ∈ Vp =⇒ ‖a− p‖ ≤ d(a, Q) ≤ ‖a− q∗‖
b ∈ Vp =⇒ ‖b − p‖ ≤ d(b, Q) ≤ ‖b − q∗‖

Thus, even though both a and b are closer to p than to q∗, there exists some point x between them that is
closer to q∗ than to p. This is a contradiction, since the perpendicular bisector of pq∗ cannot intersect the
ab segment.

The borders of vertex region Vi are either straight segments or parabola segments with vi as a focus. This
is because the cut-locus, the equidistant set of points between two vertices, is the perpendicular bisector, as
depicted in Figure 3a. The cut-locus between a segment and a point is a 'winged parabola', consisting of a
parabola segment and two tangential rays that continue the parabola at both ends. The red line depicts this
winged parabola in Figure 4a and 5a. The ray segments are perpendicular bisectors between the generator
vertex of the vertex region and one of the segment endpoints. The parabola segment is de�ned by the
generator vertex as a focus, and the segment as its directrix. The borders between vertex Vi and edge Ej

regions are parabolas that curve around the vi focus point. These convex boundary parabola segments agree
with Proposition 1.

The distance function within a vertex region is just the distance to vi, e.g., f(x) = ‖x − vi‖, x ∈ Vi.
However, each vertex region lies entirely either inside or outside the polygon. Assuming that the vertex order
de�nes the inside partition properly, we have a signed distance function at each vertex as

fVi(x) = sgn
(
(vi+1 − vi)

TRπ
2
(vi − vi−1)

)
‖x− vi‖ x ∈ Vi , (2)

where Rπ
2
∈ R2×2 is the 90 degrees rotation matrix in the positive direction, and v0 = vN .
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(a) Cutting the edge region (cyan) of a1a2

with the green line bounds the red cut locus.

Algorithm 3 EdgeRegion.VertexCut

Input: a1,a2 ∈ E2, Ea an edge and its polygonal region
b ∈ E2 another vertex.

Output: E′a edge region that has been cut
na = Rπ

2
· [a2 − a1]0 . Normal vector. Rπ

2
is a 90◦ rotation

if nT
a (b− a1) ≤ 10−13 then
return Ea . Do nothing if a1,a2, b are colinear

end if

∀ i ∈ {1, 2} : ti =
‖b− ai‖2

2nT
a (b− ai)

. Parabola intersect

∀ i ∈ {1, 2} : pi = ai + ti · na . Calculate green cut-line
np = Rπ

2
· (p2 − p1) . Normal vector

if nT
p (p1 − a1) < 0 then
np = −np . Flip the normal if it is facing the wrong way

end if

return polycut(Ea,p1,np)

Figure 5: Cutting an edge region Ea with a parabola de�ned with directrix a1a1 and another vertex b. Since
the parabola is concave from the edge side, a single linear cut is performed.

3.2 Edge Regions

Like vertex regions, edge regions are bordered by line and parabola segments. However, unlike vertex regions,
edge regions can be concave; for example, in Figure 1b. This is, in part, because the cut-locus between an
edge and a vertex forms the same 'winged parabola', as before on Figure 4a and 5a, but the directrix edge is
on the concave side. The cut-locus between two edges consists of two parabola segments, a segment of the
angular bisector, and two rays on perpendicular bisectors at each pair of endpoints. Two such con�gurations
are visualized on Figure 6b and 6a.

For the signed distance function of an edge region, we need to project points within the Ei region onto
the edge normal vector:

fEi(x) = (x− vi)
TRπ

2
[vi+1 − vi]0 x ∈ Ei , (3)

where [x]0 = x
‖x‖ denotes vector normalization. This SDF is linear, and splits all Ei into inside and outside

partitions along the vivi+1 edge. By convention, we consider the negative partition to be the inside, which is
achieved by clockwise enumeration of vi polygon vertices.

3.3 SDF of a Polygon

The vertex and edge regions together cover all of E2, that is

N⋃
i=1

Ei ∪ Vi = E2
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(a) The projections of b1 and b2 onto a1a2 lie within the
segment, so p1 and p2 are parabola intersections.

(b) Projection of b2 onto a1a2 lies outside of the segment,
so p2 is the intersection on the angular bisector.

Figure 6: Two cases for cutting edge regions for a1a2 with the cut-locus (red) from another edge b1b2. In
each case, we calculate the p1 and p2 positions de�ning the line (green) to cut the edge region with (cyan).

The intersection of any two regions, Vi∩Vj , Vi∩Ej , or Ei∩Ej produce a set of cut-loci, each a zero-measure
set. Now with Eq. 2 and 3, we can formulate the exact signed distance function of the whole polygon on E2:

f(x) =

 si · ‖x− vi‖ if x ∈ Vi

xTni − vT
i ni if x ∈ Ei

x ∈ E2

where ni = Rπ
2
[vi+1 − vi]0 is the unit normal of edge vi,vi+1 and si = sgn

(
(vi+1 − vi)

TRπ
2
(vi − vi−1)

)
the sign of the vertex region.

4 POLYGONIAL REGION BOUNDS

Our algorithm considers each possible pair of polygon entities, that is, combinations of vertices and edges, and
gradually computes bounds to their Voronoi regions. This section gives an overview of the bounding region
generation method, while Section 4.1 and 4.2 detail the algorithms for the various region cutting cases.

First, our method constructs the initial polygonal regions for all vertices and edges of the polygon. The
vertex (Fig. 2a) and edge (Fig. 2b) regions are bounded by two half-planes that are perpendicular to the
adjacent edges and the edge, respectively. We bound the in�nite regions with a sizeable axis-aligned box.
Within this box, exact SDF queries may be performed.

Second, we perform a series of planar cuts to reduce the region sizes to approximate the true one as close
as possible. Figure 2c depicts the overlapping edge regions after the planar cuts. Note that we need not only
intersect the regions of the two current entities; we also have to factor in the cut locus between them and
consider how it splits and overlaps to form our convex polygonal bounds. Figure 2b illustrates the vertex-vertex,
and Figure 7 visualizes vertex-edge, and edge-edge cases. Our algorithm is summarized as follows:
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(a) Vertex region is cut with 5 lines approximating the
parabola between it and the edge. The edge region is cut
with a single line containing the whole parabola segment
above the vertex.

(b) Edge regions usually have concave parabolic borders
that we bound with a single cut. There are quite a few
cases depending on the relative position of the segments
that we had to consider.

Figure 7: We cut regions that are close to each other with bounding lines to retain the convexity of the
polygonal regions. The vertex � edge (a) and edge � edge (b) cuts usually produce small overlaps that our
rendering algorithm can handle.

1. Process input by splitting polygons into boundary components and interior holes. Outer boundaries are
processed counterclockwise; hole boundaries are enumerated clockwise to generate correct SDF signs.

2. Initialize each region with its vertex or edge data to reconstruct the distance values, and add two
perpendicular cuts using neighbors, see Figure 2.

3. For each pair of regions within each polygon and between neighboring polygons, perform a planar cut,
as in Figure 7. The following section explains each type of intersection.

After the bounding region generation, the triangulated regions may be stored or rasterized to produce an
exact signed distance �eld quickly. Although the bounding regions overlap, i.e., the regions do not cover the
plane uniquely, the true SDF at any point may still be obtained by evaluating a small number of overlapping
regions and using the minimum value.

4.1 Vertex Region Cuts

First, the region polygon starts as a su�ciently large origin-centered axis-aligned box. These large boxes are
cut with the perpendicular lines of the adjoining edges going through this point, resulting in regions shown in
Figure 2a. Each vertex region is initialized with its sign and its vertex position to represent the signed distance
function on the region.

Second, each vertex region is cut with the cut locus formed with every other region according to Algorithm 1.
This means that between vertex regions, we can perform exact cuts because the cut locus between two points
is the perpendicular bisector (see Fig. 3a). If the input contained no edges, the algorithm would produce the
Voronoi diagram without overlaps between the regions.

Finally, the vertex regions are cut with every other edge in Algorithm 2. Even though the vertex regions
remain convex (see Proposition 1), the cut-locus between will be parabolic. Hence, we can cut with M−1 ∈ N
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Figure 8: Cutting with Delaunay neighbours (green) allows generating vertex and edge regions for large inputs.

number of parabola tangents for producing a bounding polygon. Tangents of the parabola segment de�ned by
a focus point and b1b2 directrix segment can be constructed by taking any x ∈ b1b2 point on the segment.
The tangent is the perpendicular bisector between the x and a (see Fig. 4a).

Note that in Algorithm 2, we do not cut tangents corresponding to endpoints. This is because Algorithm 1
performs the same cuts, and we found that cutting a polygon with the same line twice can result in numerical
issues. We could cut with only one endpoint in Algorithm 2, but lose out on the generality of our method.

The signed distance function of the region is stored in two scalars containing the generating vertex of the
region along with the sign of the distance values. Then, the triangulated polygon of the vertex region is stored.

4.2 Edge Region Cuts

Edge region bounds are also initialized to a large axis-aligned box which are then cut along the edge normal
from both endpoints. An initialized edge looks like the one in Figure 2b.

Then, edge regions are cut with every vertex region with Algorithm 3. The algorithm computes the cut-
locus parabola intersections p1 and p2 (see Figure 5a) and cuts the edge region bounding polygon with the line
through these. Although this expands the regions and can create signi�cant overlaps (see Fig. 7a), it simpli�es
the algorithm as we only consider linear and convex boundaries. The p1 and p2 parabola intersections with
the perpendicular lines from a1 and a2 are obtained by intersecting the orthogonal lines at each endpoint with
the perpendicular bisectors of ba1 and ba2, respectively.

Lastly, our algorithm cuts each edge region boundary polygon with the cut-locus between it and every
other edge in Algorithm 4. The algorithm constructs a single bounding cut between p1 and p2 that contains
the cut locus between the orthogonal lines at a1a2 endpoints. Figure 6 depicts two construction cases out of
many, such as when the edges are connecting at an endpoint or when they are parallel. These geometric cases
are applied in the computation of both endpoints to apply the cut. The method sometimes produces overlaps
between regions, as in Figure 7b.

Along with the triangulated edge border polygon, the SDF of the region is stored in three scalars: a
unit-length normal and constant scalar term.
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Algorithm 4 EdgeRegion.EdgeCut

Input: a1,a2 ∈ E2, Ea an edge and its polygonal region; b1, b2 ∈ E2 another edge.

Output: E′a edge region that has been cut

∀ i ∈ {1, 2} : di =
(bi − a1)T (a2 − a1)

‖a2 − a1‖2
. Projection, such that (1− di)a1 + dia2 − bi ‖ na

if d2 < d1 or d2 < 0 or 1 < d1 then . Check if input is reversed, or only intersects with one parabola

return Ea . Reverse input is omitted; parabolic cut is handled by Algorithm 3

end if

na = Rπ
2
· [a2 − a1]0, nb = Rπ

2
· [b2 − b1]0 . Unit-length perpendicular vectors

for i ∈ {1, 2} do . For each of the two endpoints, there are four possibilities

if 0 ≤ di ≤ 1 then . If the bi is between a1a1, the intersection is parabolic

if ‖ai − bi‖ ≤ 10−13 then

ti = 0 . If ai ≈ bi, then we cut through ai

else

ti =
‖bi − ai‖2

2nT
a (bi − ai)

. Parabola with focus bi directrix a1a2 intersects at ai + tina

end if

else . bi is not above a1a2 , we must cut with a line

if
∣∣∣nT

b (a2 − a1)
∣∣∣ ≤ 10−13 then

ti =
1
2
nT

a (bi − ai) . If the lines are parallel, stop halfway between ai and bi
else

ti =
nT

b (bi − ai)

1 + nT
a nb

. Angular bisector intersection solving nT
b (bi−ai−tina) = ti

end if

end if

pi = ai + tina . Calculate endpoint of the new convex cut

end for

np = Rπ
2
· [p2 − p1]0 . Normal vector of the new cut

if nT
p (p2 − a1) < 0 or nT

p (p1 − a2) < 0 then

np = −np; . Must �ip normal if it is facing the wrong way

end if

return polycut(Eb,p1,np) . Execute edge region convex boundary cut

5 OPTIMIZATION

This paper ultimately presents two algorithms: one for generating Voronoi-like regions for polygons and another
for e�ciently rasterizing such regions to produce detailed signed distance �elds.

Constructing 2N number of convex regions with each potentially having any number of vertices can be
computationally expensive, especially if each region is cut with every other. For a more extensive polygonal,
the

(
2N
2

)
number of polygon cuts is unacceptable. For this reason, employing a spatial acceleration structure

may be required, such as a regular grid, quadtree, or KD-tree. Note that it is not essential to cut with every
other region because if we omit distant cuts, it most likely does not a�ect the �nal region shape. Even if
omitting cuts results in a slightly larger bounding region at the end, the SDF rasterizing application can handle
the occasional extra workload.

Delaunay triangulation For the aforementioned acceleration, we settled on a cutting with neighbors in a
constrained Delaunay triangulation. We construct a Delaunay triangulation of all the vertices inside the input
polygons and require the triangulation to contain the original polygon edges. We cut with neighboring vertices
for each vertex region within the triangulation and all edges that connect to those neighbors. We employ the
same strategy for the edge regions: we intersect with every vertex that neighbors one of its endpoints and all
connecting edges. Delaunay triangulation construction runs in O(N log(N)) time and prepares an index pair
list for region cutting.
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Figure 9: The oversized vertex regions of
the red vertices are not cut with the red
edge in the Delaunay triangulation, but the
Z-bu�er algorithm hides such artifacts.

Figure 10: Region boundary overlaps are resolved in the third
dimension (top), this allows fast exact SDF rasterization (bottom)
via the Z-bu�er. The ratio of overlaps is typically small. The
performance is only limited by the GPU �ll rate.

Creating the triangulation is always cheap compared to the region cutting algorithm, where in each step, a
convex polygon is cut with a line. We found that the dynamic nature of the Delaunay neighbors gave almost
consistently the neighboring regions, but not always as illustrated in Figure 9. The red vertices on the letter
S do not have any endpoint of the red edge as a neighbor in the triangulation, that vertex region is not cut
with the letter I. However, this is not an issue since the regions are bounding polygons, and such missing cuts
can only lead to reduced performance when rendering the SDF. The occurrence of missing cuts is infrequent;
we found the issue by chance in the long text on Figure 8.

Cutting an N -sided polygon can be done in O(log(N)) steps [15]; however, such a divide and conquer
algorithm would be slow since most regions will only have a few sides. Thus, we opted for a simpler linear
algorithm polygon cutting algorithm that we optimized in Matlab.

SDF Rasterization The region generation outputs triangulated polygons that we can render using the
graphics pipeline on the GPU. For each pixel-sized fragment, we set the depth value to that of the distance
function. Since some bounding regions overlap, the Z-bu�er algorithm will decide which edge or vertex is
closer for each pixel. Note that the distance functions of the edge regions in Eq. 3 are linear, we can set the
z coordinate or depth value of the region vertices to

∣∣fEi(x)∣∣ and let the GPU interpolate between. However,
the SDF of the vertex regions are non-linear, so each pixel-sized fragment depth value must be adjusted in the
shader code to

∣∣fVi(x)∣∣ from Eq. 2. We implemented a proof-of-concept SDF rasterizer in the NVIDIA Falcor
framework [10].

6 TEST RESULTS

Table 1 summarizes SDF region generation times for TrueType font glyphs with Delaunay optimization using
our Matlab implementation. A Matlab render of the Lorem text is shown in Figure 8, and a high-performance
rasterization-based render of the bunny, deer, and tiger glyphs is shown in Figure 11. All measurements were
carried out on a Ryzen 5 1600X CPU with 32GB memory. The top row of the table shows how many line
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Figure 11: Real-time rasterization of the bunny (left), deer (center), and tiger (right) glyphs.

1 line segment 2 line segments 3 line segments 4 line segments

#tris runtime overlap #tris runtime overlap #tris runtime overlap #tris runtime overlap

Bunny 583 0.08s 0.84% 1117 0.16s 0.28% 1665 0.22s 0.18% 2208 0.18s 0.15%

Tiger 858 0.12s 0.68% 1684 0.23s 0.26% 2495 0.35s 0.16% 3303 0.28s 0.12%

Deer 1412 0.21s 1.06% 2740 0.41s 0.44% 4109 0.59s 0.30% 5411 0.49s 0.24%

Lorem 24257 11.77s 6.99% 39153 19.12s 7.18% 54273 25.03s 7.28% 69634 26.30s 7.39%

Table 1: Vertex and edge region bound number of triangles, generation times, and overlap ratios for the four
animals from Fig. 11 and text in Fig. 8. The Bézier curves in the glyph input are divided into 1 to 4 segments.

segments were used to approximate the Bézier segments in the glyphs. For each discretization count between
1 and 4, we display the number of generated triangles (#tris), the SDF generation time in seconds (runtime),
and the percentage of the multiply covered areas.

As the number of line segments increases, the redundancy ratio decreases. The ratio is generally higher
for text and smaller for �gures because text tends to have long line segments with region bounds overlapping
with more regions. On the other hand, our algorithm creates bounding regions with minimal overlaps under
uniform curve recti�cation. For example, vertex and edge regions of regular polygons do not overlap.

We compared the Delaunay optimization to the brute force approach with
(
2N
2

)
polygon cuts. On average,

the Delaunay neighbor approach was 6.11 times faster and up to 24.7 times faster for the deer glyph. For longer
inputs, like the Lorem text, the brute force approach did not �nish in a reasonable time frame. However, since
the brute force method considers every intersection, we compared the overlap ratio to that of the Delaunay
optimized version. The worst case among 60 test glyphs was the single letter S, which increased from the
1.2% brute force overlap ratio to the 2.1% overlap ratio, an 89% increase, but the overlap was still small.
Moreover, the median ratio increase was only 1.3% from brute force to Delaunay neighbors.

We benchmarked our GPU implementation by rasterizing the SDF region triangulations of glyphs. We
positioned each such that they covered the entire screen at 1920 × 1080 resolution. Render times on an
NVIDIA 2080 were 0.06 milliseconds for all test glyphs except for the Lorem text shown in Figure 8. With
various Bézier recti�cation levels on the Lorem text, we con�rmed that render times are proportional to the
total number of triangles. Increasing the number of Bézier line divisions to four increased render time from
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0.06 to 0.22 milliseconds on the NVIDIA 2080 GPU. On an AMD Radeon RX 5700 GPU, as we increased the
recti�cation level from one to four, the render time increased from 0.12 to 0.32 milliseconds.

7 CONCLUSIONS

We presented an algorithm to compute the exact SDF of polygonal shapes, including polygons with holes.
The runtime of the initial Matlab implementation made it viable as a proxy for computing an SDF partitioning
of shapes bounded by parametric curves, such as the ones found in TrueType fonts. We demonstrated that
GPU accelerated rasterization could e�ciently render the conservative SDF region bounds in real-time.

The generated SDF regions suggest that expanding the current solution by incorporating circular regions,
i.e., by the SDF of a circle, we could make this representation more concise for fonts and other shapes and
o�sets of polygons. Merging regions to generate approximate SDF regions within the error threshold, expanding
it to set-theoretic operations, and optimized generation using bounding volumes or space partitioning is subject
to future research.
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