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Abstract. Finite element (FE) analysis model results are rich in information beyond 
their calculated maximum or minimum values. Regional information and patterns 

can provide additional insights, and in the additive manufacturing (AM) domain, 

this information provides essential knowledge. AM processes are relatively new and 
predicting quality and performance characteristics are critical. The goal of this 
research is to develop tools and strategies to interpret the results data 
comprehensively. Robust comparison methods to assess different build strategies 
on the resulting properties for a component are essential for evaluating process 
planning strategies. Results for residual and von Mises stresses are evaluated using 

different metrics. For curves, the nearest neighbor and Hausdorff distances are 
determined along with a repurposed Kolmogorov-Smirnov test. A logic test related 
to offset curves and a user defined range is introduced. To extract pattern data, the 
FE images are converted from RGB data into point cloud data using Rhino® and 
Grasshopper® / VBA tools. The stress levels are binned into z height categories. 
These points are imported to Excel. Graphs to explore variations between different 

configurations are readily automated. CAD tools are leveraged to characteristics for 

selected stress regions. Using image conversion strategies along with CAD tools 
allows for more in-depth quantified post processing assessments. Although the 
image conversion strategy has potential, the RGB colors vary within an image, so 
the conversion from RGB pixel data to valid points is approximately 85% unless 
manual tuning is performed. It is proposed to use AI tools such as a convolution 
neural network to reinterpret the noisy regions.    
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1 INTRODUCTION 

Finite element (FE) analysis methods are utilized extensively to explore behaviors of a component 
or system that cannot be effectively assessed using analytical or experimental approaches. 
Multiple components, dissimilar materials, complex geometry, and local effects can be included in 

the model. There is much research related to creating mesh models [6, 7, 21] and strategies to 
reduce computation time [4, 7, 10, 17]; however, typically, the post-processing analysis of the 
simulation results tends to focus on identifying maximum and minimum values for the selected 
mechanical and physical properties in specific regions, not on the intermediate regions or the 
resulting patterns that occur. There is much data that is not being evaluated, which can provide 
insights [15]. The goal of this research is to develop tools and strategies to interpret the result 
data in a structured manner beyond determining maximum and minimum points or querying the 

properties at specific nodes. The research domain for this paper is in additive manufacturing (AM).  

AM layer-based fabrication techniques relatively new and have been developed for several 
technologies and systems. The metal powder bed processes (e.g., Powder Bed Fusion (PBF) [26]) 
and the directed energy deposition (DED) processes [2] have different configurations and 
boundary conditions; however, components fabricated by these processes undergo discrete 
heating and cooling cycles due to the side-by-side scan paths or deposition tool paths. Robust 

comparison methods to assess the influence of different build strategies on the resulting 
mechanical and physical properties of a component is essential for evaluating process planning 
strategies as well as predicting quality and performance characteristics. For both the PBF and DED 
AM processes, in-process related information is being captured and evaluated as well as the final 
results. Consequently, a more comprehensive and quantifiable strategy for comparing build 
scenario results that assesses the results and the pattern variations between different simulation 
scenarios needs to be developed.  

This research explores curve comparison methods to evaluate localized stress characteristics 
as well as selected shape and pattern comparisons for different build scenarios. SYSWELD [23] is 
utilized to generate the FE simulation results. Models calibrated from experimental data have been 
developed for several DED build scenarios. This includes predicting the hardness and residual 
stress characteristics for single beads [15], comparing the distortion, hardness, and/or residual 
stresses for different travel path strategies [13, 19], revaluating the order of operations for 
junctions [14], and a thin-walled dome [10].  The case studies for this work are illustrated in Fig. 1 

to 3. These are extensions of previous research studies.  Curves and images for residual and von 
Mises stress results that highlight the merits of different approaches are evaluated and compared.  

 

(a)  (b)  (c)  
 
Figure 1: (a) A DED bead set and the deposition order, radiating out from the junction, (b) the FE 
simulation results for the plate top for the xx residual stresses, and (c) CAD model with layers at 

different z heights which correspond to a xx residual stress range, and points for each color-region.   
 

 

 
 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 20(5), 2023, 898-922 

© 2023 CAD Solutions, LLC, http://www.cad-journal.net 
 

900 

(a)  

(b)           

(c) H1 H2  H3  

(d)                                

Figure 2: (a) and (b) A hexagon case study, illustrating the reference positions where the 
images are collected. Note: The Layer 1 top view includes data related to the top of the beads, 
(c) the three deposition scenarios, and (d) a comparison of the XX residual stresses for the H1 

layers 2 and 3 using the GIMP [9] grain extract feature (the red tones represent Layer 2). The 
shifting residual stress regions between the two layers is noted.  

2 BACKGROUND 

2.1 Curve Comparisons 

The challenge related to comparing curves is not new. As recognized by Alt and Godau [1], 

developing a metric to determine how curves “resemble each other” is a common problem. They 
explore using the Hausdorff distance and the Fréchet distance. The Hausdorff distance measures 

how far two subsets of a metric space are to each other. It is the greatest of all the distances from 
a point in one set to the closest point in the other set. It is defined as: 
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(a)  

(b)  

Figure 3: (a) Bead segment with variations in the maximum and minimum YY residual stress 
values, and (b) the residual stress curves. 
 

 

(2.1) 

 

Where  X and Y are two non-empty subsets of a metric space (M, d),  
sup represents the supremum and inf represents the infimum, and  
dH is the Hausdorff distance. 

 
The Fréchet distance considers both the points on the curve and the course of the curve. From Alt 

and Godau: “Suppose a man is walking his dog, he is walking on the once curve the dog on the 
other. Both are allowed to control their speed but are not allowed to go backwards. Then the 

Fréchet distance of the curves is the minimal length of a leash that is necessary.” 

 

 

Figure 4: Hausdorff distance. 
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The two concepts complement each other: the Hausdorff distance is a ‘maximum-minimum 
distance’ and the Fréchet distance is a ‘minimum-maximum’ distance. The discrete Fréchet 
distance is computed when comparing point lists (Fig. 5 (a)). The endpoints ‘of the leash’ are 
located at the vertices of the curve. For the complete sets of points, the Fréchet distance equals 

the Hausdorff distance [5]. The Fréchet distance may be an important metric for cartography or 
character recognition, but not for this research. Here, the Hausdorff distance and the nearest 
neighbor distance (NN), the minimum distance between two curves, is utilized (Fig. 5). It is clear 
that the NN distance cannot be assumed to be the minimum Δy value.  

 

(a)    (b)  

Figure 5: (a) The Fréchet distance, and (b) Δy distance calculated for each x point compared to 
the nearest neighbor. 

 
Another approach to consider is comparing cumulative sums, and then calculating the maximum 
distance between those curves. The smaller the dissimilarity, the more the curves are similar. This 

is a simplified version of the Kolmogorov-Smirnov (K-S) test used to compare a sample’s 
distribution to a reference probability distribution. The cumulative sum is defined by [22]: 

 

 (2.2) 

 (2.3) 

 

(2.4) 

Where  x is an array of data points 
y is an array of cumulative sums, and  
i is an index, and N is the maximum number of values to be considered. 

At each point i the difference between the cumulative sums for the reference curve and the curve 

are calculated, and this list of difference values is evaluated. Cumulative sum curves are illustrated 
in Fig. 6. Although concerns have been raised with respect to signed distances for evaluating 
statistical distributions [8], the focus is not on determining the nature of a random sample and its 
statistical distribution in this work, so this is not a factor to be considered.  

To summarize, these curve assessment tools provide a discrete distance value, which provide a 
basis for relative comparisons between curve sets, but an absolute assessment method to evaluate 
curve pairs should be developed. When performing statistical analyses, tolerance intervals allow 

for sample set data to be evaluated for a confidence level. A variant of this approach has been 
utilized to assess relative errors when the true value is zero (and example is shown in Fig. 7), and 
has eliminated distortion issues [19].  Therefore, the Hausdorff distance, NN, modified K-S test, 
and a novel ‘tolerance interval’ inspired approach, based on offset curves, are derived and the 

results compared.   
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Figure 6: (a) Distributions that have different locations, and (b) distributions that have different 
variances, adapted from [8], however, for this work, the maximum distance between the curves 
is being determined. 

 

2.2 Shape or Pattern Analyses 

There are identifiable patterns that are generated as results for an FE simulation. Pattern analysis 
or similarity measures should be introduced to quantify characteristics or provide baseline 
classification information for a given result set to allow researchers to compare results 

systematically. Data extraction from images must be performed prior to shape or pattern analyses. 

2.2.1 Data Extraction 

There are many tools available to convert greyscale image data into a point cloud data set, a 
mesh, or a surface, where the x, y values correspond to the pixel positions, and the z height is 
related to the grey scale value. Utilities within Rhino®, and other software packages typically 

utilized for design and manufacturing (i.e., Mastercam®) have this ability. The issue with this grey 
scale mapping is that distinct colors may transform into very similar grey scale values (Fig. 8(b)). 
Therefore, distinct regions (here the residual and von Mises stresses) cannot be automatically 
classified in a controlled and repeatable manner. Consequently, in previous related research, 
Urbanic et al. [25] developed semi-automatic methods to convert image data into geometry where 
the z coordinate corresponded to a specific stress value, which in turn could be exported as a .txt 

or .csv file. 

This is a standardized platform-independent method for generating data sets from FE 
simulation results. An example is presented in Fig. 9. for three parallel beads deposited using 

different process settings, and Fig. 10 for a three-bead junction scenario. 

Although this approach provides data classifications that lends itself to additional data 
analyses, as shown by the Excel conditional formatting representation of the images, this semi-
automatic methodology is problematic for collecting data for complex patterns, such those for the 

von Mises stresses shown in Fig. 8 (a). It can be seen that there are several complex curves that 
collapse or intertwine (Fig. 11 (a) and (b)). Consequently, there are problems with boundary curve 
generation and extruding operations.  It is proposed to exploit image manipulation tools, where 
classifications are defined for the distinct colors identified in the FEA results legend (Fig. 8 (a)) and 
developing a targeted image sampling strategy. In lieu of developing z height due to grey scale 
values (Fig. 8 (b)), the z height values will be assigned by an RGB-stress levels classification 
strategy. 
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Figure 7: A comparison of the FEA solution to the experimental residual stress data, where 
five of six evaluation points are within the experimental upper and lower bounds [19]. A point 
near zero is enclosed with a dashed ellipse. The outside point is enclosed with a solid ellipse.  

 

(a)  (b)  

Figure 8: The von Mises stress patterns for the model shown in Fig. 10, where (a) is stress 
pattern at the top of the plate, (b) the grey scale representation. 

2.2.2 Shape Recognition Background 

There has been much research on shape recognition and human perceptions of shape similarities 
between objects [12, 16, 18]. This includes assessing scale changes, translations, and rotations. 
Shape similarity measurements are usually used for shape matching and indexing for databases, 
transmitting geospatial data [24], and for psychological cognition [16]. To search for similarity 
between polygons, Kaplan et al. [11] analyze the line segment lengths and the angle between 
segments via turning functions, which is an interesting approach; however, it is a localized 

approach. Much research has been done with respect to shape recognition, but at this time, there 
appears to be no tools for quantified FE result comparisons.  
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Powder feed rate (g/min)  20 

Laser power (KW)  2.5 

Focal length of lens (mm)  400 

Laser speed (mm/s)  10 
 

 

(a) 

 

(b) 

 

Powder feed rate (g/min)  20 

Laser power (KW)  2 

Focal length of lens (mm)  400 

Laser speed (mm/s)  12 
 

(c) 

 

(d) 

 

No direct comparison 

(e) 

 
 

Figure 9: (a) & (c) Residual stress results for 40% overlap for the presented process setting (b & 
(d), the heat map, and (e), the difference map for the two FE simulations, adapted from [25]. 

  

(a)  (b)  

Figure 10: (a) The original results for the FE model [14] (radiate into the junction case), (b) an 
Excel representation of the data points using conditional formatting to illustrate the different z 
heights-stress values. 

 

The extracted point cloud data sets allow for direct comparisons between build scenarios to be 
performed from multiple perspectives. Analyzing the data samples using basic difference 
evaluations and statistical tools on the global data set can provide global and local information. In 
Fig. 9 (e), a difference map is illustrated showing regions where the residual stress levels are 

higher or lower between the three bead build configurations. A graph enumerating the cells and 
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the resulting the stress level quantities for each stress level bin is shown in Fig. 12 for two build 
scenarios.  
 

(a)  (b)  

Figure 11: The von Mises stress pattern boundary curves using GIMP for the model shown in Fig. 
10, where (a) illustrates the complete results and (b) illustrates an expansion of the centre bead 
showing complex overlapping regions.  

 
  

 

Figure 12: Residual stress bins data for the two simulation scenarios presented in Fig. 9. Note 
that the build conditions in Fig. 9 (a) have less compressive stress cells (503 vs 534) and more 
high tensile stress cells (4 vs 0). 

 

Manipulating the FE model-based point cloud data provides unique opportunities. Employing CAD 
and Excel tools enable the patterns and shapes derived from the FE simulations to be quantified 
for absolute and localized regions. Unlike shape similarity assessment strategies used for object 
localization [16], algorithms to match and recognize 2D objects [3], or strategies to analyze cell 
populations [20], at this time the user is to define the regions of interest for analysis, and the 
baseline shape sets for comparisons, as described in the next section.  
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3 METHODOLOGY 

3.1 Curve Analysis 

To analyze and compare curve sets, a combination of statistical and geometric analyses is 
conducted. Basic statistical analyses are utilized to determine the average, minimum, and 
maximum values, and the ranges for each curve being considered. The nearest neighbor (NN), 
Hausdorff, and the Kolmogorov-Smirnov (K-S) test distances are determined between curve sets 
using Excel functions. This provides the minimum and maximum distance data between a 
reference curve and the ones being compared from different perspectives.  

To develop a measure of closeness based on the complete curve data, an offset curve capture 
(OCC) logic test is developed. For the reference curve, offset curves are derived using standard 
CAD functions. The offset values are determined as a percentage of the range. An ‘In-Out’ TRUE-

FALSE logic test is performed for each point on the comparison curve, and the percentage of the 
‘TRUE’ data points is calculated.   

Parametrized curve sets are explored, as a parametric representation will be insensitive to 
scaling and curve shifts. The curves are parametrized between [0, 1] as presented in eqn. 3.1:  

 

 

(3.1) 

Where  x is a value to be parametrized, and i is an index 

Xmax is the largest number,  

Xmin is the smallest number of the data set to be parametrized, and 

X_parmi is the parametrized value, between 0 and 1 

3.2 Point Cloud Data Extraction 

Point cloud data extraction cannot be performed directly from an image as conventional topology 
creation solutions in Rhino© (or other image to CAD conversion software tools) utilize grey scale 
(or one-color channel) data. Therefore, Rhino© with Grasshopper© is utilized along with VB scripts 
to analyze an image and transform the image red (R), green (G), and blue (B) color values into 3D 
point clouds, where the x, y values are positions on the image, and the z value is related to a color 

that is associated with a displayed stress level. Using Rhino© + Grasshopper© tools, data is 
manipulated or isolated to allow for subsequent downstream analyses. The process flow and tools 
are presented in Fig. 13 and are summarized as follows.   

• In any image software (i.e., GIMP), analyze select pixel data for each color region to 
determine RGB color values. The average values and a range need to be determined. 

Associate the RGB values with the stress level classifications.  
• In Grasshopper:  

o Create a grid of data points. 
o Analyze the image and transform the RGB data for each grid point into the desired 

classification value. 
o Construct a 3D point cloud where the z value corresponds to a specific stress 

classification value. 
• In Rhino®: 

o Create curves for filtering / isolating key regions.  
• In Grasshopper: 

o Filter the data, and / or 
o Perform image difference operations. 
o Output x,y,z data into Excel or other data analysis tools.  
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Figure 13: Image to geometry transformation process flow. 

3.3 Pattern Analysis 

The shape and pattern analyses are conducted from two different approaches. The first approach 
consists of using the point cloud data within Excel to isolate and evaluate regions. Surface graphs 
with conditional formatting are used for illustrations. Global and local comparisons are conducted 
via Excel logic, mathematical, and statistical functions, and are graphed. Standard templates are 

created to facilitate the assessments of different build scenarios, the observed asymmetry of stress 
patterns within a sample, and the stress variations at different depths. Sample templates are 
presented in Fig. 14, where selected classification values can be extracted across the complete 
data set (Fig. 14 (a)), for isolated regions (Fig. 14 (b)), or for filtered data (Fig. 14 (c)).  

Rhino® CAD tools and Grasshopper® are utilized for the second approach. Shape analyses 
based on geometric descriptors such as the contour perimeter, the area, and the centroid positions 

are performed. Complementing the curve analysis approaches, for sets of shapes overlayed on 
each other, the Hausdorff distances, the intersection (⋂) and union (∪) areas, and the percentage 

of the intersection area compared to the union are analyzed. Understanding the shifts in centroid 

positions, and size variations for the residual stress patterns from one layer to another or one 
deposition scenario to another may provide insights for predictive modeling. 

4 RESULTS 

Investigations with respect to reframing the simulation strategy for multi-layer scenarios are being 
conducted. Selected residual stress curve comparisons to evaluate the influence of the tool path 
and the order of operations is presented as well as the influence of different modeling strategies. 
When reducing the AM simulation problem space, rigorously assessing the goodness of a different 
modeling configuration is required. 
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(a)  (b)  ((c)  

(d)  

Figure 14: (a) Absolute data set counts for each classification (b) targeted data set counts for the 
‘green’ classification, (c) filtered data illustrating targeted classifications, and (d) illustrates a 
stress difference map comparing two build scenarios (H1 and H2).  

4.1 Curve Analyses Results 

In Fig. 15, section A-B for the XX residual stresses is presented for the case studies shown in Fig. 
2 (c), where different deposition strategies are employed.  The average values for the H1, H2, and 
H3 residual stress configurations are -605, -558, and -534 MPa respectively. There are regions 
where the H2 results are closer to the H3 results, and where the H2 results are closer to the H1 
curve (Fig. 15 (b)). The NN distance and the K-S test (Fig. 15 (d)) values presented in Table 1 
clearly show that H2 is closer to H3, but the smallest Hausdorff difference is between curves H2 
and H1. The difference between evaluating the Δy values versus the NN distance is also shown. 

The minimum distance evaluation depends on the metric being employed. 

 

Minimum Δy values (MPa) 

Distance 
H2-H3 

Distance 
H2-H1 

Distance 
H3-H1 

2.4 18.7 11.0 
 

Hausdorff distance (Δy values) (MPa) 

Distance 
H2-H3 

Distance 
H2-H1 

Distance 
H3-H1 

94.6 72.2 114.5 
 

Nearest neighbor distance (MPa) 
NN 

Distance 
H2-H3 

NN  

Distance 
H2-H1 

NN 

Distance 
H3-H1 

1.0 1.4 1.3 
 

K-S test results (MPa) 
Difference 

H2-H3 

Difference  

H2-H1 

Difference  

H3-H1 

581.8 1097.1 1633.1 
 

Table 1: A summary of the similarity evaluation distances for the XX residual stresses. 
 

For the YY stress curves illustrated in Fig. 3, the metrics are summarized in Table 2. As the curves 
cross, the minimum and NN distance values should be zero, but are not as discrete points are 
being evaluated. For this case, the H2 and H1 stress curves are closest based on the Hausdorff and 
K-S test results.  
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Minimum Δy values (MPa) 
Distance 

H2-H3 

Distance 

H2-H1 

Distance 

H3-H1 

0.1 0.8 0.1 
 

Hausdorff distance (Δy values) (MPa) 
Distance 
H2-H3 

Distance 
H2-H1 

Distance 
H3-H1 

350.3 217.2 297.8 
 

Nearest neighbor distance (MPa) 
NN 

Distance 
H2-H3 

NN 
Distance 
H2-H1 

NN 
Distance 
H3-H1 

0.1 0.8 0.1 
 

K-S test results (MPa) 
Difference 

H2-H3 
Difference  

H2-H1 
Difference  

H3-H1 

6097 2361 3998 
 

 

Table 2: A summary of the similarity evaluation distances for the YY residual stresses for Fig. 
3. 

 

(a)  (b)  

(c)  (d)  

Figure 15: (a) A-B curves on top of the bead are represented, where (b) is the XX residual stress 
data, (c) are the difference curves, and (d) is the cumulative sum for each difference data set.  

 
Instead of using a transient moving heat source, an imposed thermal cycle can be introduced [23]. 
This can reduce the computation time significantly. Although the transient and imposed thermal 
cycle stress curves in Fig. 16 (b) appear to be close visually, this must be validated. The data is 
trimmed at the beginning and end of the von Mises stress curve data sets to eliminate the 
mathematical transient conditions. The calculated values for the two data sets are summarized in 
Table 3.  The averages of the two curves are very close, with only 2 MPa as the difference, but the 

Hausdorff value (@ 142 mm position) is 186 MPa. The curves cross, so the NN non-zero values are 
due to the discrete data lists. The results in Table 3 are difficult to contextualize as there are only 
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two curves. When offsetting the transient curve by 10% (Fig. 16 (d), 82% of the imposed thermal 
cycle data is within this bounded region. When changing the offset to 15%, this increases to 90%, 
but a 5% offset reduces this value to 29%. Although the average values of these two data sets is 
close, the OCC percentage results show that there is variability between the two curves. However, 

based on these assessments, it can be quantitatively stated that the results for the two modeling 
strategies produce similar von Mises stress results.  

 

(a)

 

(b)

 

(c)

 

(d)

 

Figure 16: (a) The segment being evaluated with the trimming reference lines, (b) the von Mises 
stresses, (c) the cumulative sum differnce curve, and (d) the offset curves. 

 

Parameter (Trimmed) Value (MPa) 

Average Trans 345 

Average Imposed 343 

Min ΔY Distance 0.75 

NN Distance 0.60 

Hausdorff Distance 186 

K-S Max Distance (Fig. 16 (c)) 2927 

 
Table 3: Parameter summary for assessing the difference between the transient and imposed 

thermal cycle von Mises stresses.  
For multi-layer build scenarios, heat is accumulated. A question on whether a pre-heat scenario 

could be similar to that of a deposition-based simulation model is explored.  For the H3 
configuration, a 5-layer model is simulated. A pre-heat is applied to layers 1 – 3, and two 
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additional deposition layers modeled. This is compared to the full 5 layer simulation model by 
assessing the resultant von Mises stresses (Fig. 17). The curve similarity distance parameters are 
presented in Table 4.  

The K-S value for this case is 38 times greater than the transient-imposed thermal cycle case. 

The Hausdorff distance is almost twice the average preheat stress value. The OCC percentage 
indicates that there is no overlap with a 10% offset. This is true for a 15% offset as well. These 
curves are not similar, and it can be quantitively stated that a preheat conditions introduce unique 
resulting stresses. Exploring preheat conditions will be a separate research activity.  
  

(a)  

(b) 

 

(c) 

 

(d) 

 

Figure 17: (a) The von Mises stresses, (b) the cumulative sums for each scenario (c) the 
cumulative sum differnce curve, and (d) the offset curves. 

 

Parameter  Value (MPa) 

Average Preheat 446 
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Average Full Sim.  67 

Min ΔY Distance 112 

NN Distance 102 

Hausdorff Distance 773 

K-S Max Distance (Fig. 17 (c)) 111,677 

Table 4: Parameter summary for assessing the difference between a preheat initial condition and 

a full simulation on the von Mises stresses for the top layer.  

4.2 Curve Similarity Analysis Discussion  

The average value differences, combined with the NN, Hausdorff and K-S Max distance values 
provide insight to a curve set’s similarity. However, these metrics do not always result in the same 

answer. These various distance metrics are sensitive to curve peaks and valleys. When assessing 

sets of curves (Fig. 15), or comparing results between case studies (Fig. 16 and 17), the NN, 
Hausdorff and K-S Max distance provide a good quantitative relative basis of comparison. For a 
general curve pair, those metrics have limited value.  

The OCC percentage metric is a relatively simple strategy to provide a similarity value, and it 
is meaningful for assessing similarity between two curves, as well as curve sets. However, the 
algorithms developed for CAD tools need to be employed to create valid offset curves in a data 

manipulation package. Point projection must be used to ensure that the original Δx values are 
maintained. The offset curves are compressed and appear to be translations in y, but this is a 
graphic artifact. Fig. 18 expands a region to illustrate the offsets.  

 

 

Figure 18: Offset curves for Fig. 19. 
 

For the Fig. 15 results, the influence of shifting and parameterizing the curves is explored. These 
variants are presented in Fig. 19. The cumulative sum curves are significantly impacted, but as 
expected the K-S Max distance for the shifted curves is identical as the values reported in Table 3. 

The OCC percentage results remain consistent as it should for this case as well as for uniform 
scaling scenarios.  

 
Mean shift case study Parametric curve case study 

(a) (d) 
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(b) 

 

(e) 

 

(c) 

 

(f) 

 

Figure 19: Mean shift case study (a) the von Mises stresses, (b) the cumulative sums (c) the 
cumulative sum differnce curve; the parametric curve case study (d) the von Mises stresses with 
offset curves, (e) the cumulative sums (f) the cumulative sum differnce curve. 
 

Parametrization introduces a distortion. The cumulative sum curves, and the location of the K-S 
maximum distance point, is different as well as the K-S maximum distance value. It was 
unexpected that the location of the maximum K-S distance would change. The parametrization 
also influences the OCC percentage values. The comparison curve within the 10% offset region 

from the reference curve is 67%, and 80% for a 15% offset for the Fig. 19 (d) curve set.  
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4.3 Image Data Extraction and Analyses Results 

Two main strategies are utilized to evaluate the FE image patterns: (i) chart-based evaluations in 

Excel (ii) and geometric analyses. With a point cloud with a specific x, y grid, template files can be 
readily developed, and seeded with discrete data (Fig. 20).  

 

(a)  (b)  (c)  (d)  

Figure 20: (a) XX stress differences between H1 and H3, (b) filtered data for key regions (green), 
(c) Excel data representation (using Excel conditional formatting), and (d) the variations in 
stresses for a targeted region (using Excel conditional formatting to highlight differences). 

 
The blue dot represents position 1 for both the 4-sided polygon defining the regions of interest 

(Fig. 21 (a)) and the start point when comparing the encircled stress patterns (Fig. 22 (a)). In Fig. 
21, the orange cells (identifying low to no stress regions) are enumerated using the Excel 
COUNTIF function in the vertical direction.  

The differences in stress regions vary significantly between quadrants Q2 and Q3. It is evident 
visually, but the Fig. 21 (b) graph quantified these differences for the low stress regions common 
for the H1 and H3 simulations (orange). 

 

(a)     (b)  

Figure 21: (a) Trapezoid base shapes identifying the regions to be assessed for H1, (b) a 
comparison of the number of ‘orange’ cells along the horizontal axis with residual stress level 4 (-
99 to 6 MPa). 
 
In Fig. 22, the residual stress levels from the filtered data from Fig. 14 are illustrated. The shape 
differences for the green regions in Q1 and Q2 are shown in Fig. 22 (b). Assessments on the 
complete data set for are shown in Fig. 22 (c), where the different stress level percentages are 

summarized for each quadrant.  
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(a)

 

(b)

 

(c)  

Figure 22: (a) XX stress differences when comparing the H3 to H1, (b) a bar chart illustrating the 
differences in the encircled region, and (c) a stress level difference summary for each quadrant.   

 
Radar charts visualize differences in symmetry as shown when comparing the XX residual stress 
levels differences between the H1 and H3 configuration at the top of the plate (Fig. 23 (a)).   

Line graphs illustrate the differences in stress levels for the 3-joint radiate in and radiate out 

configurations at the top of the plate, and 4 mm into the plate. For both configurations it can be 
seen that the center branch region has the greatest variability for comparisons. The range is very 
high for the in-plate situation. Overall, however there are less change in the stress levels 4 mm 

into the plate (Fig. 24). The statistics validate this observation, as shown in Table 5.  
 

 Top: 1 level+  Top: 1 level -  In plate: 1 
level+ 

In plate: 1 level- 

Average cell count 5.4 4.5 3.2 2.3 

Range 26 33 33 42 

Stand. Dev. 4.3 3.8 3.6 4.1 

Table 5: Statistical summary for Fig. 24. 
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(a) 

 

(b) 

 

(c)  

 

(d) 

 

 

Figure 23: (a) Difference in the XX stresses at the plate top for the H3 and H1 configurations, (b) 
radar graph illustrating the percentage zero σ differences between the two build scenarios, (c) and 

(d) the difference of the tensile and compressive stress levels for each quadrant.  
 
The characteristics of regional and global stress patterns within a sample, between samples, at 
different depths within a sample can be represented from different perspectives. Relating the 
discrete cells to geometric values, this trend data can be transformed into area values. Gradient 
data can also be extracted. Geometric analyses for select regions is presented next.  

In Fig. 25, the asymmetry of the low von Mises stress regions for the H1 results is illustrated 
when mirroring the low stress regions. Rhino and Grasshopper tools lend themselves to this type 
of analysis. The Hausdorff distances, the intersection (⋂) and union (∪ ) areas between two 

mirrored shapes, and the percentage of the intersection compared to the union area are presented 
in Table 6. The area data, combined with the Hausdorff distances quantify shape differences 
clearly (bolded text), and this data complements the common overlap percentage. Interestingly, 

the Y values of the centroids are close between quadrants, but there is an X value shift. This is to 
be explored further.  
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(a) 

 

(b) 

 

(c)   

(d)  

Figure 24: Difference in the XX stresses at (a) the plate top and (b) 4 mm into the plate for the 
radiate in (R_in) and radiate out (R_out) configurations (c) and (d) line graphs illustrating the 

stress level increases and decreases (1 level).  

4.4 Pattern Similarity Analysis Discussion  

These analyses provide additional information with respect to FEA results in compressed formats. 
It is well understood that residual stresses cannot be eliminated, but they can be managed. 

Developing build strategies to minimize residual stresses is an obvious future goal, but another 
option is to shift potentially problematic residual stresses into non-critical regions. Both theses 

discrete and geometric analysis approaches can provide insights for suitable build strategies. 
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(a)  (b)  

Figure 25: (a) The pixel-point data in Rhino® the plate top and (b) low stress geometry, where 
the green geometry is mirrored to compare it to the orange regions. 
 

  
Area 
(sq 

mm) 

Centroid 
X (mm) 

Centroid 
Y (mm_ 

Contour 
perimeter 

(mm) 

Hausdorff 
distance 
(mm) 

∩ area (sq 
mm) 

∪ area 

(sq mm) 

% 
Common 

Area 

1(gr) 37.9 19.5 47.8 22.4 8.0 17.9 78.4 22.9% 

2(gr) 7.0 5.3 42.1 12.3 2.0 100.2 122.6 81.7% 
3(gr) 105.9 13.4 14.6 39.9 1.5 4.6 9.4 49.0% 

4(gr) 52.2 15.3 -14.2 25.8 1.2 46.5 66.6 69.9% 

5(gr) 19.5 23.0 -46.3 16.3 N/A N/A N/A N/A 

1(or) 58.5 -15.9 47.9 34.6         
2(or) 7.0 -4.9 41.2 14.7         

3(or) 116.9 -13.1 15.5 40.6         

4(or) 61.0 -15.6 -15.0 28.4         

Table 6: A summary of the symmetry/asymmetry assessment of the interior low stress regions. 

 

The greatest challenge for this research is extracting the image data automatically. The color data 
within the images is not consistent. The RGB values in the reference legend for the FE simulations 
do not match the RGB values within the image. There are issues with RGB values at the transition 
zones and this is not consistent. For Fig. 26 (a), the FE legend has RGB values of 0,0, 255 for the 

dark blue, and the 0,142, 255 for the next lighter blue. In Table 7, select pixel RGB data is 
presented. In the enclose rectangle, some RGB values vary significantly at the boundary regions, 
and are not readily classified.  

 

 RGB value: Legend RGB value: Stress Region 
(Central) 

RGB value: Stress 
Region (Red Box) 

Dark blue 0,0, 255 0,0,191 

0,0,189 

0, 21, 191 
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0,0,188 

Lighter blue 0,142, 255 0, 106, 191 

0, 105, 188 

0, 104, 188 

0, 76, 191 

Table 7: Select RGB values for the FEA image shown in Fig. 26 (a). 

 
An untuned example is shown in Fig. 26 (b), where unknown RGB classifications are illustrated as 
blanks. It was found that the classification regions need to be tuned based on the general color 
characteristics of the image set being analyzed. The von Mises stress images have blue tones, 
whereas the XX, YY, ZZ residual stresses have yellow tones. Tuning the classification ranges 

reduced the data collection issues significantly (~ 94% good data) but did not eliminate them. 

Artifacts such as reference axes need to be ignored, and in complex regions such as those shown 
in Fig. 11 (b) require additional rules for classifications, as the RGB may values vary significantly 
but still convey a similar shade to the eye. More research needs to be performed for the image 
processing, and it is proposed to use a convolution neural network, which is applied quite 
frequency in image analysis applications.   

 

(a)   (b)  

Figure 26: (a) 3 Joint (radiate out configuration) von Mises stresses, where the enclosed region 
has unpredictable RGB values, and (b) problematic von Mises results when comparing the top 

and 4 mm into the plate results. 

5 SUMMARY AND CONCLUSIONS 

Confidence in predicting the mechanical and physical properties for AM build components is 
required for this process family to expand in industry. Simulations can provide insights into the 

thermal-mechanical-metallurgical behaviors that experimental approaches cannot determine, but 
much data is not assessed (including data between the nodes). Therefore, methodologies to 
interpret the result patterns beyond determining maximum and minimum points or querying the 

properties at specific nodes needs to be developed. This has been done for both curve and pattern 
sets for several FE simulation scenarios.  

Metrics exist to evaluate curve similarities but were found to convey limited meaning. 
Consequently, the offset curve capture (OCC) logic test is generated, which provides a more 
comprehensive assessment of closeness. This was demonstrated for several case studies but is 
challenging to implement without leveraging CAD tools. It would be interesting to explore the 
Hausdorff, NN, and K-S distances within offset curve sets, and the OCC metric for other 

applications.  

A method to convert FEA results’ images into topology and structured ‘raster’ data via image 

sampling is presented. Transforming RGB data into discrete classifications via geometry 
manipulation tools allows researchers to extract data that will allow for extended analyses to be 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 20(5), 2023, 898-922 

© 2023 CAD Solutions, LLC, http://www.cad-journal.net 
 

921 

performed. For this research, von Mises and residual stress analyses for several case studies are 
employed to assess the goodness of this approach. Establishing Excel templates and importing the 
point cloud data allows for much data to be evaluated quickly and systematically. Structured 
graphs allow for global and local assessments. Additional analyses, such as exploring structural 

similarity approaches [3, 12], will be conducted now this baseline is established. Exploiting CAD 
tools also allowed for pattern data to be extracted.  

It was found that direct image conversion approaches do not provide the expected results due 
to issues related to the image quality. Unexpected color variations (or noise) exist throughout the 
images. It is recommended to explore convolution neural network methods to extract the relevant 
data. This is a key issue to resolve.  

To conclude, this work will facilitate with FE results interpretation and predictive model 

development when comparing different simulation scenarios.  The techniques can be extended to a 

general FE post-processing module. However, CAD tools need to be intelligently integrated within 
the post-processing module to leverage the full potential of the simulation data. 
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