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Abstract. The paper proposes a method based on topology optimization and 

homogenization theory to design hybrid lattice structures with multiple functional 
microstructure configurations. A hybrid lattice structure with low thermal expansion 
and higher stiffness is designed to validate the feasibility of this method. The 

numerical experimental results show that the maximum thermal distortion of the 
optimized lattice structure is only 10% of that of the macroscopic solid-void 
structures. Meanwhile, the optimized lattice structure achieves an 18% reduction in 
compliance compared with the macroscopic solid-void structure. 
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1 INTRODUCTION 

Lattice structures (LSs) have been an emerging solution for lightweight and mechanically efficient 
structures [3, 6, 15]. A lattice structure is formed by a regular arrangement of unit cells within a 
special pattern. The properties of LSs not only depend on the inherent material composition but the 
architecture of the microstructure. Based on this principle, researchers have designed various LSs 

with some excellent properties, such as negative Poisson’s ratio [11,22], extreme thermal expansion 
[4, 12], and energy absorption [1, 5]. These lattice structures hold the promise of pursuing excellent 
multi-functional performances compared with the conventional macroscopic solid-void structures. 

The design of the lattice structure mainly depends on the homogenization method. In this 
method, the homogenous materials are employed as a basis for defining the shape of the object in 
terms of material density [2]. To obtain better properties of LSs, topology optimization is usually 

applied with the homogenization method. Topology optimization works on a specific finite element 
mesh of discrete or continuum elements to optimally sort materials in material layout [13]. By pairing 

these two, multiscale topology optimization for LSs is rapidly becoming a research hotspot [7, 9, 10, 
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19, 21].In addition, many methodologies for hybrid lattice structures (HLSs) design have been 
proposed since HLSs usually have higher performance and greater design freedom than lattice 
structures with a single unit cell; for instance, Benjamin developed a framework for the parametric 
design of graded truss lattice structures for enhanced thermal dissipation [16]. Through the above 

literature review, it could be found that the existing LSs design methods still could have two points 
to improve. The one is for the most design method, the microstructures are used standard unit cells, 
like BCC, FCC unit cells. These unit cells limit the design freedom since they can only change their 
size instead of their topology. Another is that most microstructure layout methods refer to topology 
optimization with solid material. However, the layout should be changed if various functional 
microstructures are applied. The existing layout methods are not suitable for multiple functional unit 
cells anymore. 

To improve LSs structure in the above two points. A novel method based on topology 

optimization and homogenization theory is given here. Topology optimization is applied for designing 
various functional microstructures instead of standard unit cells. Then for the layout of various 
functional microstructures. Topology optimization is applied again, and the ordered SIMP(Solid 
isotropic material with penalization) method [23, 24] replaces the ordinary SIMP Method for various 
microstructures interpolation. The flow chart of the proposed method is shown in Figure 1. There 

are two steps in this method. At first, multiple functional microstructure lattice units are designed 
through topology optimization and homogenization theory. Then, the lattice units are treated as 
homogeneous materials with effectively homogenized properties for macroscopic analysis. The 
ordered SIMP (Solid isotropic material with penalization) interpolation method is applied to achieve 
the interpolation of multiple microstructures. Finally, the obtained hybrid lattice structure 
theoretically has both the properties of macroscopic optimization and the functionalities of 
microstructures. Both the microstructure and macrostructure design variables are updated by the 

Method of Moving Asymptotes (MMA) algorithm [14].  

 

 

 
Figure 1: Flow chart of the proposed method. 

 

In this work, the functional microstructure is set to be zero thermal expansion coefficient, and a 

standard minimized compliance problem is considered on a macroscale. The structure with both low 
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thermal expansion and high stiffnes can be used in many fields, such as aero-engine blades, 
transmission lines, and bimetallic strips. Numerical examples and data comparisons are presented 
to demonstrate the validity of the proposed method. 

2 FUNCTIONAL MICROSTRUCTURE DESIGN WITH ZERO THERMAL EXPANSION  

In this section, a numerical procedure for 2D thermal elastic microstructure topology optimization of 
three-phase materials (two solid and one void materials, the properties are shown in Table 1.) is 
introduced, whose optimization model can be expressed as:  

 

 

{
 
 
 
 

 
 
 
 

 
min:f(x,y)=(α11

H (x,y))2+(α22
H (x,y))2

subject to:

{
  
 

  
 
V1=

1

V
∑xe(1-ye)ve
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e=1

;  V1
Low≤V1≤V1
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V2=
1

V
∑xeyeve
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e=1

;  V2
Low≤V2≤V2
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K≥Kset

 (2.1) 

 Young’s moduli Ei Passion ratio 𝑣 
Thermal expansion 

coefficient αi 

Solid material 1 145𝑀𝑃𝑎 0.3 0.5 × 10−4 

Solid material 2 290𝑀𝑃𝑎 0.3 2.2 × 10−4 

 
Table 1: The mechanical properties of solid material. 

 

where α𝑖𝑖
H (𝑖 = 1 or 2) is the effective thermal expansion tensor that indicates the thermal strain of the 

composite material in two normal directions under unitary temperature change. The H in the upper 
right corner of the tensor refers to the fact that this tensor comes from the homogenization method. 
V1 and V2 are two volume fractions for two solid materials. V is the volume of the whole domain. ve 
is the volume of the element.NE is the number of elements. x and y are two design variables for 

those two solid materials. To avoid singularity, the “void” phase is taken as a small number 10−4 

times material tensors of phase solid material 1. Vi
Lowand Vi

up
  (𝑖 = 1 or 2) is the predefined upper and 

lower volume fraction limits of two solid materials, and the difference between the upper and lower 
limits is less than 0.1 so that the value of the volume fraction can be controlled. Generally, zero 
thermal expansion design is usually achieved at the expense of the overall stiffness of the composite. 

Thus, a lower bound constraint on the overall composite stiffness (K ≥ Kset) is introduced here to 

ensure the composite stiffness performance. K indicates the effective bulk moduli, which can be 

expressed in terms of the components of the effective elasticity tensor 𝐂𝐇: 

 K = 0.25C11
H + 0.25C12

H + 0.25C21
H + 0.25C22

H  (2.2) 

and Kset is the prescribed minimum bulk moduli value. 

       The effective properties of the microstructure can be obtained by using homogenization theory; 
the effective elasticity tensor 𝐂𝐩𝐪𝐫𝐬

𝐇  and thermal strain tensor 𝛃𝐩𝐪
𝐇  can be written as: 

 𝐂𝐩𝐪𝐫𝐬
𝐇 =

1

|Y|
∫𝐂𝐩𝐪𝐫𝐬

𝐞 (εpq
0 − εpq)(εrs

0(ij)
− εrs

ij ) ⅆy
Y

 (2.3) 

 𝛃𝐩𝐪
𝐇 =

1

|V|
∫ 𝐂𝐩𝐪𝐫𝐬

𝐞 (𝛂𝐩𝐪
𝐞 − εpq)(εrs

0(ij)
− εrs

ij ) ⅆV    p, q, r, s = 1,2. (2.4) 

where |Y| denotes the volume of the unit cell and ε0 is known as a test strain field. ε is the virtually 

local strain field, which are defined as: 
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 εpq = εpq(χ) =
1

2
(χp,q + χq,p) 

(2.5) 

based on the displacement fields 𝜒 found by solving the elasticity equations with a prescribed 

macroscopic strain, 

 ∫𝐂𝐢𝐣𝐩𝐪
𝐞

V

εij(v)εpq(χ)ⅆV = ∫𝐂𝐢𝐣𝐩𝐪
𝐞

V

εij(v)εpq
0 ⅆV (2.6) 

where v is a virtual displacement field. The homogenization is performed numerically by discretizing 

and solving Eq. (2.6) using the finite element method. The detailed homogenization procedure can 
be found in [20], 𝐂𝐢𝐣𝐩𝐪

𝐞  and 𝛂𝐩𝐪
𝐞  are the locally varying stiffness tensor and local thermal strain tensor, 

respectively. The e in the upper right corner of the tensor refers to the fact that this tensor is 
associated with elements. They can be interpolated by the extended SIMP interpolation scheme; it 
can be formulated as:    

 𝐂𝐢𝐣𝐩𝐪
𝐞 (xe, ye) = xe

P ⋅ (ye
P ⋅ 𝐂𝐢𝐣𝐩𝐪

𝟐 + (1 − ye)
P ⋅ 𝐂𝐢𝐣𝐩𝐪

𝟏 ) (2.7) 

 𝛂𝐢𝐣
𝐞 = ye

P ⋅ 𝛂𝐢𝐣
𝟐 + (1 − ye)

P ⋅ 𝛂𝐢𝐣
𝟏 (2.8) 

where 𝐂𝐢𝐣𝐩𝐪
𝐣

  and 𝛂𝐢𝐣
𝐣
 (j = 1 or 2) represent the stiffness tensor and thermal strain coefficient tensor for 

solid material 1 and solid material 2, respectively. The equivalent thermal expansion tensor 𝛂𝐢𝐢
𝐇 can 

be calculated by: 
 𝛂𝐢𝐣

𝐇 = (𝐂𝐩𝐪𝐫𝐬
𝐇 )−𝟏𝛃𝐩𝐪

𝐇  (2.9) 

In this paper, the design domain is set to be 𝟐𝟎𝐦𝐦× 𝟐𝟎𝐦𝐦 size square. For the isotropic design, 

symmetry is assumed along the center and diagonal lines of the square design domain. There is also 

a forced removal of the material domain, in which no material can exist, to maintain sufficient space 
for thermal deformation. And the composite joint domain is set to be solid, which also can be 
regarded as a deformation evaluation domain. The design domain is discretized by 200×200 four-

node quadrilateral elements. The whole domain and its distribution are shown in Figure 2. 
 

 
 

Figure 2: Design domain for functional microstructure, the width of the green domain is 1mm, and 

the size of the red domain is 2mm × 1mm . 

 

Finally, after setting three different volume fractions for different materials, and the temperature 
difference is determined to be 30 degrees, three designed zero thermal expansion microstructures 
are obtained and shown below table: 
 

 𝑉𝑥 𝑉𝑦 Configuration 
Bulk 

moduli 
𝐾 

Objective 
function 𝑓 

Effective elastic 
tensor𝐶pqrs

𝐻  

Microstructure1 0.2 0.2 

 

100 0.8787𝐸 − 5 [
112.55 87.44 0
87.44 112.55 0
0 0 48.88

] 
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Microstructure2 0.25 0.25 

 

150 0.1395𝐸 − 5 [
186.44 113.56 0
113.56 186.44 0
0 0 85.25

] 

Microstructure3 0.3 0.3 

 

200 0.2747𝐸 − 5 [
261.85 138.44 0
138.44 261.85 0
0 0 48.88

] 

 
Table 2: The mechanical properties of three pre-designed microstructures. 

 

The heat deformations for three microstructures in Table 2 are shown below. Since the 
microstructures shown in Table 2 are symmetric, it can apply symmetric boundaries on the left and 
bottom edges of Figure 3 and 4 to save the computational cost. Figure 3 only shows the deformation 
on the joint to highlight the deformation on the joint; Figure 4 demonstrates the deformation of the 
whole domain. The maximum displacement on the joint for microstructure1 is 3.67 × 10−3mm, for 

microstructure2 is  4.33 × 10−3mm, and 8.14 × 10−3mm for microstructure3. As Figure 4 shows, the 

maximum displacement for the whole structure is 4.72 × 10−2mm, 4.43 × 10−2mm, and 4.66 × 10−2mm 

for microstructure1, microstructure2, and microstructure3, respectively. These results show that 
thermal expansion is not proportional to volume fraction. Therefore, it's hard to say which 
microstructure has the best thermal properties. The hybrid lattice structure will be necessary to 
enlarge the design space and does not converge into a single microstructure. 

 

Figure 3: Microscopic heat deformation diagram of composite joints for (a) microstructure1 ;(b) 
microstrcure2; (c) microstructure3. 

3 HYBRID LATTICE STRUCTURE DESIGN BASED ON ORDERED SIMP  

This section describes the topology optimization on a macroscale; the optimization model can be 

expressed as： 

 

{
 
 
 

 
 
 

 

min: c(𝛒) = 𝐮𝐓𝐊𝐮 =∑𝐮𝐞
𝐓𝐤𝐞(ρe)𝐮𝐞

NE

e=1

subject to:

{
 
 

 
 

𝐊𝐔 = 𝐅

V(𝛒) =
1

V0
∑ρeve

N

e=1

≤ VFset

𝛒𝐦𝐢𝐧 ≤ 𝛒 ≤ 1

 (3.1) 

 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 20(5), 2023, 946-959 

© 2023 CAD Solutions, LLC, http://www.cad-journal.net 
 

951 

where c is the structural compliance; 𝐊,𝐔, anⅆ 𝐅 are the global stiffness matrix, displacement vector, 

and force vector, respectively; 𝐤𝐞 is the elementary stiffness matrix, which can be expressed by: 

 𝐤𝐞 = 𝐁
𝐓𝐂𝐞𝐁 (3.2) 

𝐁 denotes the strain-displacement matrix and 𝐂𝐞 is the homogenized elastic tensor obtained from the 

previous section.V0 is the volume of the whole domain, VFset presents the predefined volume fraction. 

 

Figure 4: Microstructure overall heat deformation diagram for (a) microstructure1 ;(b) 

microstrcure2; (c) microstructure3. 

 

In this work, the designed functional microstructures can be treated as anisotropic materials. 
Therefore, all the elastic tensor terms could be interpolated by ordered SIMP. 

       In ordered SIMP, multi-microstructures are sorted in the ascending order of their corresponding 

material density ρi
T (as depicted in Figure 5). Then, the material densities are normalized as: 

 ρi =
ρi
T

ρmax
 (3.3) 

   

 

 

Figure 5: Illustration of the density-based material sorting. 

 

ρmax is the density for the stiffest microstructure; it should be noted that the density of two solid 

materials that compose the microstructure is assumed to be the same, so the density of the 
corresponding microstructure is determined by the sum volume fraction of two solid materials. The 

three microstructures with three normalized densities 𝜌𝑖 = [0,
2

3
,
5

6
, 1] shown in Table 2. are all used in 

this work, then the elastic tensor is presented below, 

 𝐂𝐞 = 𝛈(ρe) ⋅ 𝐂𝐦𝐚𝐱
𝐇 = [

η11(ρe) ⋅ C11
H η12(ρe) ⋅ C12

H 0

η21(ρe) ⋅ C21
H η22(ρe) ⋅ C22

H 0

0 0 η33(ρe) ⋅ C33
H

] (3.4) 

where 𝐂𝐦𝐚𝐱
𝐇  is the effective elastic tensor for the stiffest microstructure, 𝛈(ρe) is the ordered SIMP 

interpolation function, which is given as 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 20(5), 2023, 946-959 

© 2023 CAD Solutions, LLC, http://www.cad-journal.net 
 

952 

 𝛈(ρe) = (
ρe − ρi
ρi+1 − ρi

)
P

∙ (
𝐂𝐢+𝟏
𝐇 − 𝐂𝐢

𝐇

𝐂𝐦𝐚𝐱
𝐇 ) +

𝐂𝐢
𝐇

𝐂𝐦𝐚𝐱
𝐇 , ρe ∈ [ρi, ρi+1] (3.5) 

where Ci
H indicates the effective elastic tensor of the ithmicrostructure; P is the penalty coefficient. 

In this work, P is set to be 3. 

The interpolation curves of the normalized elastic modulus with respect to the density variable 
are shown in Figure 6. 

 
 

Figure 6: The interpolation curves for 𝜂𝐸. 

4 SENSITIVITY ANALYSIS 

This topology optimization is solved based on sensitivities using the method of moving asymptotes 

(MMA), which requires first-order sensitivity information of the constraints and the objective 
function. In the following, a critical derivative of the sensitivity analysis is presented.  

4.1 Sensitivity Analysis for Microscale 

Considering that the design variable x is independent of the design variables, and the two design 

variables are equivalent, the derivation processes are the similar for both design variables. Therefore, 

it only needs to present the sensitivity of the design variable x here. The objective function 
∂f

∂x
 can be 

presented below: 

 
∂f

∂x
= 2

∂α11
H (x, y)

∂x
+ 2

∂α22
H (x, y)

∂x
 (4.1) 

where  
∂𝛂𝐩𝐪

𝐇

∂x
  can be derived from Eq. (2.9) 

 
∂𝛂𝐩𝐪

𝐇

∂x
= 𝐂𝐩𝐪𝐫𝐬

𝐇 −𝟏
(
∂𝛃𝐫𝐬

𝐇

∂x
−
∂𝐂𝐩𝐪𝐫𝐬

𝐇

∂x
𝛂𝐩𝐪
𝐇 ) (4.2) 
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Applying chain rule and Eq. (2.4) 

 
∂𝛃𝐩𝐪

𝐇

∂x
=
1

|V|
∫
∂𝐂𝐩𝐪𝐫𝐬

𝐞

∂x
(𝛂𝐩𝐪

𝐞 − εpq) (εrs
0(ij)

− εrs
(ij)
) ⅆV +

1

|V|
∫𝐂𝐩𝐪𝐫𝐬

𝐞
∂𝛂𝐩𝐪

𝐞

∂x
(εrs
0(ij)

− εrs
(ij)
) ⅆV (4.3) 

And  
∂𝐂𝐩𝐪𝐫𝐬

𝐇

∂x
  can be derived from Eq. (2.3) 

 
∂𝐂𝐩𝐪𝐫𝐬

𝐇

∂x
=
1

|V|
∫
∂∂𝐂𝐩𝐪𝐫𝐬

𝐞

∂x
(εpq
0(ij)

− εpq
(ij)
) (εrs

0(ij)
− εrs

(ij)
) ⅆV (4.4) 

As for  
∂𝐂𝐩𝐪𝐫𝐬

𝐞

∂x
  and  

∂𝛂𝐩𝐪
𝐞

∂x
, it can be given from Eq. (2.7) and Eq. (2.8) respectively. And it is different 

for derivation of design variables x and y here. 

 
∂𝐂𝐩𝐪𝐫𝐬

𝐞

∂x
= Pxe

P−1 ∙ (ye
P ∙ 𝐂𝐩𝐪𝐫𝐬

𝟐 + (1 − ye)
P ∙ 𝐂𝐩𝐪𝐫𝐬

𝟏 ) (4.5) 

 
∂𝐂𝐩𝐪𝐫𝐬

𝐞

∂y
= xe

P ∙ (Pye
P−1 ∙ 𝐂𝐩𝐪𝐫𝐬

𝟐 − P(1 − ye)
P−1 ∙ 𝐂𝐩𝐪𝐫𝐬

𝟏 ) (4.6) 

 
∂𝛂𝐩𝐪

𝐞

∂x
= 0 (4.7) 

 
∂𝛂𝐩𝐪

𝐞

∂y
=  Pye

P−1 ⋅ 𝛂𝐢𝐣
𝟐 − P(1 − ye)

P−1 ⋅ 𝛂𝐢𝐣
𝟏 (4.8) 

up until now, the sensitivity of objective function can be obtained by using the chain rule with the 
above derivations. Three constraints sensitivities are presented below. 

 
∂V1
∂x

=
1

V
∑(1 − ye)ve

NE

e=1

 (4.9) 

 
∂V2
∂x

=
1

V
∑yeve

NE

e=1

 (4.10) 

 

∂K

∂x
= 0.25(

∂α11
H

∂x
+
∂α12

H

∂x
+
∂α21

H

∂x
+
∂α22

H

∂x
) (4.11) 

4.2 Sensitivity Analysis for Macroscale 

At the macroscale, the objective function is structural compliance. Combining Eq. (3.2) and Eq. (3.4). 
∂c

∂ρe
 

can be presented below: 

 
∂c

∂ρe
=
∂∑ 𝐮𝐞

𝐓𝐁𝐞
𝐓η(ρe) ∙ 𝐂𝐦𝐚𝐱

𝐇 𝐁𝐞
N

e=1
𝐮𝐞

∂ρe
=∑𝐮𝐞

𝐓𝐁𝐞
𝐓
∂η(ρe)

∂ρe
∙ 𝐂𝐦𝐚𝐱

𝐇 𝐁𝐞𝐮𝐞

NE

e=1

 (4.12) 

Then the 
∂η(ρe)

∂ρe
  can be derived from Eq. (3.5). 

 
∂η(ρe)

∂ρe
= P (

ρe − ρi
ρi+1 − ρi

)
P−1

(
𝐂𝐢+𝟏
𝐇 − 𝐂𝐢

𝐇

𝐂𝐦𝐚𝐱
𝐇 ) (4.13) 

For the sensitivity of the volume constraint. 

 
∂V

∂ρe
=∑ve

NE

e=1

 (4.14) 

In addition, in topology optimization, filters are usually used to eliminate checkboard and projections 
to make the result converge to 0 or 1, eliminating intermediate values. This paper uses PDE filter 

and Heaviside projection, but this is not the innovation and focus of this paper, interested readers 
can refer to [8, 18]. 
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5 CASE STUDY 

5.1 L-bracket Benchmark 

This section validates the proposed method with a classical 2-D L-bracket benchmark, as shown in 
Figure 7. In this example, 50×50 4-node quadrilateral elements are adopted. The top edge of the L-
bracket is clamped, and a vertical load F=4500N is exerted to the right-side upper corner. Note that 
the load is distributed over six nodes to avoid stress concentration. In these cases, the initial value 
of design variables is set to be 0.5, and the filter radius is 2 element sizes. The iterative process will 
terminate when no further improvement of the objective function can be achieved. Namely, the 

difference of the objective values between two adjacent iterations is less than 0.01 in 20 steps, or 
the maximum iteration number (250) is exceeded. 

 

 

Figure 7: The boundary conditions for the L-Bracket. 

 

Figure 8(a) presents the microstructure distribution and optimal structure. The structure thermal 

distortion under a temperature difference of 30℃  is shown in Figure 8(b). The maximum 

displacement is 0.01856 𝑚𝑚, and the compliance of the whole structure is 𝑐 = 2.5725. To make a 

comparison, Figure 8(c). shows the optimal result only with solid material 1 under the same volume 
fraction (VFSet = 0.5), and the compliance is 𝑐 = 3.1572. The maximum thermal distortion is 0.2427 𝑚𝑚, 

as indicated in Figure 8(d). The experiment results validate that the proposed method could design 
structures with higher stiffness and substantially reduced structural thermal distortion compared to 
the structure optimized with the conventional approach. 

Figure 9 presents the full-scale structure of optimal results with multi-microstructures. Figure 
10 demonstrates the converge history of the optimization process; it shows the compliance finally 

converges at 2.5725, while the maximum heat displacement finally converges at 0.01856 𝑚𝑚. 

5.2 MBB-beam 

This section applied this approach in the design of the MBB-beam. The size and boundary conditions 
of the MBB-beam are shown in Figure 11. Its length is 480mm, and the width is 100mm. A 100N 
load is applied at the center of the top edge. The left and right bottom corners are fixed. Since MBB-
beam is symmetric, so only half of the MBB-beam is needed to be anylyzed to save the computational 
cost. The design domain is meshed with 50 × 120 four-node quadrilateral elements. The initial set 

and the convergence conditions are the same as that in section 5.1.  

Figure 12(a) gives the microstructure distribution and optimal macrostructure. The structure 
thermal distortion under a temperature difference 𝑜𝑓 30℃ is shown in Figure 12(b). 
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Figure 8: (a)The optimal result with multi-microstructures and (b) its thermal expansion (ΔT=30℃); 

(c) The optimal result only with solid material 1 and (d) its thermal expansion (ΔT=30℃) ( L-

Bracket). 

 

 
 

Figure 9: The final full-scale design result ( L-Bracket). 
 

 
 

Figure 10: The convergence history for the objective value (left), and the convergence history for 
the maximum heat displacement (right) ( L-Bracket). 
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Figure 11: The boundary conditions for MBB-beam. 

 

The maximum displacement is 0.03258 𝑚𝑚, and the compliance of the whole structure is 𝑐 = 0.6913, 
Similar to section 5.1, Figure 12(c). shows the optimal result only with solid material 1 under the 
same volume fraction (VFSet = 0.5), and the compliance is 𝑐 = 0.7115. The maximum thermal distortion 

is 0.3581𝑚𝑚. 

Figure 13 presents the full-scale structure of optimal results with multi-microstructures. Figure 
14 is the converged history of the optimization process. 

 

Figure 12: (a)The optimal result with multi-microstructures and (b) its thermal expansion 

(ΔT=30℃); (c) The optimal result only with solid material 1 and (d) its thermal expansion (ΔT=30℃) 

(MBB-beam). 

5.3 Computational Time 

The computational time is briefly discussed in this section. All the above cases were run on a desktop 
computer with AMD Core R9 5900X CPU and 32GB RAM. For microstructures design, it takes 10.15s 
per iteration. The homogenization method takes 87.1% time, and the MMA solver accounts for 6.8%. 
The rest time is for results plot. As to macrostrcutrue design, taking the case in section 5.1 as an 
example, the average time spent per iteration was 7.35s: the FEM part accounted for 46.3%, the 
sensitivity analysis part takes 23.4%, and the MMA solver takes 18.2%, and the rest accounted for 

the results plot. For another cases, the percentage of each part is similar, but for more elements, 
such as 50×120 in section 5.2, the time spent per iteration is up to 11.32s. 
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Figure 13: The final full-scale design result (MBB-beam). 

 

Figure 14: The convergence history for the objective value (left), and the convergence history for 
the maximum heat displacement (right) (MBB-beam). 
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6 CONCLUSION: 

This work proposed a method based on topological optimization and homogenization theory to design 
hybrid lattice structures with multiple functional microstructure configurations. To verify the 
effectiveness of this approach, microstructures with zero thermal expansion were obtained in this 

work, and it is used to design the optimal stiffness hybrid lattice structure. The final case study 
shows the structure obtained by this method did have the advantage of being more stiffness and 
less thermally expanded than the results obtained from the optimization of pure materials. 

There is still additional space to extend the current work. For the obtained structure, it could be 
further optimized, such as using the possibly genetic algorithm to further optimize the resulting 
structures and remove unnecessary materia [17]. In addition to the simulation verification, 
experimental verification is often more convincing. However, the authors' existing experimental 

equipment and conditions are insufficient to support this experiment. Besides, this paper considers 

only the two-dimensional case due to the limited computational power. And the three-dimensional 
structure is more realistic. Therefore, it will be purposefully extended to the three-dimensional case 
in our future work. Finally, machinability is an indispensable consideration in putting this method 
into practice. For the structure designed so far, the manufacturing difficulty is vast. The algorithm 
should sacrifice some of its performance to improve its machinability in the next work, then have a 

comparison to real manufactured structures. 
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