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Abstract. Sizing optimization is a type of structural optimization and treats 
structural dimensions, which define the shape of the structure, as design variables.  

Sizing optimization has a high affinity with 3D CAD that adopts parametric 
modeling from the viewpoint of the way of defining the shape. In fact, several 

commercial 3D CADs provide the function of sizing optimization. On the other hand, 
in sizing optimization, the number of iterations required to reach the optimal 
solution increases at an accelerating rate as the number of design variables 
increases. FEM is often used in sizing optimization to evaluate design proposals in 
each iteration, but it takes a certain amount of time to generate and analyze 

analytical models that reflect changes in design variables. As a result, computation 
time becomes so long that the optimal solution cannot be reached in practical time. 
To overcome this limitation, a new method for efficient sizing optimization using 
artificial neural networks (ANNs) is proposed. More specifically, networks that infer 
objective function and constraint conditions from design variables are trained using 
the training data collected by existing FEM software and the trained networks 
evaluate design proposals during sizing optimization. It takes a lot of time to collect 

training data using FEM software, but the time required to evaluate design 

proposals using the trained networks during sizing optimization is almost 0. 
Therefore, it is expected that sizing optimization using ANNs can be performed with 
less time in total. In addition, fine tuning is introduced to reduce the burden of 
training data collection. By using fine tuning and reusing the network weights from 
past sizing optimization using ANNs, networks with better accuracy can be obtained 

with less training data. In the case study, the proposed method is applied to the 
optimal design of an aircraft wing. 
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1 INTRODUCTION 

Structural optimization is a type of optimal design problem in which the shape of a structure is 
determined to minimize or maximize the objective function by using the evaluation characteristics 
such as weight, stiffness, and natural frequency as the objective function and the shape of the 

structure as the design variables. Structural optimization can be roughly classified into three 
types: sizing optimization [10], shape optimization [15], and topological optimization [1], 
depending on how the shape of the structure is represented and what is treated as a design 
variable.  

In sizing optimization, an optimization problem is formulated using the evaluation 
characteristics of the structure, e.g., weight, stiffness, and maximum stress, as objective functions 

while the design dimensions that define the shape of the structure, e.g., beam length and height, 

plate thickness, and cross-sectional area, as design variables, and mechanical or geometric 
conditions as constraints, and optimization is performed using an optimization algorithm such as 
steepest descent, GA (Genetic algorithm) or PSO (Particle swarm optimization). Shape 
optimization derives the optimal shape of a structure using its outer shape as design variables. To 
be more specific, the coordinates of the nodes on the boundary of the finite element model 
representing the initial shape of the structure are used as design variables, and the optimal shape 

is explored by combining the finite element method, sensitivity analysis method, and mathematical 
optimization algorithm. Topology optimization is a method of simultaneously optimizing the shape 
and form of the structure by replacing the problem of finding the optimal shape of the structure 
with the problem of placing materials in a fixed design domain. Each method has its own 
characteristics, or advantages and disadvantages, and is used in different ways depending on the 
situation. 

In this research, sizing optimization is focused among the three methods. Sizing optimization 

treats dimensions that define the shape of the structure as design variables and explores optimal 
solutions by changing them.  Such expression is similar to the way of defining the shape in general 
3D CAD that adopts parametric modeling, and thus sizing optimization has a high affinity with 3D 
CAD. In fact, several commercial 3D CADs [11] has the function of sizing optimization. On the 
other hand, in sizing optimization, the number of iterations required to reach the optimal solution 
increases at an accelerating rate as the number of design variables increases. FEM is often used in 
sizing optimization to evaluate design proposals in each iteration, but it takes a certain amount of 

time to generate and analyze analytical models that reflect changes in design variables. As a 
result, computation time becomes so long that the optimal solution cannot be reached in practical 
time. To overcome this limitation and to handle more design variables within a practical 
computation time, a new method for efficient sizing optimization using artificial neural networks 
(ANNs) is proposed. ANN, a method of machine learning, requires a large amount of training data 

to train networks, but once training is completed, inference can be performed in a small amount of 

time. In the proposed method, networks that infer objective function and constraint conditions 
from design variables are trained using the training data collected by existing FEM software and 
the trained networks then evaluate design proposals instead of FEM software during sizing 
optimization. It takes a lot of time to collect training data using FEM software, but the time 
required to evaluate design proposals using the trained networks during sizing optimization is 
almost 0. Therefore, if the number of evaluations of design proposals performed until reaching the 
optimal solution in sizing optimization is greater than the number of training data required to train 

the networks, the total calculation time can be reduced. In order to be applicable to more diverse 
design problems, the proposed method handles not only structural dimensions such as the length 
and thickness but also discrete numbers such as the number of ribs and spars of aircraft wings. In 
addition, to reduce the burden of training data collection, fine tuning is used to reuse the weights 
of the networks obtained from previous product designs using the proposed method. Using fine 
tuning, networks can be trained with a smaller number of training data than when network weights 

are set randomly. This approach is not applicable to completely new designs but is very effective in 
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a corporate environment where the same type of products is designed many times. In the case 
study, the proposed method is applied to the optimal design of an aircraft wing. 

2 RELATED RESEARCH 

In recent years, there have been attempts to use machine learning to improve the computational 

efficiency of structural optimization. When classifying the methods proposed so far, there are two 
main aspects: the first is whether training processes are done offline or online. The second is the 
inference target, i.e., whether optimal structures are directly inferred or FEM analysis results and 
sensitivities required during the optimization iterations are inferred. This section first introduces the 
sizing optimization researches, which is the subject of this research, followed by an introduction to 
topology optimization researches, where various methods have been proposed. 

As for sizing optimization, Gajewski et. al. proposed a hybrid system combining ANN and FEM and 

applied it to sizing optimization of an elevator rudder of Bryza, a patrol aircraft derived from a 
small transport plane made in the former Soviet Union [4]. Yan et al. proposed a method consisting 
of reinforcement learning and transfer learning [14]. Reinforcement learning is applied to extract 
the optimization experience from the semi-empirical method DATCOM using deep neural networks 
while transfer learning is implemented to reuse the experience as priori knowledge in the CFD 
(Computational fluid dynamics)-based optimization by sharing neural network parameters. They 

applied it to sizing optimization of a missile wing and found that CFD calls were significantly 
reduced. Viquerat et. al. proposed the method for generating optimal shapes through deep 
reinforcement learning (DRL) coupled with CFD without any prior knowledge and in a constrained 
time [12]. As for topology optimization, Chandrasekhar et. al proposed topology optimization using 
neural networks named “TOuNN” [2]. This method adopts SIMP method and infers the optimal 
material layout, or optimal structural topology, by learning the density, a parameter that defines 

the material layout, using NNs. The method proposed by Chi et. al. [3] adopts an online strategy 

rather than an offline one. Machine learning model learns the underlying mapping between design 
variables and their corresponding sensitivities from those history data (e.g., design variables, their 
corresponding sensitivities, and displacement solutions) during optimization process and derives 
sensitivities by inference rather than computation. Kollmann et al. employed metamaterials as 
design targets and attempted to directly infer the optimal topology in the form of images using 
CNNs (Convolutional neural networks) [6] Wang et. al. proposed a deep convolutional neural 
network with perceptible generalization ability for structural topology optimization and confirmed 

that a significant reduction in computation cost was achieved with little sacrifice to the performance 
of design solutions. [13]. Zhang et. al. did not use machine learning for structural optimization 
itself, but proposed a new sampling method for airfoils and wings, which is based on a deep 
convolutional generative adversarial network to improve the efficiency of surrogate-based shape 
optimization [7]. In addition, commercial engineering optimization software with machine learning 

functions, such as modeFRONTIER [8] and ODYSSEE [9] is developed. 

3 PROPOSED METHOD 

To enable efficient sizing optimization while simultaneously handling many design variables, the 
proposed method evaluates design proposals during iterative calculations of sizing optimization 
using pre-trained ANNs instead of FEM. The proposed method consists of the following four steps:  

Step 1: Sampling the design proposals  
Step 2: Collection of training data  
Step 3: Training the networks 

Step 4: Sizing optimization using ANNs 
Details of each step are described in the subsequent sections. Then, introduction of fine tuning to 
further improve the efficiency of the proposed method is described. Finally, considerations for 

applying the proposed method to practical problems are discussed. 
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3.1 Step 1: Sampling the Design Proposals  

Design variables for sizing optimization are selected from the parameters that define the design 

objects. Not only structural dimensions such as the length and thickness but also discrete numbers 
such as the number of ribs and spars of aircraft wings are handled as design variables in the 
proposed method.  The number of design variables should be as small as possible because 
increasing the number of design variables dramatically increases the number of training data 
needed for training. The upper and lower limits of design variables in sizing are then determined.  
Design proposals are finally sampled by varying the design variables between the upper and lower 

limits. In order to sample design proposals as uniformly as possible from the design space, Latin 
hypercube sampling (LHS) is used. 

3.2 Step2: Collection of Training Data  

The design proposals sampled in Step 1 are analyzed using FEM software to obtain objective 
function and constraint conditions for sizing optimization in Step 4. Pairs of design variables and 

the objective function and constraints obtained by the analysis become the training data. 

3.3 Step3: Training the Networks  

ANNs that infer objective function and constraint conditions from design variables are trained using 
the training data set collected in Step 2. The design variables selected in Step 1 are handled as 

input while the objective function and constrained conditions used in sizing optimization of Step 4 
are handles as output. Any type of ANN can be used here. For example, the case study uses the 
ANN where nodes are fully connected across layers and back-propagation is used to adjust 
connection weights between nodes. As for the configuration of hidden layer, although a single 
layer is often used in a typical ANN, multiple layers can also be used. The number of nodes in each 

hidden layer is also an important factor and should be configured according to the design problem. 
In the case study, hidden layers in various configurations are tested to verify inference accuracy. 

3.4 Step4: Sizing Optimization using ANNs 

Sizing optimization is performed by evaluating the design proposal using the networks trained in 
Step 3 instead of FEM software. Any optimization algorithm can be used for sizing optimization, 
such as the steepest descent, PSO, or GA. 

3.5 Fine Tuning for Recycle of the Past Trained Networks 

Usually, when training a network, initial values of network weights are set randomly. Fine tuning is 
a technique for training a new network using the weights of the network previously trained with 
other training data as initial values. Fine tuning allows for a more accurate network with less 

training data. In practical product development, since the same type of products are designed 

many times, The scenario of reusing training data and trained networks for the same type of 
product obtained in past product development makes sense. 

3.6 Practical use of the Proposed Method 

This section describes some of the considerations necessary for the practical use of the proposed 

method. 

Setting the appropriate number of training data is one of the most important issues in any 
machine learning method. If the number of training data is insufficient, the accuracy of the 
network may be lower than expected. If the number of training data is excessive, the network may 
be over-fitted, or it may simply be too hard to collect the data. However, the appropriate number 
of training data cannot be estimated in advance. Therefore, when actually using the proposed 
method, a certain number of training data should be prepared and trained at first to see if 

sufficient accuracy can be obtained. If the accuracy is not sufficient, the training data is increased, 
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and training of the network is attempted again. Such a trial-and-error process seems like a waste 
of time. In practice, however, the time required to collect training data in step 2 is extremely long, 
but the time required for the other tasks is short. For example, in the case study described in the 
next section, it takes 40 hours to collect 1000 training data, while sampling of design proposals, 

training of ANNs, and even PSO takes only a few minutes each. Therefore, it is a good strategy to 
gradually increase the number of training data while observing the training results of the ANN in 
order to avoid collecting more training data than necessary. 

Configuration of hidden layers of the network also has a significant impact on its inference 
accuracy. Since the appropriate depth of the hidden layer and the number of nodes cannot be 
estimated in advance, they must be determined to some extent by trial and error. 

4 CASE STUDY 

In order to confirm the effectiveness of the proposed method, it is applied to aircraft wing design. 
Aircraft is one of the mechanical products with the most severe weight constraints. By reducing 
airframe weight, payload and fuel loading can be increased as well as fuel consumption can be 
reduced. Aircraft are inherently less fuel-efficient transportation machines than ships, automobiles, 
and railroads, and the recent increase in environmental awareness has made it imperative to 
improve fuel efficiency of aircraft. In order to reduce the aircraft weight as much as possible, 

various types of optimizations, including sizing optimization, are used in actual product 
development [5]. As described later, an aircraft wing consists of internal structural parts called ribs 
and spars and a skin that surrounds them. Since the number of ribs and spars can be varied in 
addition to the dimensions of each part, both the structural dimensions and the number of internal 
structural parts can be used as design variables. In addition, since the cross section of a wing 
becomes progressively smaller from the root to the tip and their cross sections are similar, a wing 

can be modeled with a not very large number of design variables. Furthermore, since the basic 

structure is the same regardless of the type of airplane, fine tuning is easy to apply. For these 
reasons, the proposed method was used for the optimal design of aircraft wings. 

Section 4.1 details the modeling, learning, and sizing optimization of aircraft wings. Section 
4.2 describes the results. Section 4.3 describes the verification of the effectiveness of fine tuning. 
Finally, Section 4.4 provides a summary. 

4.1 Details of the Case Study 

In the case study, the wings of Hawker Tempest, Mitsubishi A6M Zero, and Kawasaki Ki-45 Toryu, 
fighters used in World War II, are used as design targets. This is because it is easy to model due 
to its simple structure and geometry compared to the wings of modern aircrafts, and to collect 
references describing its structure. From a structural point of view, an aircraft wing is roughly 

composed of three elements: rib, spar, and skin. Based on the drawings available in the literature, 

wing models of these aircraft, which consist of three elements, were created. Ribs and spars 
usually have an I-shaped cross section, but they were simplified to a rectangular cross section. All 
structural elements are modeled by shell elements. In actual aircrafts, there are cutouts in these 
structural elements due to the presence of devices inside the wings and moving surfaces such as 
ailerons and flaps, but these are not considered in this case study. Figure. 1 shows the created 
models. As for design variables, the thickness of the ribs, spars, and skins, the length of the ribs, 
and the number of ribs are treated. For the thickness, as also shown in Figure. 1, all the structural 

elements are divided into 9 groups, and the thickness is configured for each group. The range of 
thicknesses is shown in Table. 1. For the rib length, the rib length of the original fuselage is 
considered to be 100%, and the rib length is expressed as X% of that length. All ribs are divided 
into 5 groups as shown in Figure. 2 and rib length is configured for each group. The range of rib 
lengths is shown in the Table. 2. The number of ribs varies from 26 to 29, with 27 as the initial 
value. The total number of design variables is 15: 9 for thickness, 5 for rib length, and 1 for the 

number of ribs. 
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Figure 1: Wing model and design variables concerning thickness. 

 

Rib_length1

Rib_length3

Rib_length4

Rib_length5

Rib_length2

 
Figure 2: design variables concerning rib length. 

 
Min (mm) Initial (mm) Max (mm)

Skin_root_upper 0.8 2 2

Skin_tip_upper 0.5 1.5 1.5

Skin_root_lower 0.8 2 2

Skin_tip_lower 0.5 1.5 1.5

Rib_root 3 8.9 10

Rib_middle 3 8.9 10

Rib_tip 3 8.9 10

Spar_root 30 55.7 60

Spar_tip 10 24.8 25  
 

Table 1: Range of thicknesses. 
 

Aircraft type # of ribs Max/Min Rib length1 Rib length2 Rib length3 Rib length4 Rib length5

Max 105% 102% 101% 101% 102%

Min 98% 99% 99% 98% 95%

Max 105% 102% 101% 101% 102%

Min 98% 99% 99% 98% 95%

Max 105% 102% 101% 101% 102%

Min 98% 99% 99% 98% 95%

Max 105% 102% 101% 101% 102%

Min 98% 99% 99% 98% 95%

Tempest

Zero

Toryu

26-28

29

26-29

26-29
 

 
Table 2: Range of rib length. 

 
 

As for the number of training data, in order to discuss the effect of the number of training data on 
the inference accuracy and optimization results, the proposed method was run while varying the 
number of training data from 1000 to 20000. As for the objective function and constraint 

conditions of sizing optimization, the total weight was used as the objective function, while the 
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maximum stress and natural frequency were used as constraints. In order to collect these values 
of the design proposals sampled in Step 1, ANSYS was used for modeling and analysis, and 
MATLAB was used for planning data collection and controlling ANSYS. As for ANNs, the machine 
learning toolbox in MATLAB was used for network creation, training and inference. A typical ANN in 

which nodes are fully coupled between layers and back-propagation is used to adjust the network 
connection weights was used. Three networks were created and trained to infer weight, maximum 
stress, and natural frequency separately. The inputs are 15 design variables. In order to discuss 
the effect of network configuration on the inference accuracy and optimization results, networks 
with two, three or four hidden layers were tested in addition to the standard networks with one 
hidden layer. Similarly, networks with different number of nodes in the hidden layers were tested. 
In training, 70% of the training data was used as training data, 15% as cross-validation data, and 

15% as test data. As for sizing optimization, PSO, which is implemented as a solver in MATLAB, 

was used. 

4.2 Results of Sizing Optimization 

Table. 3 shows the number of hidden layers, the number of nodes in the hidden layers, the 

number of training data, and the average error for the obtained networks that infer maximum 
stress, natural frequency, and weight. Here, the hidden layer configuration of 50_60_50_5 means 
that the network has four hidden layers, and each hidden layer has 50, 60, 50, and 5 nodes. 
Figure. 3 shows the effect of the number of training data on mean error of the networks that infer 
maximum stress for Zero. By increasing the number of training data, the average error decreases. 
The required number of training data depends on how much accuracy is required. Tab. 4 shows 
the effect of hidden layer configuration on average error of inference. These are the training 

results using 20000 data. The left table shows the average error of the networks having a single 
hidden layer while the right one shows the average error of the networks having multiple hidden 

layers. In this case, the networks with multiple hidden layers generally had better inference 
accuracy than the networks with a single hidden layer, but in some cases the inference accuracy 
between them was not significantly different. The number of hidden layers and the number of 
nodes in each layer also greatly affects inference accuracy. In this case, the inference accuracy 

was generally better for the networks with a larger number of hidden layers and nodes in each 
layer. Therefore, it is necessary to configure an appropriate hidden layer that matches the 
applicable target and evaluation criterion. Next, the optimal solution derived using the learned 
ANN and PSO and the analytical results of the optimal solution using ANSYS are shown in Table. 4. 
This result shows that the weight and natural frequency can be inferred with great accuracy, but 
the maximum stress has an error of several percent in the optimal solution. It is dangerous if the 
maximum stress is inferred to be lower than it should be. Table 5 shows the estimated 

computation time for the proposed method and conventional sizing optimization. This estimation of 
computation time does not include various types of trial-and-error. 

In the case of Zero, the network that infers the maximum stress requires the most training 
data, which is 14000. The time required to collect one training data set, or in other words, the 
time required for one analysis using ANSYS, is on average 144 seconds. About 280 hours are 
required to collect 14000 training data. The time required for sampling, training, and optimization 
is less than one hour. Therefore, the computation time of the proposed method for Zero was 

estimated to be 280 hours. On the other hand, 105016 inferences are performed to reach the 
optimal solution in the sizing optimization of the proposed method. If 105016 analyses were 
performed during conventional dimensional optimization, it would take 144 seconds multiplied by 
105016, so the computation time of the conventional sizing optimization for Zero was estimated to 
be 4201 hours. This result shows that the proposed method can significantly reduce the 
computation time in both cases. 
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Aircraft type
Objective function /

constraint conditions

Configuration of

hidden layer

Training

data

Training

time (s)

Average

error (%)

Maximum stress 20_30_20_5 7000 329 0.74

Tempest Natural frequency 20_30_20 7000 351 1.09

Weight 20_30_20 7000 294 0.0061

Maximum stress 50_60_50_5 14000 844 0.79

Zero Natural frequency 30_40_30 7000 412 0.73

Weight 20_30_20_10 11000 374 0.0046

Maximum stress 50_70_50_5 9000 764 0.82

Toryu Natural frequency 120_120_50 5000 808 1.16

Weight 20_40_20 8000 368 0.0048  
 

Table 3: Obtained ANNs that infer maximum stress, natural frequency, and weight. 

 
 

0

0.5

1

1.5

2

0 5000 10000 15000 20000

A
v
e
ra

g
e
 e

rr
o
r

(%
)

Number of data

 
Figure 3: Effect of the number of training data on average error. 

 

Configuration

of hidden layer

Average

error (%)

10 2.36

20 1.67

30 1.33

40 1.45

50 1.28

60 1.20

70 1.27

80 1.27      

Configuration

of hidden layer

Average

error (%)

10_10 1.27

20_20 0.82

30_30 0.71

40_40 0.65

50_50 0.63

70_70 0.64

100_100 0.88

50_60_50_5 0.55  
 

Table 4: Effect of hidden layer configuration on average error. 

 

Maximum

stress (Mpa)

Weight

(Kg)

Maximum

stress (Mpa)

Weight

(Kg)

Maximum

stress (%)

Weight

(%)

Natural

frequency (%)

Tempest 57016 10.96 957.1 11.76 957.3 6.83 0.0204 0.76

Zero 105016 6.1 786.6 6.33 786.7 3.62 0.0107 0.58

Toryu 52816 17.34 799.4 18.02 799.4 3.76 0.0005 2.58

Airfraft

type

The number

of inference

ANN FEM Error

 
 

Table 4: Optimal solution of sizing optimization. 
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Airfraft type
Collection of

training data

Sizing

optimization

Tempest 280 2281

Zero 560 4201

Toryu 360 2113  
 

Table 5: Calculation time. 
 

4.3 Effectiveness of Fine tuning 

This section verifies the effectiveness of fine tuning. The final weights of the network trained for 
Tempest are used as the initial values for Zero. Multiple training runs are performed while varying 

the number of training data from 1000 to 15000, and mean error and MSE (mean square error) of 
inference of the trained networks is evaluated. For comparison, a network is also trained using 
randomly set initial weights. Figure 4 shows the effect of the number of training data on mean 
error and MSE with and without fine tuning. These figures show that fine tuning improves the 
inference accuracy of the network regardless of the number of training fata. 

 

With fine tuning

Without fine tuning

With fine tuning

Without fine tuning

 
 

Figure 4: Effect of fine tuning. 

4.4 Discussion 

The proposed method has succeeded in significantly improving the efficiency of dimensional 
optimization. In addition, by reusing weights from previously trained networks using fine tuning, a 

network with high inference accuracy can be obtained with less training data. On the other hand, 
precautions are as follows. Since the inference error of the trained network cannot be zero, the 
results of sizing optimization also contain errors. Therefore, verification of the optimal shape is 

essential. Since the number of training data depends on the problem, it must be determined by 
trial and error. However, the time required for sampling, training, and optimization of design 
alternatives is very short compared to the time required to collect training data, so the number of 
training data required to obtain a network with sufficient inference accuracy can be minimized by 
increasing the training data incrementally. Since configuration of hidden layers of the network also 
depends on the problem, trial and error is also required. 

5 CONCLUSION 

In this paper, an efficient sizing optimization method using artificial neural networks is developed in 

order to handle more design variables within a practical computation time. The features of the 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 20(5), 2023, 976-986 

© 2023 CAD Solutions, LLC, http://www.cad-journal.net 
 

985 

proposed method are that structural topology, e.g., the number of ribs, can be treated as a design 
variable, and that the number of data required to train networks can be reduced by reusing data 
collected in the previous optimal designs using fine tuning. As confirmed in the case study, 
collection of training data takes an enormous amount of time, while training of the network and 

sizing optimization using the trained network are completed in a very short time. Therefore, a 
realistic use is shown, i.e., the number of training data is gradually increased while checking the 
inference accuracy of the network and the optimal results of dimensional optimization. In the case 
study, the proposed method was applied to the optimal design of three World War II fighter wings, 
and it was confirmed that optimal results could be obtained in a significantly shorter time than 
traditional sizing optimization. In addition, networks were trained with different configurations of 
hidden layers and different numbers of training data, and the results show that those factors have 

a significant impact on the inference accuracy of those network. It was also confirmed that the 

network with good accuracy can be obtained with a small amount of training data by conducting 
fine tuning using the training data collected for other fighters. In the case study, the proposed 
method was applied to the wings of World War II fighters. However, the proposed method can be 
applied not only to classic aircraft wings as shown in the case study, but also to modern aircraft 
wings, and even to various types of structures other than aircraft wings, if they have structural 

dimensions and thickness whose values can be changed as design variables. Also, if multiple design 
targets can be modeled using the same design variables, like the three types of aircrafts in the 
case study, the training data used in previous optimal designs can be reused to reduce the number 
of training data to be newly collected. This streamlines the development of product variations and 
design based on existing products, which is common in many companies. 
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