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Abstract. Traditional virtual reality (VR) technology generates indoor 3D map 

models through human modeling, which has problems such as slow response time 
and bias. For this reason, we propose a robot-aware environment modeling scheme 

with altered point cloud generation algorithm and VR. First, the 3D point cloud is 
reconstructed into a robot-sensitive environment model by environment-aware 
reconstruction algorithm and imported into the computational architecture. Then, the 

robot is repositioned in different environments by visual localization techniques and 
the robot pose is mapped in real time to achieve human-robot interaction. 
Experiments show that using visual repositioning techniques with point clouds to 

build environment-aware models is not only fast, but also solves the scene scale 
deviation and enables the reuse of maps. At the same time, the VR technology 

enables the operator to obtain a strong sense of immersion. 
 
Keywords: visual simultaneous localization and map building; virtual reality; 3D 

modeling; indoor modeling 
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1 INTRODUCTION 

In recent years, with the development of science and technology, human exploration of unknown 
fields has become more frequent, such as space robot exploration, deep-sea exploration, nuclear 

robot detonation, and medical robotics in continuous development [8]. The scientific experiments 
conducted by humans under these fields urgently need fully autonomous robots to complete tasks 
instead of humans, such as performing operational tasks in some long-distance or dangerous 

environments. Although humans have made great breakthroughs in the field of intelligent robot 
development, and some intelligent robots that can assist humans in experimental tasks have been 
manufactured [5]. However, fully autonomous robots that are independent of human control have 

not yet been developed, and it will be difficult to make a breakthrough in the near future due to the 
limitations of sensing technology, mechanism design, control principles, artificial intelligence, and 

other technologies for fully autonomous intelligent robots [12],[7]. Therefore, the semi-autonomous 
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human-robot interaction teleoperation technology under the need of human participation is still the 
main means to achieve the detection of unknown important areas. Humans can operate semi-
autonomous robots (e.g., robotic arms) at a distance to accomplish complex and dangerous tasks, 

among which space robotics for outer space exploration is an important application area for 
teleoperation. With teleoperated robotics, the operator can remotely control the robot to perform 

different tasks, and a typical teleoperated system structure is shown in Figure 1. 
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Figure 1: Typical remote operating system structure. 

VR [3] simulates virtual environments by computer, thus giving a sense of immersion, and plays a 
great role in coal mines, security and other high-risk areas. However, its modeling efficiency is low 
and the requirements for modeling engineers are high, especially for real-time rendering of VR 

scenes modeling requirements are higher. Relatively speaking, 3D laser scanning modeling 
technology [13],[11] has many advantages such as fast, high accuracy, low cost, and no contact, 

but the amount of data is particularly huge and difficult to run in VR systems, and the scanning 
modeling of scenes generally needs to be used in conjunction with mapping equipment such as total 
stations, which requires high operator requirements 

A more efficient way to construct a virtual 3D scene map of the real environment can be achieved 
by SLAM algorithm. The two mainstream methods of SLAM nowadays are LIDAR-based techniques 
[2],[22] and vision sensor-based techniques [15],[1]. Among them, LiDAR is not affected by lighting, 

and the study [8] used LOAM algorithm to construct point cloud maps in real time as 3D maps in 
virtual reality scenes, where each point color indicates its height, but the original color and texture 

information of the map is missing, and the point cloud map representation also makes the structure 
details blurred or missing. Visual SLAM can solve the problem of lack of texture in laser SLAM because 
the visual sensor has the advantages of small size, easy use, and rich texture and color information 

is stored in the image. The framework of current visual SLAM systems is relatively mature, among 
which ORB-SLAM2 [10] is the first open-source SLAM system for monocular, binocular and RGB-D 

with closed-loop, repositioning and map reuse modules, but only one camera sensor is used, which 
leads to poor system robustness. In contrast, VINS-Mono [16], a real-time SLAM framework for 
monocular visual inertial systems [25], is an optimization-based VIO approach with tight coupling 

of visual and IMU information, combined with closed-loop detection and map optimization, to 
construct a complete monocular visual SLAM approach. This method effectively solves the problem 
of scale uncertainty on monocular, but only sparse 3D maps are constructed. The study [20] 

constructs a dense 3D map based on a large-scale 3D reconstruction method with symbolic distance 
function, using sub-maps to reduce the cost of storage and optimization, and the system assumes 

that the gravity direction can be obtained in real time to reduce the dimensionality of the positional 
estimation problem. 
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To address the above problems of inefficiency and lack of textural structure information in real 
environment 3D modeling, this paper combines visual SLAM technology and VR technology to 
propose a VR-based real environment 3D modeling system for mobile robots. The indoor scenes are 

image captured, processed to generate dense 3D point cloud maps, and then the point cloud maps 
are reconstructed by surface reconstruction algorithm to generate 3D models and mapping, and 

imported into the virtual reality device for visualization to achieve an all-around view of the indoor 
3D scenes and provide users with effective 3D information more quickly. After experimental 
verification, the proposed system effectively solves the problems of low efficiency of previous manual 

modeling and lack of texture and structure information in laser SLAM modeling. Finally, the 
effectiveness of the repositioning module is verified, and the reusability of the map model is realized 

when there is no significant change in the real environment, thus making the human-machine 
interaction more efficient. 

2 VIRTUAL ROBOTIC ARM GEOMETRY MODELING 

For the 3D virtual prediction environment built in this system, its concrete implementation is 
displayed on the picture control on MFC using the OpenGL graphics programming library on the 
Visual studio 2010 development platform [6]. There are two main methods for rendering 3D scenes 

based on OpenGL, one is to directly use the library functions in OpenGL to draw the basic units such 
as points and lines and 3D bodies, and build the required model by translation, rotation, scaling and 

other library functions, this method is simple and suitable for the construction of simple 3D models, 
but for complex model rendering can not be well restored, and the fidelity effect is poor [4]. The 
other is to use 3D graphics drawing software to draw the 3D model, and render the whole connected 

model by importing the model surface with fixed points [21]. In this paper, the second approach is 
to build a virtual environment based on SolidWorks modeling and OpenGL programming. The main 
implementation is to build a realistic 3D virtual model through coordinate transformation by 

importing the STL file generated by SolidWorks and calling the geometric function mathematical 
library such as GLM (OpenGL Mathematics) by OpenGL. The geometry modeling of the virtual arm 

is shown in Figure 2. 

Joint 1 Joint 2

Joint 3

Joint 4

Joint 5

Joint 6 Joint 7

 

Figure 2: Geometric modeling of the virtual robot arm. 

The virtual robot arm constructed by geometric transformation of the OpenGL model library has the 

same scale dimensions as the real SCHUNK robot arm. The left side shows the independent 3D 
model of each joint module, and the kinematic model is established by the kinematic principle of the 
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robot arm, and the robot inverse operation can be performed according to the kinematic model of 
the robot arm. The constructed virtual robot arm is shown on the right side of Figure 2, and the 
vertical state and initialization state of the robot arm are shown respectively. 
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Figure 3: Flowchart of concrete implementation. 

In order to make the constructed virtual 3D environment model more realistic, it is necessary to set 
the light source properties for the whole 3D model. The glLightfv(1,2,3) function is used to set the 
light source, where the first parameter represents the label of the light source, the second parameter 

represents the ambient light, diffuse reflection, position and other property settings, and the third 
parameter represents a vector to set specific parameters to enhance the 3D rendering effect. 

3 SYSTEM FRAMEWORK 

The VR-based fast 3D modeling system for realistic environments of mobile robots consists of two 
modules, the Robot side and the Virtual Reality side, and the system framework is shown in Figure 

1. As shown in the Robot side in Figure 1, the robot acquires the corresponding data using RGBD 
camera and IMU, estimates the robot pose through the front-end of visual odometry, and the 
Voxgraph algorithm is used as the back-end to optimize the pose and construct the global map, and 

the map is represented in the form of 3D point cloud, and the 3D point cloud map is reconstructed 
by the surface to generate the 3D model map, and then sent to the VR side. As shown in Figure 4, 

the operator makes a decision based on the real-time video stream and the robot pose in the 3D 
model map, plans the path in time and issues commands through the VR handle to control the robot 
movement, while the robot pose can be updated and mapped in the 3D model map in real time by 

repositioning. 
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Figure 4: Framework of the proposed system. 

3.1 Point Cloud Map and Repositioning 

The robot is controlled by the VR handle to complete the data acquisition, and then the dense 3D 
point cloud scene map is generated by the visual SLAM algorithm. The block diagram of the visual 

SLAM algorithm is shown in Figure 5. Voxgraph is used as the main framework of the algorithm, and 
the whole algorithm consists of two modules: front-end and back-end. In the front-end, VINS-Mono 

is used as the vision-inertial guidance odometer to generate the sub-point cloud map by initially 
estimating the positional attitude, and to complete the computation of the three constraints required 
in the back-end. In the back-end, least squares are constructed using three constraints (alignment 

constraints, odometer constraints, and loopback constraints) to complete the optimization of the 
positional map. 
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Figure 5: Visual SLAM system block diagram. 
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Where: 1 2{ , ,..., }WS WS WSNx T T T=
is the initial estimated poses of the odometer, 

4

WSiT R
 ; 

, ,R O L
 

are the index sets of poses in the alignment constraint, odometer constraint, and loopback 
constraint, respectively. Based on this, a repositioning module is added to align the current sliding 

window frame with the past pose-map when the robot enters the environment again, to judge 
whether the similarity between the feature points in the current image and the feature points in the 
pose-map is greater than the set threshold, and if the threshold is exceeded, the successful 

repositioning is judged, and the repositioning is realized by inverse depth solving the camera's poses 
in the map. The successful repositioned poses are transmitted to the VR side, and the corresponding 

spatial coordinates of the robot can be displayed in the model. 

3.2 Generating the Model Map 

In order to realize the 3D modeling of the real scene, the dense 3D point cloud needs to be processed 

by the surface reconstruction algorithm to obtain the refined 3D scene model and the corresponding 
texture map. The surface reconstruction algorithm in this paper is based on Possion reconstruction 

[14], and the basic steps are as follows. 
1) First, the point cloud map is down-sampled by statistical filter for noise removal [19] and the 

farthest point sampling (FPS) method [22], and the existence of outlier points will cause the 

surface of the reconstructed object to be unsmooth, so the statistical filter is used to remove the 

outlier points. For any point pi, the neighborhood is obtained by KnnSearch 
( )j ip Nbhd p

, 

and the average 

Euclidean distance x  from ip
 to the points in its neighborhood is calculated, and let all the average 

distances satisfy a Gaussian distribution as follows. 

2

2

1 ( )
( ) exp

22

x
f x





 −
= − 

                                                             (2) 

Where: 


 is the mean value;   is the standard deviation. The points whose mean distance is 
outside the range of standard deviation are eliminated, i.e., the outliers are eliminated. Then the 

point cloud map is down-sampled by FPS. The point P0 is randomly selected as the starting point in 

the set A with the input point cloud number N, and the sampling set 0{ }B p=
 is obtained. Next, 

the distance from the remaining points in the set A to the points in the set B is calculated, and the 

point with the farthest distance is selected as 1p
 and added to the set B. And when the number of 

points in the set B is greater than 1, the sampling principle satisfies. 
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Where: 
,id j

 denotes the Euclidean distance from the remaining points in set A to the sampled 

points in set B. The minimum value of each column is first taken as the distance from the point in 
set A to set B, and then the point with the maximum distance in that row is taken as the sampling 

point, and the sampling step is repeated until 
'N  target sampling points are sampled. The purpose 

of down-sampling points is to improve the speed of reconstruction on the basis of satisfying the 
complete requirements of model reconstruction, and the farthest point sampling can cover all the 

points in the space as much as possible 

2) Calculate the normal of each point. For any point ip
, the neighborhood 

( )j ip Nbhd p
 is 

obtained by KnnSearch, and the covariance matrix is constructed by calculating the center of 
mass 
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3) Generate a model using Possion surface reconstruction. the core idea of Possion surface 

reconstruction [23] is that given a point cloud region S, the point cloud represents the location 

of the object surface M, its normal vector n  represents the inner and outer directions, and the 

point cloud boundary is M , by implicitly fitting an indicator function M  derived from the 
object. 

 

1,
( )

0,
M

q M
q

q M



= 

                                                                                               (5) 

Where: 
q

 denotes the position of a point in the point cloud region. This transforms the problem of 

reconstructing a point cloud surface MM = 
 into a problem of solving the reconstruction indicator 

function M . The basic principle of the Possion surface reconstruction algorithm is to create an 

octree   topology of depth D for the input point set and to attach a nodal function OF
 to each node 

o . The expansion is of the form 

http://www.cad-journal.net/


223 

 

Computer-Aided Design & Applications, 20(S14), 2023, 216-230 
© 2023 CAD Solutions, LLC, http://www.cad-journal.net 

 

 

3

1
( ) o

o

o o

F F
w w

 −
  

 

q c
q

                                                                           (6) 

Where: oc
 denotes the center of node o ; ow

 denotes the width of node o . Introduce the basis 
function F to describe the relationship between the node function and the vector field V. 
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                                                                                         (7) 
The introduction of a high-pass filter converts the surface reconstruction of a directed point set into 

a spatial Poisson problem. 

*
( , , ) [ ( ) ( ) ( )] nF x y z B x B y B z=

                                                               (8) 
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Denote the 8 neighboring nodes of the current node sp
 by 

Ngbr ( )p s
 and use {

,o s
} as the 

interpolated weights so that the vector field of the surface gradient domain represented by the 

indicator function is approximated as 

,
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The problem of solving Poisson's equation 
 =χ V

 is simplified as 

22, , ,o o o

o o  

 − =  −  χ V F χ F V F‖ ‖
                         (11) 

For a given |   |-dimensional vector V , the solution to the function 
χ

 can be solved by 

approximating V  with a vector composed of the Laplace operator and oF
 projected by this 

function in the function space, i.e., by converting it into a solution to 

2

o

o

v


− v

. To solve the 

vector using matrix operations, the algorithm defines a V -order matrix L . Each item of the 
matrix is the result of the dot product of the Laplace operator and each nodal function, and the 

problem of solving for 
χ

is finally reduced to solving for 
( )

2min
x 

−
R

Lx v‖ ‖
. Finally, the 

equivalence surface is extracted by the moving cube method to obtain the reconstructed model. 
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4) Point cloud triangulation to generate texture mapping. The points on the surface S are 
triangulated, and the vertices along the triangulation are mapped to the mapping plane UV 
coordinates, and the mapping color information is the average of the grayscale of the three 

channels corresponding to the three points. 

21 2 3

3

i i i

i

I I I
I

 



+ +
=

                                                             (12) 

Where: i  is taken as r, g, and b, representing the grayscale values of R, G, and B channels, 
respectively. 
5) Match the model and texture map. According to the normal direction of the point in step 2), the 

texture map is matched with the model side of the normal positive direction to complete the 
construction of the whole map model. 

4 EXPERIMENT AND DEMONSTRATION 

4.1 Point Cloud Generation 

The repositioning module in the system is evaluated on the basis of real scene modeling, and the 

initial positioning time, repositioning time, and repositioning accuracy of the system are tested 
several times and averaged. As shown in Figure 6, the real-time positioning coordinates will be 

mapped in the 3D model; the real-time video stream will assist the user to know the surroundings 
of the robot location; the viewpoint can be switched to the robot to observe the virtual environment 
in which the robot is located. 

 

 
Figure 6: Real-time positioning verification. 
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Table 1 shows the initial positioning and repositioning time consumption statistics. In the 20 
time-consuming tests, the system was successfully initialized and repositioned each time, and 
the average error of repositioning was 0.31 m, which proved that the repositioning mode was 

not effective. The effectiveness and stability of the repositioning module were verified. 

 

Parameter Value 

Initial positioning time / s 11. 853 

Relocation time / s 17. 586 

Relocation accuracy / m 0. 32 

 

Table 1: Initial positioning and repositioning time-consuming tests. 

A mobile robot Pioneer⁃3DX was used to track a moving target in a laboratory with an area of 80m2. 
The maximum speed of the robot is set to 200m/s and the maximum angular speed is 10(°)/s, and 

the camera is mounted above the robot to acquire images every 3s. 

4.2 Performance Analysis 

Table 2 shows the record table of the number of point clouds after applying the method of this paper 

with the motion target tracking method based on the improved Camshift algorithm of literature [19] 
and the improved motion target tracking method based on ECO⁃HC of literature [9] to segment the 

images with the number of point clouds of 30700 at the first frame, 200 frames, 400 frames and 
600 frames. 

 

Number of frames Method of this 
paper 

Literature [19] 
method 

Literature [9] 
method 

1 195128 166551 152891 

200 121862 112006 153805 

400 135897 125179 155120 

600 194002 174053 155869 

 
Table 2: Record table of the number of point clouds after segmentation by the three methods. 

Using the sample data after segmentation by the three methods shown in Table 2, the root-mean-
square error of point cloud segmentation by the three methods with different segmentation ratios 

was counted, and the results are shown in Figure 7. 

 
 

Figure 7: Root-mean-square error curve of point cloud segmentation. 
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From Figure 7, it can be seen that, under the same segmentation ratio, the RMS error variation 
curve of point cloud segmentation by applying this paper is always lower than that of the method of 
literature [19] and the method of literature [9], and the curve is relatively flat. It indicates that the 

error of point cloud segmentation by applying the method in this paper is smaller and more suitable 
for practical needs under the same segmentation ratio. 

Figure 8 represents the distance accuracy of the moving target at four angular velocities obtained 
by applying the method of this paper, and this index is reflected by the change of distance coefficient 
Ri at four angular velocities, and the larger the distance coefficient Ri is, the lower the tracking 

accuracy is. From the analysis of Figure 8, it can be seen that the distance coefficient Ri is the 
smallest when the angular velocity value is 6(°)/s and 8(°)/s, and the distance accuracy of motion 

target tracking obtained by applying this paper is higher than the distance accuracy of motion target 
tracking when the angular velocity is 4(°)/s and 10(°)/s, and the highest value is reached when the 
center distance deviation is 9 pixels. This indicates that the mobile robot has better motion target 

tracking when using angular velocity 6(°)/s and 8(°)/s for motion target tracking. 

 
Figure 8: Distance accuracy curve of moving target. 

Figure 9 shows the center distance error at four angular velocities obtained by applying the method 

of this paper. From Figure 9, it can be seen that the center distance error of the motion target 
tracking obtained by applying the method of this paper is lower than the center distance error of the 

motion target tracking at the angular velocity values of 6(°)/s and 8(°)/s than that at the angular 
velocities of 4(°)/s and 10(°)/s, and there is no large fluctuation in the center distance error curve 
and the target tracking is stable. Figure 10 represents the target tracking area of the robot in the 

absence of obstacles versus in the presence of obstacles. Figure 11 represents the error offsets of 
the target tracking region obtained by applying the method of this paper with the method of literature 
[19] for 240 experiments on the target tracking region in Figure 11. From Figure 11, it can be seen 

that the target tracking offset curve obtained by applying the method in this paper is always lower 
than the method in literature [9] under the same number of experiments, no matter in the case of 

obstacles or no obstacles, and the target tracking offset curve obtained by applying the method in 
this paper changes more smoothly without large fluctuations, while the target tracking offset curve 
of the method in literature [9] and the method in literature [19] fluctuates more. It means that the 

tracking stability of the target is stronger and the error is smaller by applying the method in this 
paper. 
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Figure 9: Center distance error. 

 
 

Figure 10: Schematic diagram of the target tracking region. 
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(a) No Obstacles 

 

(b)Obstacles 

Figure 11: Target tracking error offset curve. 

5 CONCLUSION 

In this paper, the motion target region is determined based on point cloud segmentation, and the 
tracking of the motion target by the mobile robot is achieved by using the hybrid servo tracking 

method in the process of determining the region. And the following conclusions are drawn. The 
feasibility and effectiveness of the method to accomplish the tracking task are verified, and the 
distance accuracy of its motion target tracking is higher than other motion target tracking methods, 

and the highest value of motion target tracking distance accuracy is achieved at the center distance 
deviation of 9 pixels; and the center distance error in motion target tracking can be reduced by using 

the appropriate angular speed. However, it is not possible to verify whether this method is also 
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better than other motion target tracking methods in multi-target tracking because of the single 
target tracked by the mobile robot, and the next step will be to study the direction of multi-target 
tracking by the mobile robot. 
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