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Abstract. In the field of optical 3D scanning for healthcare applications, low-cost 
depth cameras can be efficiently used to capture geometry at video frame rates. 
However, the complete reconstruction of anatomical geometries remains challenging 
since different scans, collected from multiple viewpoints, must be aligned into a 
common reference frame. This paper proposes a fully automatic procedure to align 
scans of the upper limb patient’s anatomy. A 3D optical scanner, obtained by 
assembling three depth cameras, is used to collect upper limb acquisitions. A relevant 

dataset of key points on the hand and the forearm geometry is then determined and 
used to automatically obtain a rough 3D alignment of the different scans. Hand key 
points are identified through a neural network, which works on RGB images captured 
by the depth cameras; forearm key points are recognized by directly processing the 

point clouds through a specifically designed algorithm that evaluates the skeleton 
line of the forearm. The approach was tested on forearm acquisitions, and the results 
were compared to alternative alignment methodologies. 
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1 INTRODUCTION 

In the last decade, the introduction on the market of consumer-grade depth cameras, such as the 
Occipital Structure Sensor, the Microsoft® KinectTM sensors or the Intel® RealSenseTM cameras, has 

supported the development of portable and low-cost dedicated optical 3D body scanners for 
healthcare applications [6, 13, 15]. The adoption of low-cost sensors can also strongly impact the 
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opportunity for new telerehabilitation systems that connect therapists and patients with cognitive or 
motor impairments [1, 12]. In 3D optical scanning, body scanners must face critical issues related 
to the deformability of human tissues and the non-stationary nature of the scanning target. These 
issues impose that the scanning time must be reduced as much as possible to minimize scanning 

artifacts. In this regard, depth cameras can capture geometry (i.e., point clouds) and color 
information (i.e., RGB images) at video rates (up to 90 fps), thus guaranteeing fast acquisition times. 
However, the overall reconstruction of a human body part (i.e., lower or upper extremities, chest, 
head) requires collecting multiple scans from different viewpoints. Two approaches can be followed: 
1) simultaneously using multiple scanning devices or 2) collecting multiple acquisitions from the 
same device, which is appropriately moved around the target surface [10]. The first approach 
involves a calibration stage before the scanning process, whereas the second requires a strategy to 

align the sequential scans to the same reference system. The two approaches also differ in terms of 

the requirements they must meet. The former requires a specific architecture to constrain multiple 
optical devices together. This architecture may be cumbersome and difficult to move around the 
patient. For this reason, the overall scanning process should be carried out without planning any 
repositioning between the scanner architecture and the patient. The second, instead, requires the 
scanner's portability, which must be easily moved around the patient. 

Some examples of the first approach are given in [3, 5, 13]. In [3, 5], multiple Intel RealSense 
SR300 depth cameras (from four to eight) are arranged on circular rings fixed on a desk. The patient 
arm is then introduced internally to the rings and housed on specific supports. The relative placement 
between the depth cameras is evaluated by a calibration stage using a target object with different 
planes and edges. The cameras acquire the target object, and common features are used to perform 
a semi-automatic registration of the range maps. In [13], three Kinects are rigidly assembled on a 
fixed frame to capture different human body parts. Moreover, the patient stands on a 360° rotating 

platform, allowing the whole-body acquisition in about 30 seconds. 

Some examples of the second approach are given in [7, 14]. In [14], the Occipital Structure 
Sensor has been used to acquire the patient arm to evaluate the volume variations for lymphedema-
affected patients. The sensor is mounted on an Apple iPad, which is moved around the target 
anatomy. The software Skanect is then used to automatically align the point clouds and RGB data 
to obtain the final polygonal mesh. The same sensor is used in [7] to acquire the hand in different 
functional postures to create 3D hand parametric models. These approaches require many different 

placements, which are obtained by freely moving the single scanning sensor around the target 
anatomy. Commercial software or a great manual effort is required to register all the acquired data 
in a common reference system. An attempt to overcome this limitation and automatize the scanning 
process by a single sensor has been proposed in [8] using the Sense 3D Scanner (3DSystems). The 
sensor is placed on an arm that rotates around the target, thus making possible the acquisition of 
the patient upper limb from different viewpoints. However, registration issues remain since the 

circular path of the sensor is obtained by manually acting on a crank handle. 

In the present work, a portable 3D optical scanner has been developed to reconstruct the 
patient’s upper limb anatomy. The scanner is based on a multi-sensor layout composed of three 
Intel® RealSenseTM depth cameras assembled on a lightweight circular rig. The three sensors are 
mutually calibrated to acquire and register acquisitions from three different viewpoints for each 
scanner pose. A procedure to automatically recognize common key points between scans deriving 
from different poses of the 3D scanner has been developed. RGB images obtained by the depth 

cameras are processed through a neural network to detect a dataset of relevant key points of the 
hand, which are then reprojected onto the point cloud to identify corresponding 3D points. A smaller 
dataset of relevant key points of the forearm is then added to the hand dataset. This latter dataset 
is obtained by directly processing the point cloud through a specifically developed method that aims 
to find matches at the skeleton line of the forearm. These two datasets, detected for different 
scanner poses, are then used to automatically obtain a rough 3D alignment of the point clouds in a 
common reference frame. The alignment is finally refined through a fine registration by an iterative 

closest point (ICP) algorithm. The approach was tested on forearm acquisitions, and the results were 
compared to alternative alignment methodologies. The research aims to solve the two main issues 
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arising when a 360° acquisition of an upper limb must be obtained: speeding up the acquisition 
process and automatically registering point clouds deriving from different scanner poses. 

2 HARDWARE SETUP AND CALIBRATION 

The scanner has been assembled by integrating three Intel® RealSenseTM D415 depth cameras on a 

circular frame having a diameter of 440 mm. Fig. 1 shows the 3D scanner architecture and a detail 
of a single sensor housed within a 3D printed cover, which protects from accidental impacts. The 
D415 camera is a compact sensor (99 mm × 20 mm × 23 mm) equipped with an RGB camera 
(resolution up to 1920 × 1080 pixels, frame rate 30 fps), an infrared projector, and two IR cameras 
(resolution up to 1280 × 720 pixels, frame rate up to 90 fps). Due to the high frame rate, the sensor 
is suitable for capturing human targets, which may undergo small involuntary movements. 

Moreover, the infrared projector uses a single static pattern to enhance the scene texture, thus 

avoiding interference problems between different sensors, typical of structured light approaches that 
use the sequential projection of fringe patterns (i.e., the SR300 Intel® RealSense™ depth camera). 
The metrological characterization of the D415 depth camera presented in [4] demonstrated that this 
sensor can be effectively used as a low-cost device for biomedical purposes, even if the device was 
primarily designed to address applications such as tracking, gaming, or gesture recognition. Each 
depth camera acquires a point cloud for each scanner pose. The simultaneous use of three different 

depth cameras increases the field of view since three-point clouds, from different viewpoints, are 
collected for each scanner pose.  
 

  
(a) (b)  

 
Figure 1: 3D scanner architecture: (a) overview of the three sensors mounted on a circular ring, (b) 

detail view of a single sensor placed inside the cover. 
 

However, these acquisitions must be aligned into a common reference frame by exploiting a 
calibration procedure, which relies on determining the relative placement between the sensors. The 

procedure is possible since the three sensors are connected to the same rigid structure. A 3D shape, 
obtained by additive manufacturing using PLA (polylactic acid) material and a FFF (fused filament 
fabrication) machine, is used as a calibration specimen. The specimen is composed of six planar 
surfaces, differently oriented, and three colored markers attached to the external surfaces (Fig. 2). 
For each sensor’s acquisition, three key points (i.e., the marker’s center) can be detected on the 
captured RGB image and reprojected on the corresponding point cloud using the sensor’s factory 
calibration data. The key points triplets are then used to obtain the rough alignment between the 

three-point clouds captured for each scanner pose, which is finally refined with an ICP algorithm. 
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Figure 2: Specimen used to calibrate the mutual placement between the three depth cameras on 
the circular ring. 

3 AUTOMATIC REGISTRATION BETWEEN DIFFERENT SCANNER POSES 

Each scanner pose can provide only a limited area of the target surface. For this reason, multiple 
scans deriving from different scanner viewpoints must be collected. The scans deriving from different 
poses of the 3D scanner must then be aligned into a common reference frame to obtain a consistent 
model of the patient's anatomy. In this regard, no calibration procedures can be adopted since the 
scanner is freely moved around the target by the user. The conventional approach is based on a 
post-processing phase after the scanning stage, which involves selecting at least three common 
points between common areas of adjacent point clouds (3-2-1 procedure). This approach, however, 

is drastically affected by the manual selection of corresponding points on different point clouds. To 
accomplish this task, each point cloud must be visualized, rotated, compared, and visually inspected 
to find any relevant feature to identify corresponding points in different clouds. This results in a 

cumbersome, slow, subjective, and unrepeatable procedure, especially if no markers are attached 
to the patient's arm. In this scenario, the user mainly looks for recognizable features, such as 
fingertips, wrist and elbow bones, and knuckles.  

Thus, the present work aims to overcome these limitations by defining a fast, reliable, objective, 
and repeatable automatic procedure. The approach developed to this extent consists of three main 
steps: 

- detection of visible features typical of the hand by a neural network (NN), adopted to replace 
the human intervention; 

- automatic recognition of forearm features to be matched for different acquisitions; 

- global registration by an ICP algorithm. 

3.1 Neural Network for Hand Key Points Detection 

The development of NNs has gained significant interest in recent years thanks to the diffusion of 
open-source software and NNs training infrastructures. The use of a NN is particularly suitable in 
this application since each acquired frame provides three-point clouds from different perspectives 

and the three corresponding RGB images. This information enhances the chances of having a clear 
view of key points in at least one of the images. The study of hand motion is also of great interest 
in different fields such as medicine, ergonomics, virtual reality, etc. Hence, several NNs are available 
which recognize and categorize specific hand features. In particular, the “MediaPipe Hands” NN was 
selected and used in this work [9]. This NN is implemented in python language, and the availability 
of open-source code allowed for easy implementation of the routine in the overall scanning workflow, 
which was developed in MATLAB language. If an RGB image of a hand is selected, the NN provides 

a list of the detected key points, along with a recognition score. In ideal conditions, the algorithm 
can detect 21 features of the hand, i.e., four key points on each finger plus one key point on the 
wrist. The output is always sorted in the same key point order, as reported in the scheme of Fig. 3. 
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Figure 3: Hand key points detection through the NN. 

 

Since it may happen that one or more key points are not visible in a specific image, the network is 
implemented to store a not-a-number value for those key points which could not be detected. Thus, 
the output always consists of 21 points in the same order, thus avoiding misleading feature 
numbering. This is crucial when the key points detected from different viewpoints must be compared. 

Due to this numbering strategy, the correspondence of points with the same indexing is always 
guaranteed. 

3.1.1 Neural Network performance in key points detection  

An evaluation of the performance of the NN in detecting hand key points on the images stored by 

the developed scanning device was performed. Several acquisitions of different arms (both left and 

right) with different poses (e.g., stretched, folded) and from different perspectives were taken. For 
each scanner pose, the images acquired by three depth cameras were processed by the described 
NN, and the total number of successfully detected key points was recorded. The results obtained on 
an almost ideal acquisition are reported, as example, in Fig. 4(a). It is worth nothing that the palm 
is completely visible by all the three sensors, and the fingers are properly stretched. This condition 
represents the ideal hand pose for the NN to detect the key points. Indeed, all 21 hand landmarks 

are correctly detected in the three images and reported as white marks. On the other hand, Fig. 
4(b) shows the results of a frequent pose of the hand with respect to the sensors: as can be seen, 
the palm is visible only for one of the devices (sensor n. 2), while the others capture a lateral view 
of the hand. In particular, sensor n. 1 has a partial view of the palm; thus, the detected key points 
are still approximately aligned with the hand. Sensor n. 3, instead, has an entirely lateral view of 
the hand, which does not allow for a proper landmarks detection resulting in key points completely 

misaligned with respect to the hand.  

These qualitative results were further investigated during the testing campaign by recording for 
each image whether the detection was successful or not. The campaign involved the arm of 4 
different researchers, acquired from ten different viewpoints each, thus having 40 image triplets and 
a total of 120 images. The NN performance was evaluated from two different perspectives. Firstly, 
each of the 120 images was treated as a single picture and processed through the NN. The detected 
key-points were then evaluated by an expert user, who marked whether the detection was successful 
or not. Thus, the success rate of the NN in hand landmarks detection could be assessed by computing 

the ratio between the number of images marked as successful and the total number of images, 
obtaining a value of 67.5 %. Nevertheless, the developed scanning device exploits three synchronous 
sensors; thus, in this application, detection can be considered successful if at least one of the three 
sensors detects the key points. The analysis was then repeated on the 40 image triplets, marking 
as successful any image triplet where at least one image provided a successful detection. A success 

rate of 92.5 % was obtained. These results demonstrated that the layout of the sensor enhanced 

the NN performances. It is worth noting that if the key points detection fails in all three images of a 
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single acquisition, the registration of that point cloud can still be performed with the conventional 
manual procedure so that no 3D data loss is expected.  

 

 

(a) 

 

(b) 

 
Figure 4: Hand key points detection: (a) almost-ideal hand pose and (b) lateral view. 

3.1.2 Hand key points selection  

Each acquisition frame includes data from three independent Intel® RealSenseTM D415 sensors. The 
three-point clouds are mutually registered thanks to the calibration of the scanner. Thus, the RGB 
pictures corresponding to these clouds can be analyzed to detect the hand key point. In principle, 
this procedure would provide three sets of hand key points, which could be equivalently used to 
register the clouds to subsequent frames. Indeed, this data redundancy allows for gaining a higher 
success rate. 

Nevertheless, some of the sensors can fail in detecting the hand key points, depending on the 

hand orientation to the cameras and on the finger pose. In practice, the identification of one sensor 

can detect a smaller number of key points or can completely fail. Thus, an automatic algorithm is 
needed to evaluate each frame and to choose the sensor with the best detection among the three 
available. To this extent, it is worth noting that at least three points are needed to obtain the cloud 
registration; hence it is not mandatory that all the 21 key points are detected. On the other hand, a 
larger number of key points provides an over-constrained registration, thus enhancing performance. 
Following this principle, a key point detection quality factor was defined by multiplying the 

identification score (provided by NN algorithm for each RGB image) by the number of detected key 
points in that image. This criterion allows selecting the key points set with many landmarks and a 
high-quality identification, thus representing the best choice among the three sensors. Once the best 
2D key point set is selected, it is possible to project their coordinates into the 3D point cloud by 
exploiting the D415 factory calibration, thus providing a set of 3D key points that can be stored 
along with the point cloud and exploited for registration purposes. An overview of the automatic 

selection algorithm is reported in Fig. 5. It is worth noting that if none of the sensors provided a 

reliable key points identification for a specific pose, that pose would require manual registration. 
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Figure 5. Schematic workflow of the algorithm. 

 

This procedure provides a set of registered 3D landmarks for each cloud. Nevertheless, the set of 
key points associated with each frame can contain a different number of landmarks, depending on 
the NN results. This case can be an issue since the rough registration requires two sets of one-by-
one corresponding 3D points to achieve cloud alignment. In practice, the most common situation is 
determined by the NN failing to detect a few random key points of the hand, thus impairing the 
possibility of directly using the whole set for the rough registration. To overcome this issue, the 

intersection between the key point lists belonging to the two point-clouds to be registered is 

considered, and a list of corresponding indexes is stored along with the cloud. When the registration 
step is performed, only the key points with the selected indexing will be used to compute the 
alignment roto-translation. 

3.2 Feature-Based Algorithm to Detect Forearm Key Points 

The proposed approach aims to detect specific points on the patient’s forearm that can be matched 
to drive the global registration of all the acquisition frames. Concerning the registration methods, in 
literature, typically, one or more feature descriptors can be used to detect potential correspondences 
among pairs of points of different acquisitions of the human body [2, 11]. These shape descriptors 
include Simple or Hybrid Shape Measures and the skeleton line. However, they can be used when 
the geometry is approximated with high-density point clouds as they are based on discrete 
differential geometry. In the proposed experimental hardware setup, the depth cameras resolution 

allows for acquisitions, which are affected by the typical staircase effect (Fig. 6); this level of 
information does not permit the use of the above-mentioned approaches. 

Therefore, a specifically designed procedure, whose main steps are described in Fig. 7, is 
proposed to accomplish this task. The procedure assumes that the external surface of the forearm 
has a skeleton that can be approximated by a straight line. For each 3D scanner pose, the forearm 
surface is acquired only for a small angular spanning. For this reason, each section is assumed 
circular to calculate the skeleton line position more robustly. 

Starting from all the acquisition frames (Fig. 7(a)) defined in the global reference system xyz, 
the method, for each of them, iteratively:  

- finds the direction of the skeleton line ξfin of the forearm; 

- detects the set of points i-th, which, being aligned along the ξfin direction, should have a 
higher potential of a match with the other acquisitions.  
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Figure 6. An example of point cloud acquisition with a magnification to highlight the staircase effect. 

 

 

(a)      (b) 

    

(c)      (d) 
 

Figure 7. Main steps of the algorithm for the forearm key point detection. 

3.2.1 Working principle  

For each scanner pose, the processed point cloud is the one obtained by merging the three registered 
point clouds captured by the three depth cameras. Let PCi-th be the i-th point cloud corresponding to 
the i-th scanner pose (Fig. 7(b)); the direction of the skeleton line of the forearm of the first attempt 

(ξo) is estimated by evaluating the Principal Component of inertia of the point cloud. In particular, 
the longitudinal axis ξo is associated with the lower inertia moment of the PCi-th. In Fig. 7(b), ξo is 
anchored to the barycenter (avgi-th) of the 21 points detected on the hand. Starting from ξo, the 
final direction is obtained by the following iterative method; at the j-th iteration (Fig. 7(c)): 

- Clustering of the points recognized near a set of planes perpendicular to ξj-1 (Γk,j-1); 

- Approximation of each cluster with a circle whose center is Ck,j; 

- Approximation of the centers Ck,j with a line by the RANSAC algorithm that defines the ξj. 
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The iterative algorithm stops when: 

|𝜉𝑗 ⋅ 𝜉𝑗−1| ≤ 𝑡𝑣 

where tv is a threshold value specified by the operator. 

Evaluated ξfin, the set of points i-th to be matched with the corresponding of the other point 
clouds are chosen as the sequence of at least five points most closely aligned (Fig. 7(d)). In order 

to make the registration process more robust using corresponding points, each element of the i-th 
set takes the value of its distance along ξfin from avgi-th. 

3.3 Global Registration 

The initial rough alignment obtained by exploiting the key points was finally refined by an ICP 
global registration to enhance the alignment of all the acquired point clouds. At this stage of the 

research, this step was carried out by using the Geomagic Studio 2013 (3D System, South Caroline, 
USA) ICP algorithm. One of the point clouds is fixed to provide a reference, while all the others are 

kept floating and mutually adjusted. The algorithm iteratively moves all the floating point clouds to 
obtain the overall best fit of the clouds group. Calculation control options were set as follows: sample 
size of 2000 points, tolerance value of 0, maximum iterations 100. 

4 RESULTS 

The proposed automatic method was implemented in an original software and coded in MATLAB. 
Experimental data were acquired to evaluate the implemented procedure's accuracy, potentialities, 
and limits. Each acquisition is composed of eighteen distinct point clouds corresponding to six 

different poses of the 3D scanner around the patient’s arm. At this preliminary stage of the research, 
the method was tested in the registration of the forearm of patients without severe pathologies that 

would further deteriorate the information from the acquisition process. In particular, in the 
performed experimentation, patients unable to stretch and control the movements of the upper limb 
and fingers were discarded. To quantify the performances, the results of the proposed method are 
compared with those of the gold standard model consisting of the patient’s forearm reconstruction 

obtained using the conventional 3-2-1 manual procedure followed by a global registration. 

To highlight the robustness of the method for the recognition of forearm skeleton line points, 
figure 8 shows the results obtained for the two different cases using four different registration 
strategies: 

- with hand key points only; 

- with hand key points followed by a global registration; 

- with hand and forearm key points; 

- with hand and forearm key points followed by a global registration. 

The results highlight that using only the hand key points for the initial alignment of the point clouds, 
the cloud region close to the hand is pretty well aligned, but a relevant misalignment of the forearms 
can be noted. Furthermore, this rough alignment is not accurate enough to guarantee the 
appropriate convergence of the global registration by ICP. On the other hand, adding forearm key 
points to the hand key points better constrain the first alignment step, which can bring the different 
point clouds considerably closer. This configuration allows the different point clouds to be correctly 

registered by running a global ICP registration.  

The performances of the proposed method were quantitatively evaluated in Fig. 9, which reports 
the final model obtained for the two forearms with the proposed method and gold standard one. In 
the same figure, maps of the distances between the two corresponding models are reported. These 
distances were computed by using Geomagic Qualify 2013 (3D System, South Carolina, USA). 
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Figure 8: Alignment results obtained by following different strategies for two different cases. 

 

More noisy data can be observed at the fingers due to the optical undercuts which occur during the 
scanning process. Discrepancies between models obtained by the fully automatic procedure and gold 

standard models are within the range ±1 mm (case #1: mean = 0.22 mm, standard deviation = 
0.49 mm; case #2: mean = -0.13 mm, standard deviation = 0.44 mm). As expected, greater 
deviation values are found in the correspondence of the hand region. It is worth noting that soft 
tissues were measured, and small involuntary movements may occur during scanning, thus 1 mm 

discrepancy can be considered acceptable for this anatomical application. Additionally, the developed 
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procedure allowed continuous and closed surfaces, an index of a high-quality 360° acquisition and 
registration. 

 

Figure 9: Textured final patient’s arm models obtained for the two cases here analyzed by 
registering all the point clouds with the proposed method, the gold standard one and deviation maps 
obtained with respect to the gold standard model. 

5 CONCLUSIONS 

The automatic registration of point clouds captured from different views by an optical scanner is 

challenging if no calibrated hardware (such as a rotary table or a robotic arm) is used. In this paper, 
this problem was faced through an automatic algorithm that exploits key point detection to obtain a 
first rough registration, which is then refined through an ICP algorithm. The methodology firstly 
processes the RGB images with a neural network to detect up to 21 key points on the hand. Other 
relevant key points are also detected in the forearm geometry by geometrically deriving an 
approximation of its axis. This set of key points can be detected on each point cloud, thus providing 
a 3D point list of the corresponding locations between subsequent clouds acquired by different poses. 

Therefore, they can be used to obtain roto translation matrixes that provide a rough alignment of 
the different viewpoints. Finally, the results can be refined with a global registration ICP-based 
algorithm. This procedure was tested on actual arm scanning performed on human arms. The results 
obtained with the automatic procedure were compared with those obtained with the conventional 
manual registration approach. Small discrepancies in the range of ± 1 mm were found and 

considered acceptable in this specific application field. Future efforts will be focused on 
experimenting the developed approach on a greater number of cases by also considering patients 

with a reduced upper limb mobility or with uncontrolled arm movements as those affected by 
dystonia disorders. Also, the possibility of including the ICP global registration into MATLAB routines 
will be considered to speed up and fully automatize the overall 3D reconstruction process. 
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