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Abstract. Firstly, a novel unit cell design, denoted as XX-shaped and constructed by hor-
izontally stacking two X-shaped structures, is introduced. The new design shows lower
compliance and telling mechanical properties compared to the original X-shaped structure.
Secondly, three series of micro-structures that share similar geometric features are constructed
and grouped into three families: The first is conventional and widely used in the literature
and contains superimposed parameterized X-shaped and square-shaped lattices. The second
is new and consists of superimposed parameterized XX-shaped and square-shaped lattices
while the third is generated by rotating the components of the second family by 90°. Thirdly,
a novel two-scale topology optimization procedure to build macro-structures from the prede-
fined micro-structures of the three families is presented. In order to overcome the obstacle of
finding suitable initial guesses for the design variables, the optimization process of material
(macro-scale) and lattice (micro-scale) distributions is conducted in three steps. In each
step, a distinct set of design variables is optimized. The modified Porous Anisotropic Ma-
terial with Penalization is used to model the micro-structures and their effective properties
are obtained by the numerical homogenization method. Finally, representative 2D numerical
structural compliance minimization problems are solved to illustrate the potential and effec-
tiveness of the new designs, where the results show that using hybrid lattice structures from
the three families together can achieve better structural performance than just employing
the conventional family.
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1 INTRODUCTION

Michell’s paper on the optimal design of frame structures [20] can be seen as a seminal work in the field of
topology optimization (TO). He showed how to find the lightest possible frame structure that could support
a given set of loads and constraints. Recent developments in topology optimization have extended Michell’s
work by incorporating advanced computational tools such as the finite element method (FEM) and two-
scale structure concepts. These methods allow for the optimization of complex, functionally graded lattice
structures, which can offer superior mechanical performance compared to traditional designs.

A common TO objective is minimizing compliance, in which algorithms increase structures’ stiffness by
redistributing the material within the specified design domain. An important approach presented by [22] uses
TO to simultaneously optimize the shape and material distribution of the compliant mechanism in order to
achieve a desired output behavior. This method has been shown to be highly effective in producing complex,
high-performance compliant mechanisms that are difficult or impossible to design using traditional methods.
This is accomplished by firstly, discretizing the structure into N finite elements and assigning a relative density
value ρn to each element n. Then, a relation between the densities and compliance is established through the
modulus. After that, the set of densities, ρ = {ρ1, ρ2, . . . , ρN}T , is considered as a variable of an optimization
problem and the optimized values are used to represent the topology of the optimized structure.

Due to the freedom in design and light-weighting possibilities offered by Additive Manufacturing (AM),
TO has attracted the attention of researchers in many fields such as medical implants, aerospace, as well
as mechanical and civil engineering [1, 19, 35]. Cellular structures are widely used in lightweight design due
to their high strength-to-weight ratio. In addition, the structural performance of AM cellular structures can
be easily modified by changing their design parameters, e.g. the strut diameter, according to the structural
requirement. These structures are known as Functionally Graded Lattice structures (FGLs).

Optimizing cellular structures requires very fine meshes. To alleviate the related high computational cost
of a very fine mesh representation in FEM, it is very practical to employ the approach of multi-scale modeling,
in which the design domain of the macro-scale structure (or simply macro-structure) is firstly discretized into
a sufficient number of subdomains called macro-elements, micro-scale structures, or simply micro-structures.
Then, these micro-structures are discretized into fine elements called micro-scale elements or simply micro-
elements. To ensure that continuum mechanics applies to both the macro- and micro-scale structures, the
micro-elements need to be much smaller than the macro-elements, which is known as the separation of length
scales. A typical two-scale structure is shown in Fig. 1a.

A common method to solve multi-scale TO problems is to assemble the design variables of each scale in a
separate set and then optimize these sets simultaneously. This concurrent approach was used in many recent
designs including two-variable optimization [5, 18, 21, 24, 33], three-variable optimization [4, 6, 7], and
four or more design variables optimization [8, 12, 13, 31]. Generally, when optimizing multi-scale structures,
a homogenization method is used to evaluate the effective material properties of the micro-structures by
solving specific partial differential equations either analytically (for simple micro-structures) or numerically (for
complicated micro-structures) by using the FEM which is computationally expensive [10, 11].

To pursue time reduction during the optimization of FGLs, the optimization process can be restricted to
a group of predefined lattices, which consequently restricts the application of the numerical homogenization
to a limited number of cycles. A better alternative to the groups of predefined lattices is using a family
consisting of micro-structures having similar geometric features. In literature, many works addressing two-
scale TO algorithms rely on one common family of micro-structures. This conventional family is generated by
superimposing two parameterized common micro-structures; the square-shaped (equivalent to the +-shaped)
and X-shaped because of their superior in-plane mechanical properties. Additional intermediate lattices are
constructed by varying the value of the design variable φ, for instance, φ = 0 indicates the square-shaped micro-
structure, φ = 1 indicates the X-shaped micro-structure, and 0 < φ < 1 indicates a linear combination between
them considering that the volume is constant for all these lattices. Fig. 1b illustrates the square-shaped, +-
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(c) Family of micro-structures

Figure 1: (a) Two-scale structure, (b) selected micro-structures, and (c) a family of micro-structures.

shaped, and X-shaped lattices and Fig. 1c shows a family of parameterized micro-structures occupying 50%
of its design domain, i.e., having a micro-scale volume fraction of V MI

f = 50%, which has been used in the
seminal formulation of Wang et al [25]. Then, extensions accounting for variable micro-scale volume fractions
were successfully introduced in [16, 26], but they were limited to the same family of micro-structures. After
that, non-symmetric micro-structures but also from the conventional family were added. Their micro-scale
volume fractions were fixed in [15, 27, 30] and then allowed to vary in [32, 34].

In this work, we present two additional families of micro-structures together with a two-scale topology
optimization procedure to enhance the structural performance of the optimized FGLs. The consideration of
the three families is important from both an implementation point of view and an engineering point of view.
In the former, numerical stability difficulties such as alternating between the families and local minima while
the gain, achieved in the latter, is increased flexibility. Our proposed procedure accounts for three design
variables wherein two of which are used to navigate between and within the three families. The optimization
process is done in three steps. In each step, and as a strategy to reduce the initial guess dependency, only a
subset of the design variables is optimized. However, we start by optimizing only the element densities (first
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Figure 2: Selected micro-structures members from the three families.

design variable) in the first step and continue optimizing them through the second and third steps. In the
second step, the families are selected by optimizing the second design variable, whereas the micro-structures are
selected by optimizing the third design variable in the third step. The remainder of this manuscript is organized
as follows: In Sec. 2, the design of the newly proposed families is discussed besides a brief introduction of
the numerical homogenization. In addition, the design of the macro-structure is described. In Sec. 3, the
formulation and solution of the TO problem include the definition of the design variables, the mathematical
formulation, the sensitivity analysis, and the filtering technique. Sec. 4 demonstrates the potential of using
the additional families by studying several numerical examples and comparing the obtained results with those
of just employing one family. Finally, a conclusion is presented in Sec. 5.

2 DESIGN OF THE TWO-SCALE STRUCTURE

In this section, we describe the technique we use in modeling cellular structures. We adopt the concept of two-
scale structure and discretize the macro-structure into N micro-structures and then each micro-structure into
M micro-elements. The superscripts MA and MI are used for referring to the macro-scale and micro-scale,
respectively, and the design and evaluation methods are introduced in the following subsections.

2.1 Design of the Micro-structures

In mechanics, the equivalent compliance of two or more parallel Hookean springs is the reciprocal of the sum
of reciprocals of the individual compliances, which is lower than the minimum one. As a novel strategy to
achieve better mechanical properties, namely, effective elastic moduli, we mimic this feature by introducing a
new micro-structure, denoted as XX-shaped, and constructed by stacking (connecting) two X-shaped structures
horizontally. We then use three families of micro-structures to optimize structural problems. The first family
is the conventional one that contains lattices obtained by superimposing parameterized X-shaped and square-
shaped micro-structures, see Fig. 1c. The second family is generated by superimposing parameterized XX-
shaped and square-shaped micro-structures. The third family contains the orthogonally rotated members of
the second family. Fig. 2 shows selected micro-structures (members) from the introduced families. To the
best knowledge of the authors, the second and third families have not yet been introduced in the literature.
A lattice similar to the XX-shaped was used in the work of J. Hu et al. [14].

To include the three families in the optimization process, a two-parameter description is needed; one
parameter indicates the selected family and the other one indicates the member inside the family. The two-
parameter description is given in detail in Sec. 2.3.
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2.2 Evaluation of the Effective Properties of Micro-structures

We treat the micro-structures as composite structures consisting of two isotropic materials, stiff and soft.
The former material has Young’s modulus of Esolid = 1 and represents the solid micro-elements while the
latter one has Young’s modulus of Evoid = 10−6 and represents the voids. To evaluate the effective elasticity
tensor of the micro-structures, we use the homogenization theory which finds a homogenized elasticity tensor
that reflects the mechanical behavior of complex materials with a periodic micro-structure by analyzing the
repetitive unit [10, 11]. According to homogenization theory, the equivalent elasticity tensor of a periodic
composite structure is obtained by

EH
ijkl =

1

|Ω|

∫
Ω

Epqrs

(
ϵ0(ij)pq − ϵ(ij)pq

)(
ϵ
0(rs)
kl − ϵ

(rs)
kl

)
dΩ , (1)

where Ω and |Ω| are the domain and volume of the micro-structure, respectively; Epqrs is the locally varying
stiffness tensor; ϵ0(ij)pq is the prescribed macroscopic strain field; ϵ(ij)pq is the locally varying strain field; and
i, j, k, l, p, q, r and s are the directions, i.e. {1, 2, 3} for 3D or {1, 2} for 2D.

The homogenization is performed numerically by discretizing the micro-structures into M micro-elements
and solving the elasticity problem of Eq. (1) using the FEM. Then, the effective elastic tensor is obtained by

EH
ijkl =

1

|Ω|

M∑
e=1

(
u(ij)
e

)T

keu
(kl)
e , (2)

where ke is the stiffness matrix for the micro-element e; and u
(ij)
e is the element displacement solution

corresponding to the unit strain field ϵ0(ij). For a 2D space, as in our work, we need to consider only three
macroscopic strain fields; namely unit strain in the first axis ϵ0(11)pq , unit strain in the second axis ϵ0(22)pq , and
unit shear strain ϵ0(12)pq . Then, Eq. (2) yields:

EH
ij =

1

|Ω|

M∑
e=1

(
u(i)
e

)T

keu
(j)
e ,

and the effective elastic tensor is expanded as:

EH =


EH

11 EH
12 EH

13

EH
21 EH

22 EH
23

EH
31 EH

32 EH
33

 . (3)

In our study, we have generated new lattices by stacking several X-shaped sections horizontally and ver-
tically, as shown in Fig. 3a. We use a unit cell of size 1 × 1 consisting of 114 × 114 bilinear plane-stress
finite elements having Young’s modulus and Poisson’s ratio of 1 and 0.3, respectively, and a micro-scale
volume fraction of V MI

f = 50% ± 0.8. The equivalent mechanical properties of the generated lattices are
obtained by following the procedure of Andreassen and Andreasen [2] and are plotted in Fig. 3b. As seen in
Fig. 3b, stacking several X-shaped sections horizontally increases the effective elastic modulus in the horizon-
tal axis, EH

11, significantly, by 102%, 129%, 139%, 143%, and 146% for using two, three, four, five, and six
sections, respectively. On the other hand, the effective elastic modulus in the vertical axis, EH

22, decreases by
80%, 94%, 97%, 99%, and 99%, respectively, and the reductions in the two shear components, EH

33 and EH
12,

are (26%, 53%, 69%, 78%, and 84%) and (44%, 71%, 83%, 88%, and 92%). To have a good balance between
the gain and reductions, we consider stacking only two X-shaped sections in the horizontal and vertical direc-
tions which leads us to the second and third families, respectively. Selected micro-structures from the three
families are visualized in Fig. 2 and the effective elastic moduli of all micro-structures are plotted in Fig. 4.
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Figure 3: Stacked X-shaped micro-structures and their effective mechanical properties.
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Figure 4: Effective elastic moduli for the micro-structures of the three families.

2.3 Finding the Relation Between the Micro-structures

After obtaining the constitutive matrices for the members of the three families, a relation between the members
of the families is needed to facilitate the optimization process. For this purpose, a two-parameter description
f(ψ,φ) is introduced, where ψ ∈ [0, 1] indicates the family, and φ ∈ [0, 1] indicates the member inside the
family, i.e. the row and column, respectively, as illustrated in Fig. 2. The family is assigned according to

Family =


Family #2, 0 ≤ ψ < 1

3

Family #1, 1
3 ≤ ψ < 2

3

Family #3, 2
3 ≤ ψ < 1

(4)

and the corresponding member inside the selected family is assigned by rounding φ to the nearest lattice.
Then, the effective elastic moduli for all micro-structures, plotted in Fig. 4, are fitted in the least square

sense using a bivariate polynomial of degree 3 in the direction of φ and of degree 2 in the direction of ψ. The
gradients of these resulting polynomials are used in the sensitivity analysis in Sec. 3. It is worth noting that
the order of the families, in Eq. (4), affects the optimization process and results. Accordingly, the families
have been ordered in a manner that the interpolating surface has the lowest number of inflection points.
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2.4 Design of the Macro-structure

The macro-structure is discretized into N macro-elements. Each macro-element, denoted as n, has three
design variables that can have any value from 0 to 1. The first design variable is ρn and denotes the pseudo
density while the second and third ones are ψn and φn, respectively, and indicate the family and family
member, respectively, and their combination describes the geometry, as explained in the previous section.

En(ρn, ψn, φn) = Eden
n (ρn)E

geo
n (ψn, φn). (5)

The first part Eden
n depends only on the density and is obtained by using modified Porous Anisotropic

Material with Penalization (PAMP) [17], see Eq. (6). The second part Egeo
n depends on the geometry and is

computed through numerical homogenization, see Eq. (3)

Eden
n = Emin + ρpn(Eo − Emin), (6)

where p is a penalty factor to reduce the number of gray (intermediate) densities, typically p ≥ 3; Eo is Young’s
modulus of the material; Emin is a very small number to prevent the singularity of the stiffness matrix, here
we use Emin = Eo · 10−6.

3 FORMULATION OF THE TOPOLOGY OPTIMIZATION PROBLEM

In this section, we describe the optimization problem by defining the design variables, formulating the mathe-
matical model, and analyzing and filtering the sensitivities. After that, we present the solution method.

3.1 Design Variables

As already discussed in the previous section, our proposed algorithm accounts for three design variables, and
each of them can take any value of the interval [0,1]. The design variables are ρρρ = {ρ1, ρ2, ρ3, . . . , ρN}T ,
ψψψ = {ψ1, ψ2, ψ3, . . . , ψN}T , and φφφ = {φ1, φ2, φ3, . . . , φN}T where N is the total number of macro-elements.
These design variables are optimized in three steps to avoid unfavorable local minima. In the first step, only
the first design parameter is optimized. Then, both the first and second design parameters are optimized
simultaneously in the second step, and finally, in the third step, the first and third design parameters are
optimized simultaneously.

3.2 Defining the Optimization Problem

The mathematical formulation of the optimization problem is as follows
min.

C(ρρρ,ψψψ,φφφ) = FTU(ρρρ,ψψψ,φφφ) = UT (ρρρ,ψψψ,φφφ)K(ρρρ,ψψψ,φφφ)U(ρρρ,ψψψ,φφφ) (7)

s.t.
K(ρρρ,ψψψ,φφφ) U(ρρρ,ψψψ,φφφ) = F, (8)

G(ρρρ) =

N∑
n=1

ρn −N · V MA
f ≤ 0,

and
0 ≤ ρn ≤ 1,

0 ≤ ψn ≤ 1,

0 ≤ φn ≤ 1,
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where the objective function C is the structural compliance; K, U, and F are the global stiffness matrix,
displacement vector, and force vector, respectively; G is an inequality constraint; and V MA

f is the maximum
allowed macro-scale volume fraction. The global stiffness matrix is obtained from the local stiffness matrices:

K(ρ, ψ, φ) =

N∑
n=1

kn(ρn, ψn, φn)

with
kn(ρn, ψn, φn) =

∫
Ω

BTEn(ρn, ψn, φn)BdΩ, (9)

where kn is the stiffness matrix of element n; B is the strain-displacement matrix; and En is the constitutive
matrix for element n obtained by using Eq. (5).

3.3 Sensitivity Analysis

Here, we obtain the sensitivities using the direct approach. The objective function C, introduced in Eq. (7),
can be written in a discretized form as:

C =

N∑
n=1

uT
n kn un,

where un is the nodal displacement vector of the macro-element n. The derivative of the objective function
C with respect to ρn is given as:

∂C

∂ρn
=

∂

∂ρn

N∑
n=1

uT
n kn un =

N∑
n=1

∂uT
n

∂ρn
kn un +

N∑
n=1

uT
n

∂kn

∂ρn
un +

N∑
n=1

uT
n kn

∂un

∂ρn
. (10)

The derivative of the equilibrium constraint with respect to ρn is obtained from Eq. (8) by:

K
∂U

∂ρn
+
∂K

∂ρn
U = 0.

Similarly, we get:

kn
∂un

∂ρn
= −∂kn

∂ρn
un. (11)

By combining Eqs. (10) and (11), we get:

∂C

∂ρn
= −uT

n

∂kn

∂ρn
un. (12)

Similarly, the derivatives of the objective function C with respect to ψ and φ are defined as:

∂C

∂ψn
= −uT

n

∂kn

∂ψn
un (13)

and
∂C

∂φn
= −uT

n

∂kn

∂φn
un, (14)

respectively. By applying Eq. (9) in Eqs. (12), (13), and (14), we get:
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Figure 5: Filter size and neighboring elements.

∂C

∂ρn
= −pρp−1

n (Eo − Emin)u
T
n

(∫
Ωn

BTEgeo
n BdΩn

)
un,

∂C

∂ψn
= −Eden

n uT
n

(∫
Ωn

BT ∂E
geo
n

∂ψn
BdΩn

)
un,

and
∂C

∂φn
= −Eden

n uT
n

(∫
Ωn

BT ∂E
geo
n

∂φn
BdΩn

)
un,

where the terms ∂Egeo
n /∂ψn and ∂Egeo

n /∂φn are obtained from the gradients of the interpolating functions,
as discussed in Sec. 2.3. Finally, the sensitivity of the second constraint, i.e. G, with respect to ρn is defined
as:

∂G(ρ)

∂ρn
= 1.

3.4 Filtering the Sensitivities and Design Variables

In order to prevent the checkerboard problem, we apply the sensitivity filter [22] to the derivatives of the first
design variables, as

∂Ĉ

∂ρn
=

∑
m∈Nm

Hnm ρm
∂C
∂ρm

max(ρn, γ)
∑

m∈Nm
Hnm

,

where ∂Ĉ/∂ρn and ∂C/∂ρn are the filtered and non-filtered sensitivities; γ = 10−3 is a small positive number
to avoid singularity; Hnm is a weight factor given by

Hnm = Rmin − dist(n,m),

and Nn is a set containing the neighboring elements of element n whose centers lie within a circle of a
predefined radius Rmin called the filter size and given relative to the element size. Nn is illustrated in Fig. 5
and given by

Nn = {m : dist(n,m) ≤ Rmin},

where dist(n,m) is the distance between the centers of element n and element m.
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Figure 6: Flowchart of the algorithm.

Furthermore, to have a uniform transformation between the micro-structures, we apply the density filter
[3] to the second and third design variables as

∂Ĉ

∂ξn
=

∑
m∈Nn

Hnm
∂C
∂ξm∑

l∈Nm
Hml

,

where ξn is either ψn or φn.

3.5 Solving the Optimization Problem

Fig. 6 summarizes the solution procedure of our proposed optimization algorithm. Firstly, we define the micro-
structures’ parameters (number of micro-elements and the micro-scale volume fraction). Then, the algorithm
finds all the possible micro-structures having the given parameters, as discussed in Sec. 2.1. After that, we
evaluate the effective elasticity matrices of the micro-structures and find their relations and gradients, as
discussed in Secs. 2.2 and 2.3, respectively. Secondly, we define the optimization problem (i.e. initial design
variables, dimensions of the design domain, number of macro-elements, macro-scale volume fraction, Young’s
modulus, Poisson’s ratio, penalization factor, filter type, and minimum radius) and the algorithm starts the
iteration loop by performing an FEA followed by a sensitivity analysis and filtering process as described in
Secs. 3.3 and 3.4, respectively. Then, the design variables are updated in three steps using the Method of
Moving Asymptotes (MMA) [23]. In the first step, we optimize only ρ, while in the second and third steps,
we concurrently optimize ρ & ψ, and ρ & φ, respectively. In each step, we repeat the iteration loop until
the relative improvement in the objective value is less than 0.1% for ten successive iterations. To avoid the
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Figure 7: Models of the numerical problems.

extensive computation work needed for the numerical homogenization (process 3), we store the results of the
initiation cycle (processes 2 – 4) and read them for the other optimization problems. We need to re-run the
initiation cycle only if we change the micro-structures’ parameters.

4 NUMERICAL EXAMPLES

To illustrate the capability of the proposed algorithm, several numerical problems, see Fig. 7, have been solved
and will be presented in this section. The algorithm has been implemented in Spyder IDE 5.1.5 (Python 3.7.9
64-bit | Qt 5.12.10 | PyQt5 5.12.3) and all computations have been performed using an HP ZBook Firefly
15 G7 Mobile Workstation with two Intel® Core™ i7-10610U CPUs (1.80GHz and 2.30 GHz) equipped with
a 32GB RAM and running Windows 10 Enterprise (64-bit) system. We use dimensionless quantities. The
Young’s modulus and the Poisson’s ratio of the used material equal 1.0 and 0.3, respectively, and the initial
values of ρn, ψn and φn are selected as V MA

f , 0.5 and 0.5, respectively. The minimum radiuses of the filters
are chosen to be to Rmin = 2.0, i.e. two times the element length, and the penalty factor is set to p = 3, and
the micro-scale structures are discretized into 114× 114 uniformly-sized plane-stress square elements and all
the default values of the MMA are accepted. The CPU time for the Initiation Cycle, processes 2 – 4 in Fig. 6,
is 144 seconds.

4.1 MBB Beam

As a first example, we consider a Messerschmitt-Bolkow-Blohm (MBB) beam problem. The beam has a length
and height of 1.00 and 0.25, respectively, and holds a vertically distributed force having a magnitude of 1.00
and applied over the central 10% of its upper surface. Due to the symmetry, only the right half of the problem
is considered and modeled using 50× 25 equally sized square elements, as shown in Fig. 7a. The macro-scale
volume fraction was set to V MA

f = 40% and the problem is solved according to the methodology in Sec. 3.5
and Fig. 8a shows the iteration curves of the objective and the constraint. The iteration process converges after
88 cycles and the optimized design has compliance and a micro-scale volume fraction of 317.46 and 40.00%,
respectively. In the first five cycles, compliance decreases steeply from 2865.79 down to 1017.90 (−64.5%),
continues decreasing to 442.36 (−84.6%) at the end of the first step (Fig. 9b), then decreases gradually to
362.93 (−87.3%) at the end of the second step (Fig. 9d), and finally converges to 317.46 (−88.9%) at the
end of the third step (Fig. 9f). The micro-scale volume fraction fluctuates during the first 20 iterations and
stabilizes then. Fig. 9 shows the optimization process of the MBB beam problem. The optimized values of
ρ, ψ, and φ are plotted in the upper, middle, and lower subplots, respectively. Generally, the distribution of

Computer-Aided Design & Applications, 21(2), 2024, 179-198
© 2024 CAD Solutions, LLC, http://www.cad-journal.net

http://www.cad-journal.net


190

the material is consistent with the directions of principal stress lines and the distribution of the micro-structures
is homogenous except for some small regions. This may lead to some disconnected micro-structures but the
used ones have fairly good connectivity at the corners without the need of setting some passive elements (non-
designable region) which results in some compromisations. Particularly, the horizontal structural parts mainly
consist of brown micro-structures (φn ≥ 0.65) from family #3. As illustrated in Fig. 4, these micro-structures
have the highest stiffness along the horizontal direction which is consonant with the direction of their principal
strain. On the other hand, the oblique structural parts are mainly composed of dark brown micro-structures
(φn ≥ 0.9) from family #1 which exhibit the highest shear stiffness. To evaluate our optimized design, we
solve the same problem using only the conventional family of micro-structures, i.e. family #1. The optimized
topologies of the MBB beam using the proposed and existing designs are shown in Fig. 10a and Fig. 10b,
respectively. The conventional design converges to compliance of 340.68 which is 7.3% higher than our design.

4.2 Cantilever Beam

In the second example, we consider a cantilever beam problem. The beam has a length and height of 1.0 and
0.5, respectively, and holds a concentrated load of 1.0 at its lower left corner, see Fig. 7b. The problem is
modeled by using 160× 80 equally sized square elements and the macro-scale volume fraction is set to 45%.
The iteration process converges after 67 cycles and the optimized design has compliance and volume fraction
of 275.38 and 44.96%, respectively, as shown in Fig. 8b and Fig. 11. Similar to the MBB beam, the upper
and lower structural parts are filled with brown (φn ≥ 0.6) micro-structures from family #3 which give high
stiffness along the horizontal direction. In between, we found darker micro-structures but belonging to family
#1 (φn ≥ 0.9) because of their shear stiffness. Near the loading area, the highest stiffness along the vertical
direction is achieved by the dark (φn ≥ 0.7) micro-structures from family #2.

4.3 Double Clamped Beam

The third example is a double-clamped beam problem. The beam has a length and height of 2.0 and 1.0,
respectively, and holds a concentrated load with a magnitude of 1.0 at its middle, as shown in Fig. 7c. The
left half of the problem is represented by 50 × 50 equally sized square elements and symmetric boundary
conditions are applied to the right edge. The micro-scale volume fraction is selected as 30% and the iteration
process converges after 100 cycles and the optimized design has compliance and a volume fraction of 73.26 and
30.00%, respectively. The optimization history is plotted in Fig. 8c. As seen in Fig. 12, the optimized design is
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Figure 8: Optimization history of the objective (compliance) and constraint (volume).
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(a) (b) (c) (d) (e) (f)

Figure 9: MBB beam: (a) initial design, (b-e) intermediate designs, and (f) optimized design.

symmetric along the horizontal axis and mainly composed of family #1 micro-structures with ultimatum shear
stiffness (φn ≥ 0.8) with some regions from family #3. Near the loading and symmetry boundary conditions,
two clusters are seen; dark brown micro-structures from family #2 (φn ≥ 0.8) and beige micro-structures
(φn ≤ 0.1). The former exhibits superior stiffness along the vertical direction while the latter possesses a good
balance of stiffness along the horizontal and vertical directions which results in enhanced bending stiffness.

4.4 Comparison of the Optimized Designs

To demonstrate the advantage of using our proposed method, we also solve the previous examples using the
following methods: (1) employing only the conventional family #1 of micro-structures, i.e. fixing ψn = 1/2,
(2) employing only the first new family #2, i.e. fixing ψn = 1/6, (3) employing only the second new family
#3, i.e. fixing ψn = 5/6, and (4) employing the three families by optimizing the three design variables
concurrently, i.e. in one step rather than three. The optimized designs from methods (1) - (3) are shown in
Fig. 13 and their compliances (normalized to our method) are presented in Tab. 1. Obviously, our proposed
method always gives better structural compliance. When comparing the results with the conventional family
only and the here proposed combination of three families quantitatively, the biggest improvement is 7% in
the cantilever beam problem, the least improvement is 0.9% in the double-clamped beam problem, and the

(a) proposed design (compliance = 317.46). (b) existing design (compliance = 340.68).

Figure 10: MBB beam: optimized topology using the proposed (a) and existing designs (b).
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Figure 11: Cantilever beam: optimized design (left) and optimized topology (right).

improvement in the MBB is 6.2%. We conclude that employing only one family is not giving benefits such as
using our proposed method which considers the three families together and results in optimized designs with
lower structural compliances.

For method (4), the optimization process was found to be strongly dependent on the initial values of
the second and third design variables. We attribute this effect to the number of used design variables. The
higher the number of design variables, the more local minima arise making finding the best starting point more
problematic. Similar problems are reported in [9, 28, 29]. However, we tested nine different starting points
and compared their results with our proposed formulation. The optimized compliances are given in Tab. 2
and the optimized designs for the first example are shown in Fig. 14. A first look in Tab. 2 indicates that the
concurrent formulation results in better results for both the cantilever beam and the double-clamped beam.
But this is not true because of the random distributions of micro-structures (red, green, and blue colors in
Fig. 14). These random distributions are observed all over the optimization process and violate the limitation
of the assumed homogenization and thus may reflect artificial stiffening therefore a quantitative comparison
is not possible and when we compare them qualitatively, i.e. Fig. 9f vs. Fig. 14, we find that the three
steps formulation provide optimized designs having very less random distributions compared to the single step
formulation.

Figure 12: Double-clamped beam: optimized design (left) and optimized topology (right).
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Optimized compliance (normalized)

Employed family MBB beam Cantilever beam Double-clamped beam

#1 1.062 1.070 1.009

#2 1.119 1.035 1.040

#3 1.156 1.187 1.379

Table 1: Optimized compliance employing only one family.

5 CONCLUSION

The objective of this work was to enhance the optimization of functionally graded lattice structures. Firstly, we
proposed two new families of micro-structures sharing similar geometric features and having higher effective
elastic moduli in the horizontal and vertical axis. The first family was generated by superimposing parameter-
ized XX-shaped and square-shaped micro-structures while the second one was generated by simply rotating
the members of the first family by 90°. Secondly, we presented a two-scale topology optimization procedure
that navigates between the three families of micro-structures; the proposed ones besides the existing family of
superimposing two parameterized X-shaped and square-shaped micro-structures. The formulation consists of
three design variables and the optimization is done in three steps. In each step, a distinct set of design variables
is optimized. Thirdly, three numerical optimization problems for minimizing structural compliance were solved
to illustrate the capability of the proposed procedure. The results showed that the optimized designs have
not only better stiffnesses compared to the use of just the existing family of micro-structures but also have
more uniform distributions of micro-structures. Based on this study, we conclude the following: (1) Adding
the proposed micro-structural families to the existing ones is regarded as an efficient improvement in designing
FGLs and results in a better stiffness-to-weight ratio, (2) Solving our three-design-variable problem in three
steps results in lower initial guesses dependency and similar computational cost compared to the one-step
approach, and (3) Due to its blurring effect, applying density filter to the second and third design variables
gives smoother transitions between the micro-structures than the sensitivity filter. One of our next steps
involves tests on 3D printing examples to experimentally validate the proposed model under the constraints of
real additive manufacturing. Moreover, we will conduct further research in the future to improve the filtering
process and expand the proposed families to include multi-material structures and transfer the method into
the 3D domain.

MBB beam Cantilever beam Double-clamped beam

φo = 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0

0.0 1.013 1.053 1.027 0.972 0.976 0.998 0.972 0.973 0.959

ψo = 0.5 1.034 1.036 1.013 0.967 0.985 0.972 0.962 0.968 0.971

1.0 1.015 1.005 1.040 0.966 0.978 0.975 0.970 0.978 0.976

Table 2: Optimized compliance (MBB beam, normalized) employing the three families using the one-step
formulation.
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(a) MBB: Fam #1 (b) MBB: Fam #2 (c) MBB: Fam #3

(d) Cant.: Fam #1 (e) Cant.: Fam #2 (f) Cant.: Fam #3

(g) DCB: Fam #1 (h) DCB: Fam #2 (i) DCB: Fam #3

Figure 13: Optimized designs using different methods.
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(a) ψo = 0.0, φo = 0.0 (b) ψo = 0.0, φo = 0.5 (c) ψo = 0.0, φo = 1.0

(d) ψo = 0.5, φo = 0.0 (e) ψo = 0.5, φo = 0.5 (f) ψo = 0.5, φo = 1.0

(g) ψo = 1.0, φo = 0.0 (h) ψo = 1.0, φo = 0.5 (i) ψo = 1.0, φo = 1.0

Figure 14: MBB beam: effect of the initial guess when using a single step formulation.
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