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Abstract. The shape uniqueness theorem for free-form curves shows the conditions on
which the shapes of two parametric curves de�ned by three control points are identical
although their parametrization may be di�erent. According to this theorem, even though
their blending functions look di�erent, the curves become identical by reparametrization
under some conditions on their blending functions. In this paper, we will extend this theorem
for curves de�ned by four or more control points and show several examples of applications
of the theorem.
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1 INTRODUCTION

The shape uniqueness theorem for free-form curves shows the conditions on which the shapes of two para-
metric curves de�ned by three control points are identical although their parametrization may be di�erent [6].
According to this theorem, even though their blending functions look di�erent, the curves become identical
by reparametrization under some conditions on their blending functions.

A lot of researches have been done on the blending functions of free-form curves so far and many types of
free-from curves are available for curve designers. These designers must be confused on which type of curve
should be used for their design. We hope that the shape uniqueness theorem for free-form curves will help
the designers classify and categorize types of curves and select the most suitable one for their design purposes
because it identi�es the curves which super�cially look di�erent but represent the same shape.

In this paper, we will extend the shape uniqueness theorem for curves that are de�ned by four or more
control points and shows several examples of applications of the theorem.
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2 IDENTICAL SHAPE OF FREE-FORM CURVES

Identical shape of two parametric curves is de�ned as follows [2]:

De�nition 1. For two parametric curves r : I → R3 and r̃ : Ĩ → R3, there exists a C∞ function φ : I → Ĩ,
1) φ is a one to one and onto mapping from I to Ĩ. 2) φ is strictly increasing. 3) For all t ∈ I, r̃(φ(t)) = r(t).
We say that r and r̃ de�ne the same curve or their shapes are identical.

Then r̃((φ(t)) is called reparametrization of r(t). We explain the meaning of the above de�nition using a
rather trivial example. Figure 1 shows two types of the parametrization of straight line segment P 0P 1. The line
segment is given by C(t) = (1−t)P 0+tP 1. The other parametrization is C(t) = cos π2 tP 0+(1−cos π2 t)P 1.
Geometrically they represent the same curve: line segment P 0P 1 although they look di�erent. We write the
following theorem for completeness. It is trivial, but it makes clear the role of the uniqueness theorem of the
shape of the curve de�ned by control points.

Theorem 1. Uniqueness Theorem of the Shape of the Curve De�ned by Two Control Points: The shape of
the curve C(t) de�ned by two control points does not depend on its blending functions and the start and end
points determine its shape uniquely.

t=0t=0.25t=0.5

P₀P 

t=0.75t=1

t=0t=0.25t=0.5

P₀P 

t=0.75t=1

θ=πt/2

Figure 1: Two types of parametrization of the straight line segment

3 Uniqueness Theorem of the Shape of the Curve De�ned by Three Control Points: [6]

In this paper, we assume that for 0 ≤ t ≤ 1, a curve C(t) is de�ned by three control points P 0, P 1 and P 2

as

C(t) = u(t)P 0 + v(t)P 1 + w(t)P 2 (1)
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where w(0) = 0, w(1) = 1, 0 ≤ u(t), w(t), v(t) ≤ 1 and

u(t) + v(t) + w(t) = 1

w(0) = 0

w(1) = 1

dw(t)

dt
> 0 for 0 < t < 1 (2)

We have removed the condition that u(t) = w(1− t) from the original de�nition [6] since the theorem is still
satis�ed. If there is such a constant α that

v(t)2 = αu(t)w(t) (3)

for 0 ≤ t ≤ 1, then the following theorem is satis�ed:

Theorem 2. Uniqueness Theorem: The shape of the curve C(t) is determined by α exclusively and it does
not depend on the basis functions {u(t), v(t), w(t)} which are used to de�ne the curve.

Proof. For a given value w0 = w(t0), 0 ≤ w0 ≤ 1, let u0 = u(t0). Since v(t) = 1− u(t)− w(t),

(1− u0 − w0)
2 = αu0w0 (4)

Hence

u0 =
(α− 2)w0 + 2±

√
αw0((α− 4)w0 + 4)

2
(5)

u0 should satisfy 0 ≤ u0 ≤ 1− w0. From u0 ≤ 1− w0, by simple calculation the solution with + sign before
the square root is found not to be adequate. The solution with − sign satis�es both of the conditions of
0 ≤ u0 and u0 ≤ 1 − w0. Therefore u0 is uniquely determined by w0 and the location of the point C(t0)
is also uniquely determined because {u(t), v(t), w(t)} are barycentric coordinates of triangle P 0P 1P 2. By
changing t from 0 to 1, w(t) also increases from 0 to 1 and the shape of the curve C(t) is also completely
determined. Q.E.D.

Then u(t) = u(w(t)), v(t) = v(w(t)), and w = w(t) are reparametrized blending functions. For example,
the blending functions of quadratic Bézier curve u(t) = (1− t)2, v(t) = 2(1− t)t, and w(t) = t2 give α = 4
and u(w(t)) = (1−

√
w(t))2, v(w(t)) = 2(1−

√
w(t))

√
w(t).

Figure 2 shows u0 for 0 < w0 < 1 and 0 < α < 10.

4 GENERALIZATION - THE CASEWHERE GOBITHAASAN-MIURA'S RECURSIVE ALGORITHM
IS SATISFIED

In this section, we assume that the blending functions satisfy the recursive relationship of generalized trigono-
metric basis [5] , which yields Gobithaasan-Miura's recursive algorithm [3, 4]. The original algorithm is for the
cubic, but we extend it for any degrees. For example, for the quartic case,

C(t) = u(uP 0 + vP 1 + wP 2 + xP 3)

+ v(uP 1 + vP 2 + wP 3 + xP 4)

+ w(uP 2 + vP 3 + wP 4 + xP 5)

+ x(uP 3 + vP 4 + wP 5 + xP 6)

= u2P 0 + 2uvP 1 + (2uw + v2)P 2 + 2(ux+ vw)P 3 + (2vx+ w2)P 4 + 2wxP 5 + x2P 6
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Figure 2: u0 for 0 < w0 < 1 and 0 < α < 10

where the blending functions u, v, w, and x of parameter t are assumed to satisfy partition of unity. Hence
for an arbitrary t ∈ [0, 1],

u+ v + w + x = 1 (6)

is satis�ed.
For the curve to be represented by seven control points with seven blending functions, the following

equations must be satis�ed:

v2 = αuw (7)

w2 = βvx (8)

vw = γux (9)

where α > 0, β > 0, and γ > 0 are constants that are independent from parameter t. However, the product
of both sides of Eqs.(7) and (8) yields

v2w2 = αβuvwx

vw = αβux (10)

Therefore

γ = αβ (11)

When α and β satisfy Eqs.(7) and (8), respectively, Eq.(9) is automatically satis�ed.
Therefore, if the blending functions u, v, w and x satisfy the following conditions, for a given function x

the other functions u, v, and w are uniquely determined. Thus we can elevate the degree and increase the
number of control points of the shape uniqueness theorem.

u+ v + w + x = 1, v2 = αuw, w2 = βvx. (12)

The function x(t) satis�es the followings:

x(0) = 0,

x(1) = 1,

dx(t)

dt
> 0. (13)
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Theorem 3. Shape Uniqueness Theorem of Higher Degree (#control points= 4): The shape of the curve C(t)
is determined by α and β and it does not depend on the blending functions of use {u(t), v(t), w(t), x(t)}.

Proof. For x0 = x(t0) (0 ≤ x0 ≤ 1), we assume that u0 = u(t0), v0 = v(t0), and w0 = w(t0). From Eqs.
(7) and (8),

v0 = α
2
3 β

1
3u

2
3
0 x

1
3
0 (14)

w0 = α
1
3 β

2
3u

1
3
0 x

2
3
0 (15)

Since u0 + v0 + w0 + x0 − 1 = 0,

u0 + α
2
3 β

1
3u

2
3
0 x

1
3
0 + α

1
3 β

2
3u

1
3
0 x

2
3
0 + x0 − 1 = 0 (16)

Let the left side of the above equation be f(u0;x0). When x0 = 0,

f(u0; 0) = u0 − 1 (17)

Hence u0 = 1. When x0 = 1,

f(u0; 1) = u
1
3
0 (u

2
3
0 + α

2
3 β

1
3u

1
3
0 + α

1
3 β

2
3 ) (18)

Then u0 = 0.
If we assume that 0 < x0 < 1,

f(0;x0) = x0 − 1 < 0

f(1;x0) = α
2
3 β

1
3x

1
3
0 + α

1
3 β

2
3x

2
3
0 + x0 > 0

Furthermore

∂f(u0;x0)

∂u0
= 1 +

2

3
α

2
3 β

1
3x

1
3
0 u
− 1

3
0 +

1

3
α

1
3 β

2
3x

2
3
0 u
− 2

3
0 > 0 (19)

Hence for x0, f(u0;x0) is a continuous function of u0 and strictly increasing. Since f(0;x0) < 0 and
f(1;x0) > 0, For x0, u0 is determined such that 0 ≤ u0 ≤ 1. Similarly, v0 and w0 are determined uniquely
from v20 = αu0w0 and w

2
0 = βv0x0 from Eqs.(14) and (15). {u(t), v(t), w(t), x(t)} are barycentric coordinates

of tetrahedron P 0P 1P 2P 3 and C(t0) is uniquely determined. When t changes from 0 to 1, x(t) changes 0
to 1 and the whole shape of the curve C(t) is determined completely. Q.E.D.

Note that even when tetrahedron P 0P 1P 2P 3 is degenerated into a 2D plane, the shape of the curve is
uniquely determined by barycentric coordinates.

4.1 An Application to the Rational Cubic Bézier Curve

It is well known that as a reparametrization of a rational Bézier curve of degree n, its weights wi can be
changed without changing the curve shape as follows [1]:

ŵi = ciwi; i = 0, . . . , n. (20)
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where c 6= 0 is a constant. For example, when c = n
√
w0/wn, then if we subdivide all weights by w0, we

obtain w0 = wn = 1. When n = 3,

u(t) =
(1− t)3w0

f(t)
,

v(t) =
3(1− t)2tw1

f(t)
,

w(t) =
3(1− t)t2w2

f(t)
,

x(t) =
t3w3

f(t)
. (21)

where f(t) = (1− t)3w0 + 3(1− t)2tw1 + 3(1− t)t2w2 + t3w3. On these blending functions,

α =
v(t)2

u(t)v(t)
=

3w2
1

w0w2

β =
w(t)2

v(t)x(t)
=

3w2
2

w1w3

When c = 3
√
w0/w3, ŵ0 = w0, ŵ1 = cw1, ŵ2 = c2w2, and ŵ3 = c3w3. Then

3ŵ2
1

ŵ0ŵ2
=

3w2
1

w0w2

3ŵ2
2

ŵ1ŵ3
=

3w2
2

w1w3

are satis�ed. Therefore, from the shape uniqueness theorem of higher degree (the number of control points
= 4), we know the shape is unchanged. Note that when the number of control points = 3, a similar argument
is satis�ed. When w0 = w3 = 1 as �normalized�, we obtain

α =
3w2

1

w2
,

β =
3w2

2

w1
(22)

4.2 Shape Uniqueness Theorem for General Degrees

It is straightforward to extend the shape uniqueness theorem for the general degree n as follows: We assume
that the curve is de�ned by n+ 1 control points using n+ 1 blending functions bi(t). These functions satisfy

n∑
i=0

bi(t) = 1

bn(0) = 0

bn(1) = 1

dbi(t)

dt
> 0 for 0 < t < 1 (23)
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Under these condtions, we add the following n− 1 conditions:

b1(t)
2 = α1b0(t)b2(t)

b2(t)
2 = α2b1(t)b3(t)

· · ·
bn−1(t)

2 = αn−1bn−2(t)bn(t) (24)

where αi, i = 1, 2, . . . , n are constants which do not depend on parameter t. Note that we can apply this
theorem of degree n to the rational Bézier curve of degree n as shown in the previous subsection.

5 GENERALIZATION - THE CASEWHERE GOBITHAASAN-MIURA'S RECURSIVE ALGORITHM
IS NOT SATISFIED

In this section, we will deal with the more general case where Gobithaasan-Miura's recursive algorithm is NOT
satis�ed. At �rst, we will generalize the shape uniqueness theorem for the curves with 4 control points.

We de�ne a curve C(t) (0 ≤ t ≤ 1) with four control points P i, i = 0, · · · , 3 as follows:

C(t) = u(t)P 0 + v(t)P 1 + w(t)P 2 + x(t)P 3 (25)

where 0 ≤ u(t), v(t), w(t), x(t) ≤ 1. We assume that

u(t) + v(t) + w(t) + x(t) = 1, x(0) = 0, x(1) = 1,

dx(t)

dt
> 0

f(u(t), v(t), w(t), x(t)) = 0, g(u(t), v(t), w(t), x(t)) = 0 (26)

Hence, functions f(u, v, w, x) and g(u, v, w, x) do not depend on t. The proof for this type of the shape
uniqueness theorem depends on the actual f(u, v, w, x) and g(u, v, w, x) and we show some examples of the
C2 interpolating spline [7] in such a case.

5.1 A Class of C2 Interpolating Splines

C2 interpolating splines [7] was proposed as a class of spline curves in SIGGRAPH 2020 and interpolate given
point sequence. Depending on the curve segment types, they are classi�ed as 1) Quadratic Bézier curve, 2)
Circular arc, 3) Elliptic arc, 4) Hybrid of circular and elliptic arcs.

They are de�ned as follows: F i are interpolating functions passing through pi−1, pi, and pi+1. Interpo-
lating functions F i are

F i(0) = pi−1 (27)

F i(
π

2
) = pi (28)

F i(π) = pi+1 (29)

Curve segments Ci consist of the blending of interpolating functions F i and F i+1 passing through pi and
pi+1. Trigonometric functions are used as blending functions such that

Ci(θ) = cos2 θF i(θ +
π

2
) + sin2 θF i+1(θ) (30)

where θ ∈ [0, π2 ] is a normalized parameter value. For arbitrary blending functions, C2-continuity of the curve
is guaranteed.

Figure 3 shows open and closed curve examples of C2 interpolating splines of quadratic Bézier type.
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Figure 3: C2 interpolating splines.

5.2 Bézier Type

When the C2 interpolating spline adopts the quadratic Bézier curve segment, the blending functions, for
example, from pi to pi+1 are given by

u(t) = (1− t)2 (31)

v(t) = 2(1− t)t cos2(π
2
t) (32)

w(t) = 2(1− t)t sin2(π
2
t) (33)

x(t) = t2 (34)

because the control points of the curve segment passing pi−1, pi and pi+1 are given by {P 0,P 1,P 2} and
the one passing pi, pi+1 and pi+2 by {P 1,P 2,P 3}. Note that P 0 = pi and P 3 = pi+1 . Then

u(t) + v(t) + w(t) + x(t) = 1 (35)

(v(t) + w(t))2 = 4u(t)x(t) (36)

v(t) sin2(
π

2
t) = w(t) cos2(

π

2
t) (37)

Note that in this case f(u(t), v(t), w(t), x(t)) and g(u(t), v(t), w(t), x(t)) in Eq.(26) are de�ned as

f(u(t), v(t), w(t), x(t)) = (v(t) + w(t))2 − 4u(t)x(t)

g(u(t), v(t), w(t), x(t)) = v(t) sin2(
π

2
t)− w(t) cos2(π

2
t) (38)

From these conditions, we obtain

v(t) = 2
√
u(t)

√
x(t) cos2(

π

2
t) (39)

w(t) = 2
√
u(t)

√
x(t) sin2(

π

2
t) (40)

Three types of curve segments, i.e. parabola, elliptic arc and hyperbola, can be uniformly represented by
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rational Bézier curves and a curve segment of C2 interpolating splines can be expressed

u0(t) =
(1− t)2

r0(t)
cos2(

π

2
t) +

(1− t)2

r1(t)
sin2(

π

2
t) = (1− t)2( 1

r0(t)
cos2(

π

2
t) +

1

r1(t)
sin2(

π

2
t)) (41)

v0(t) =
2(1− t)t w1

r0(t)
cos2(

π

2
t) (42)

w0(t) =
2(1− t)t w2

r1(t)
sin2(

π

2
t) (43)

x0(t) =
t2

r0(t)
cos2(

π

2
t) +

t2

r1(t)
sin2(

π

2
t) = t2(

1

r0(t)
cos2(

π

2
t) +

1

r1(t)
sin2(

π

2
t)) (44)

where r0(t) = (1 − t)2 + 2(1 − t)t w1 + t2, r1(t) = (1 − t)2 + 2(1 − t)t w2 + t2. Figure 4 shows blending
functions with w1 = 0.5 and w2 = 1. Hence

u(t) + v(t) + w(t) + x(t) = 1 (45)

(
v(t)

w1
+
w(t)

w2
)2 = 4u(t)x(t) (46)

v(t)r0(t)

w1
sin2(

π

2
t) =

v(t)r1(t)

w2
cos2(

π

2
t) (47)

0.2

0.4

0.6

0.8

1.0

Figure 4: Blending functions of C2 interpolating spline of Bézier type.

5.3 Rationalization of C2 Interpolating Spline

Type 2 of circular arc and type 3 of elliptic arc can be represented by rational quadratic Bézier curves. As
discussed in the previous subsection, we would like to specify arbitrary weight for the second control point as a
generalization of C2 interpolating spline. For curve generation, at �rst we give a weight for each input point.
A curve segment is determined by three control points and three weights. We perform normalization of the
weights as follows:

w′0 = 1 (48)

w′1 =
w1√
w0w2

(49)

w′2 = 1 (50)
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Note that the shape of the curve remains the same, but the location of the point on the curve for a given
parameter value is generally di�erent from the original position. Hence, the position of the point made
by the blending of {cos2(πt/2), sin2(πt/2)} is generally di�erent. Therefore, for the shape calculation, the
normalization of the weight is performed �rst before the blending is conducted.

Figure 5 shows various curve examples for given weights.

Weight={1, 0.1, 1, 0.1, 1}
Weight={1, 5, 1, 5, 1}Weight={1, 1, 1, 1, 1}

Figure 5: Rational C2 interpolating spline.

5.4 Polynomial Blending Bézier type C2 Interpolating Splines

We change {cos2(πt/2), sin2(πt/2)} to

u(t) = B3
0(t) +B3

1(t) = (1− t)2(1 + 2t) (51)

v(t) = B3
2(t) +B3

3(t) = (3− 2t)t2 (52)

where B3
i (t) = 3!

(3−i)!i! (1 − t)
(3−i)ti. Figure 6(a) shows these blending functions. Furthermore Figure 6(b)

shows graphs of {cos2(πt/2), sin2(πt/2)} with these blending functions. They are almost the same. By using

(b) {(1-t)2(1+2t),(3-2t)t!,cos!(p t/2), sin!(p t/2)}(a) {(1-t)2(1+2t),(3-2t)t!}

Figure 6: Blending functions.

these blending functions, we can represent C2 interpolating splines with B-spline curves. Notice that from the
shape uniqueness theorem, strictly speaking their shapes are generally di�erent. However, the di�erences are
quite small as shown in Fig.7.
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Figure 7: Polynomial blending Bézier type C2 Interpolating spline curve in red with the original curve in blue.

5.5 Shape Uniqueness Theorem for General Degrees

By replacing Eq.(24) as follows:

f1(b0, b1, · · · , bn) = 0

f2(b0, b1, · · · , bn) = 0

· · ·
fn−1(b0, b1, · · · , bn) = 0 (53)

where fi do not depend on parameter t, we can extend the shape uniqueness theorem for the general degree
n.

6 CONCLUSIONS

In this study, we consider the cases where the blending functions satisfy Gobithaasan-Miura's recursive algo-
rithm [3] and those where they do not. A higher-order (including third-order) version of the shape uniqueness
theorem has been presented. The blending functions of one curve segment of C2 interpolating spline of
quadratic Bézier curve type has been derived and we have shown that they satisfy the shape uniqueness theo-
rem of the case where Gobithaasan-Miura's recursive algorithm is not satis�ed. In the future, we will perform
further improvement of the theorem to include more various cases.
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