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Abstract. The κ-curve is a recently published interpolating spline which consists of quadratic
Bézier segments passing through input points at the loci of local curvature extrema. But
their interpolation can only deal with planar curves. Therefore, in this research we propose a
method that enables to extend this representation to deal with space curves in a new scheme
called κ-space curves.
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1 INTRODUCTION

The κ-curve [3] is a recently published interpolating spline which passes through input points at the loci of
local curvature extrema. It is composed of piecewise quadratic Bézier curves. Since the quadratic Bézier curve
is planar, the control points of each segment lie in the same plane. However, when it comes to 3D condition,
the control points are located in di�erent planes. Although the curvature values at the connection points
remain consistent, the curvature directions di�er. This deviation in curvature direction disrupts G2 continuity.

In some applications G2 continuity is preferable for space curves. For example, when we design a trajectory
of a robot, for mechanical smooth movement to avoid an abrupt change of acceleration, G2 continuity of the
trajectory is required.

κ-curve possesses many desirable properties, but there is still signi�cant space for κ-curve to be im-
proved [1]. The following are three important shortcomings of κ-curves:

1. Their curve is almost curvature-continuous everywhere, except at in�ection points only G1 continuity is
guaranteed, i.e. the absolute value of curvature around the joints is equal to each other, but the sign is
reversed.

2. Since the degree of freedom (DoF) of the quadratic segments is limited, it is impossible to control the
magnitudes of local maximum curvature at the input points.
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3. Their curve can only deals with planar curves. When it comes to 3D condition, G2 continuity is broken.

Wang et al. [2] solved the �rst shortcoming by using log-aesthetic curves instead of Bézier curve. Miura
et al. [1] solved the second shortcoming by elevating the degree of the Bernstein functions. In this paper, we
propose a new method to solve the last shortcoming by replacing the quadratic Bézier segments by quartic
Bézier ones. The length of the replacement curves could be controlled so that we can preserve the locations
of the curvature extrema and maintaining G2 continuity.

The key contributions of our paper can be summarized as follows:

1. Generation of κ-space curves: We introduce a novel methodology for constructing space curves that
possess κ-curve's properties. These curves exhibit desirable characteristics, passing through input points
at the loci of local curvature extrema.

2. G2 continuity at connection points: We address the challenge of achieving G2 continuity between
di�erent segments of κ-space curves. While for κ-curve, at in�ection points only G1 continuity is
guaranteed. Our approach ensures a smooth transition between quartic and quadratic Bézier curves,
guaranteeing G2 continuity at arbitrary parameter positions.

3. Derivation of connection formula: We have derived a mathematical formula that facilitates the seamless
connection between quartic and quadratic Bézier curves while preserving G2 continuity. This formula
provides a practical and e�cient solution for connecting curves with di�erent degrees.

2 GENERATION OF κ-CURVE

Yan et al. [3] generate a series of quadratic curves that exhibit G2 continuity almost everywhere except for
the in�ection points, and the curves interpolate the input points at the parameter of local curvature extrema
by modifying the locations of the middle control points of quadratic Bézier segments.

In order to obtain G1 continuity, as shown in Fig. 1 the control points ci,2 and ci+1,0 are set with the
constant λi

Figure 1: Control points setting of κ-curve [3]

ci,2 = ci+1,0 = (1− λi)ci,1 + λici+1,1 (1)

Interpolation of the input points at the local curvature maximum is guaranteed by the condition

ci(ti) = pi

where pi is the i
th input point. In the quadratic case, we can express the parameter ti at the point of maximal

curvature explicitly, in terms of the Bézier coe�cients of the ith quadratic Bézier curve as

ti =
〈ri, ri − si〉
‖ri − si‖2

(2)
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where ri = ci,1 − ci,0, si = ci,2 − ci,1 and 〈a, b〉 means the scalar product of vectors a and b. The control
points ci,1 is derived by

ci,1 =
pi − (1− ti)2ci,0 − t2i ci,2

2ti(1− ti)
(3)

Solving for ci,1 and substituting into Eq. (2), we get a cubic equation in ti that depends only on the end
points ci,0 and ci,2, and the input points pi.

‖ci,2 − ci,0‖2 t3i + 3(ci,2 − ci,0) · (ci,0 − pi)t2i + 3(ci,0 − 2pi − ci,2) · (ci,0 − pi)ti − ‖ci,0 − pi‖2 = 0 (4)

The G2 condition derives

λi =

√
4+

i√
4+

i +
√
4i+1−

(5)

by introducing the notations 4+
i = 4(ci,0, ci,1, ci+1,1) and 4−i+1 = 4(ci,1, ci+1,1, ci+1,2), and 4 represents

area of the triangle. The generating process of κ-curve is summarized in Algorithm 1.

Algorithm 1: The generation of κ-curve [3].

Input: Input points pi.
Output: Control points ci,k and parameters of maximum curvature ti.

1 Set all λi to 0.5;
2 Compute all ci,0 and ci,2 by Eq. (1);
3 while not converged do
4 Compute all λi by Eq. (5);
5 Compute all ci,0 and ci,2 by Eq. (1);
6 Compute all ti by root �nding of cubic polynomial in Eq. (4) ;
7 Compute all ci,1 by solving the linear tridiagonal system

pi = (1− λi−1)(1− ti)2ci−1,1 + λit
2
i ci+1,1 + (λi−1(1− ti)2 + (2− (1 + λi)ti)ti)ci,1;

8 end

9 Compute all ci,0 and ci,2;

3 GENERATION OF κ-SPACE CURVE

At �rst, we use quadratic Bézier curves to form κ-space curves and the control points of a quadratic Bézier
curve are on the same plane. Even though the control points are located in 3D space, Eq. (1) and Eq. (3)
can be applicable for them. In Eq. (5), we need areas of 4+

i and 4−i , and the control points are on the same
plane, respectively. It is straightforward to generate a curve for a sequence of 3D input points as shown in
Fig. 2. Since the planes where the control points of consecutive quadratic Bézier curves are located as well
as their Frenet frames are generally di�erent, curvature values at the connection point are consistent between
the adjacent curve segments, but the curvature directions lie in di�erent planes. G2 continuity requires not
only the matching of curvature values but also the alignment of curvature directions at the connection point.
When the curvature directions of the curve segments deviate or lie in di�erent planes, it violates the G2

continuity condition. This deviation in curvature directions can result in a visual break or an abrupt change
in the smoothness of the curve at the connection point (please see the closeup in Fig. 2 (a)). To achieve G2

continuity, it is necessary to ensure that not only the magnitudes but also the directions of the curvatures align
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Figure 2: Generating κ-space curve with quadratic Bézier curves

properly at the connection point. For this situation only G1 continuity is guaranteed, although the absolute
values of curvature are the same.

For the κ-space curve generated above, we would like to replace two consecutive quadratic Bézier curves
with a Bézier curve of higher degree. In order to achieve G2 continuity, the joint between two consecutive
quadratic segments should be replaced with guaranteeing it at both ends of the replacing curve segment of a
higher degree.

3.1 Replacement with Quartic Bézier Curves

Typically, the three control points of each of the two quadratic segments are situated on distinct planes, as
illustrated in Fig. 3. Therefore, to achieve G2 continuity, it is necessary to use a curve with a minimum degree
of four.
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Figure 3: Control points setting of Quartic Bézier curve.

Hence, we use a quartic Bézier curve for replacement. The quartic Bézier curve has �ve control points and
the �rst three control points should be on the plane of the �rst quadratic curve segment and the last three
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ones on that of the second curve segment. This means that the �rst and second control points are on the �rst
plane, the fourth and �fth ones on the second plane and the third control points must be located on the line
of P1P3 in Fig. 3. Furthermore, for G1 continuity at the ends, the second control point is on P0P1 and the
third one on P3P4. Therefore, for the control points Qi(i = 0, · · · , 4) of the quartic curve, there exist such a,
b and γ that

Q0 = P0

Q1 = (1− a)P0 + aP1

Q2 = (1− γ)P1 + γP3

Q3 = (1− b)P3 + bP4

Q4 = P4

(6)

where Pi (i = 0, · · ·, 4) are de�ned by the control points Ci,j (j = 0, 1, 2) of the quadratic Bézier curve
segments

P0 = Ci,0

P1 = Ci,1

P2 = Ci,2 = Ci+1,0 = (1− λ)Ci,1 + λCi+1,1

P3 = Ci+1,1

P4 = Ci+1,2

(7)

For a given γ in order to guarantee G2 continuity at the end points Q0(P0), Q4(P4) in Fig 3, let{
κi(0) = κ(0)

κi+1(1) = κ(1)
(8)

where κi(0) and κi+1(1) are κ-curve's curvatures at P0 and P4, κ(0) and κ(1) are quadratic Bézier curve's
curvatures at Q0 and Q4, respectively. The following constraints are derived from Eq. (8) (see details in
Appendix A.1):

a =

√
3γ

2λ
(9)

b = 1−

√
3(1− γ)
2(1− λ)

(10)

We can adopt λ for γ as an initial value. Fig. 4 shows a quartic Bézier curve with γ = λ. Notice that the
shape is approximated well by the quartic curve, but the positions of the curvature extrema are not preserved.
The curvature extrema do not generally coincide with the input points.

3.2 Partial Replacement with Quartic Bézier Curves

Here we describe a method to replace the joint part of two adjacent quadratic curve segments with a quartic
Bézier curve. We replace the parts of parameter intervals {t1, 1} and {0, t2} from the �rst and second
segments, respectively with a quartic Bézier curve as shown in Fig. 5.
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Figure 4: Replacement with a quartic Bézier curve.

The control points of the quartic Bézier curve {Q0, Q1, Q2, Q3, Q4} are determined by the auxiliary points
A,B,C, and D.

Q0 = (1− t1)A+ t1B

Q1 = (1− a′)Q0 + a′B

Q2 = (1− γ′)B + γ′C

Q3 = (1− b′)C + b′Q4

Q4 = (1− t2)C + t2D

(11)

with

A = (1− t1)P0 + t1P1

B = (1− t1)P1 + t1P2

C = (1− t2)P2 + t2P3

D = (1− t2)P3 + t2P4

(12)

We would like to apply Eq. (9) and Eq. (10). Hence, we introduce λ′ and γ′ as follows:
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Figure 5: Control points setting of partial replacement with a quartic Bézier curve.

(1− λ)ci,1 + λci+1,1 = (1− λ′)B + λ′C (13)

(1− γ)ci,1 + γci+1,1 = (1− γ′)B + γ′C (14)
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By solving the above equations, we obtain

λ′ =
λt1 − λ

λt1 + λt2 − λ− t2
(15)

γ′ =
γ − λt1

t2 − λ(t1 + t2 − 1)
(16)

and Pi (i = 0, · · ·, 4) are also de�ned by Eq. (7). Therefore, a′ and b′ are derived by G2 continuity (i.e. Eq. (8)
) at the ends of Q0 and Q4 (see details in Appendix A.2),

a′ =

√
3

2

γ − λt1
λ(1− t1)

(17)

b′ = 1−

√
3

2

{
1 +

λ− γ
(1− λ)t2

}
(18)

Note that a′ does not have t2 and b′ does not have t1 and a′ is determined by t1 and b′ is determined by t2.
a′ and b′ look quite di�erent, but substitute t2, λ and γ with 1− t1, 1− λ and 1− γ, then

1− b′ = a′ (19)

because of symmetry.
The concept ofG2 continuity as well asG1 continuity is local andG2 continuity is broken by the replacement

with a quartic Bézier curve only at the joint of two consecutive quadratic Bézier curves. Hence, we replace
a partial segment at the joint of κ-space curve with a quartic curve to preserve the locations of its curvature
extrema.

The generated κ-space curve with the replacement of Ci(t) for t ∈ (0.9, 1) and Ci+1(t) for t ∈ (0, 0.1)
is shown in Fig. 6. Notice that the curvature is continuous at the two joints with the quadratic curves. This
replacement does not a�ect the locations of the original curvature extrema of κ-space curve in this case, and
we can make the replacement curve short as much as we like. Therefore, we can preserve the locations of the
curvature extrema.

Fig. 7 shows the curvature graph of the replacement curve. Since the curve is of a higher degree than
quadratic, it introduces another curvature extremum as shown in Fig. 7. However, the shorter the replacement
curve becomes, the closer it approximates a straight line segment, and we can make the value of the newly
introduced curvature extremum relatively small. So we can avoid introducing a large curvature extremum by
controlling the length of the replacement curve.

4 OPTIMIZATION

We can optimize γ to minimize, for example, the following objective function:

F (γ) =

∫ 1
2

0

|C (t)− Ci (2t)| dt+
∫ 1

2

1

∣∣∣∣C (t)− Ci+1

(
2

(
t− 1

2

))∣∣∣∣ dt (20)

where C(t) is the quartic Bézier curve and Ci(t) and Ci+1(t) are i-th and i + 1-st quadratic Bézier curves,
respectively. We can adopt λ for γ as an initial value for optimization. Figure 8 shows a quartic Bézier
curve with the optimized γ. The green and blue points indicate curvature extrema of the original κ-space
curve and the quartic Bézier curve, respectively. The di�erence is subtle, but the curve with the optimized γ
approximates the quadratic curves better.
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Figure 6: Partial replacement with a quartic Bézier curve.
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Figure 7: The graph of absolute curvature value of the replacement curve.

Figure 8: Replacement with a quartic Bézier curve with optimized γ.
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5 IMPLEMENTATION

We have already made an application of κ-space curve in Rhino®Plugin program. κ-space curve is a com-
bination of quadratic Bézier curves and quartic Bézier curves, it can be saved as Rhino's curve type: Poly
curve. As κ-space curve can be saved in Rhino �le formats, the compatibility and seamless integration of
our Plugin program with Rhino is ensured. Our curve generation system provides a �exible and intuitive
approach to editing and manipulating curves within the Rhino environment, such as rotate, move, split at
speci�c parameter or joint with other curves. Users can easily let it show the control points, the curvature
properties, and re�ne the shape of the curves according to their speci�c design. As shown in Figure. 9 left the
replacement parameter t is set to be 0.01. We can see the curvature extrema are just located on the input
points, and the curvature is continuous around the joint. As shown in Figure. 9 right our curves can serve
as a fundamental building block for complex 3D modeling tasks within Rhino. They can be used as a basis
for lofting, sweeping, or rail-based operations, enabling users to create intricate shapes and forms with precise
control over the resulting geometry. Using space curves to generate surfaces o�ers stronger three-dimensional
representation, control over multiple axes, more realistic geometry, and better spatial continuity compared to
planar curves. These advantages make space curves an ideal choice in many application areas, particularly
when precise modeling and designing complex three-dimensional surfaces are required.

Regarding the applications of using κ-space curve to generate surfaces, our curves can be utilized for a range
of common application areas, such as industrial design and robotics: The representation and manipulation
of three-dimensional curves are essential in industrial design and robotics applications. κ-space curve can
be employed in tasks such as path planning, robot motion control, or shape generation, where maxima
curvature property and G2 continuity are desirable. It also possesses the advantages in terms of precision,
manufacturability, or collision avoidance.

Figure 9: κ-space curve Rhino plugin.

6 CONCLUSIONS AND FUTURE WORK

This paper proposes a new method that enables to extend κ-curve to κ-space curve and maintain G2 continuity
by replacing quadratic Bézier curves with quartic Bézier ones. In addition, we have derived a formula that
enables to connect quartic Bézier curves to quadratic Bézier curves at arbitrary parameter positions with
G2 continuity. Although the new replacement part introduce additional points of maximal curvature, by
controlling the length of the replacement curve, we can make the value of the newly introduced curvature
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extremum relatively small. This replacement does not a�ect the locations of the original curvature extrema
of κ-space curve. They serve the purpose of ensuring a smooth transition and continuity between the curve
segments. In the future, we will extend κ-curve to κ-surface that could be applied in complex geometric
modeling. We also would like to compare κ-surface with subdivision surface.
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A Proof of constraints to guarantee G2 condition

A.1 Replacement with Quartic Bézier Curves

a =

√
3γ

2λ

b = 1−

√
3(1− γ)
2(1− λ)

Proof. The derivatives of quartic Bézier curves at two end points Q0 and Q4 in Fig 3 are given by

C ′(0) = 4(Q1 −Q0) C ′′(0) = 4× 3× (Q2 − 2Q1 +Q0)

C ′(1) = 4(Q4 −Q3) C ′′(1) = 4× 3× (Q4 − 2Q3 +Q2)

And the curvatures of quartic Bézier curves at two end points are given by

κ(0) =
‖4(Q1 −Q0)× 12(Q2 − 2Q1 +Q0)‖

‖4(Q1 −Q0)‖3
=

3

2

4(Q0, Q1, Q2)

‖Q1 −Q0‖3
(21)

κ(1) =
‖4(Q4 −Q3)× 12(Q4 − 2Q3 +Q2)‖

‖4(Q4 −Q3)‖3
=

3

2

4(Q4, Q3, Q2)

‖Q4 −Q3‖3
(22)

The curvatures of κ-curve at two ends P0 and P4 in Fig 3 are given by

κi(0) =
4(P0, P1, P2)

‖P1 − P0‖3
(23)

κi+1(1) =
4(P4, P3, P2)

‖P4 − P3‖3
(24)

To guarantee G2 continuity at the ends,

{
κi(0) = κ(0)

κi+1(1) = κ(1)
⇒

a3 =
3

2

4(Q0, Q1, Q2)

4(P0, P1, P2)

(1− b)3 =
3

2

4(Q4, Q3, Q2)

4(P4, P3, P2)

∵

4(Q0, Q1, Q2)

4(P0, P1, P2)
=
aγ

λ

4(Q4, Q3, Q2)

4(P4, P3, P2)
=

(1− b)(1− γ)
(1− λ)
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∴

a =

√
3γ

2λ

b = 1−

√
3(1− γ)
2(1− λ)

A.2 Partial replacement with Quartic Bézier Curves

a′ =

√
3

2

γ − λt1
λ(1− t1)

b′ = 1−

√
3

2

{
1 +

λ− γ
(1− λ)t2

}
Proof. The curvatures of quartic Bézier curves at two end points Q0 and Q4 in Fig. 5 are the same with
Eqs. (21) and (22) Appendix A.1. The curvatures of κ-curve at two points Q0 and Q4 in Fig 5 are given by

κi(t1) =
4(P0, P1, P2)

‖(1− t1)(P1 − P0) + t1(P2 − P1)‖3
(25)

κi+1(t2) =
4(P4, P3, P2)

‖(1− t2)(P3 − P4) + t2(P4 − P3)‖3
(26)

Similarly to guarantee G2 continuity,

{
κi(t1) = κ(0)

κi+1(t2) = κ(1)
⇒

(a′(1− t1))3 =
3

2

4(Q0, Q1, Q2)

4(P0, P1, P2)

((1− b′)t2)3 =
3

2

4(Q4, Q3, Q2)

4(P4, P3, P2)

∵

4(Q0, Q1, Q2)

4(P0, P1, P2)
= a′(1− t1)3

γ′

λ′

4(Q4, Q3, Q2)

4(P4, P3, P2)
= (1− b′)t32

(1− γ′)
(1− λ′)

where

γ′

λ′
=

γ − λt1
λ(1− t1)

(1− γ′)
(1− λ′)

= 1 +
λ− γ

t2(1− λ)

∴

a′ =

√
3

2

γ − λt1
λ(1− t1)

b′ = 1−

√
3

2

{
1 +

λ− γ
(1− λ)t2

}
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