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Abstract. In recent years the acquisition of point clouds using di�erent 3D sensors (LIDAR,
structured light, etc.) or 2D camera sensors using photogrammetry has led to the need
to give a higher semantic meaning to the captured raw data so as to allow for a higher-
level processing in CAD applications or to use the semantics for various applications like
autonomous driving, robotics, urban and rural classi�cations etc. A way to achieve this
is through point cloud semantic segmentation. Point cloud semantic segmentation is the
technique to assign to each point of the 3D point cloud a semantic label. A class of point
clouds that can be segmented semantically and are of interest in this work are those that are
sampled from articulated objects, i.e., having protrusions. This work, extends the work of the
protrusion-oriented semantic segmentation of polygon meshes presented in [2] to unstructured
point clouds. With the proposed methodology there is no need to reconstruct the polygonal
mesh surface of the object in order to perform segmentation since triangulation is a task that
can be quite challenging and time consuming, especially with the presence of noise. Detailed
experimentation is presented showing that the proposed approach can segment robustly point
clouds even in the presence of noise. In terms of computation time the proposed method is
comparable to the polygon based approach.

Keywords: Point cloud, semantic segmentation, protrusion function, articulated objects,
minimum graph-cut
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1 INTRODUCTION

In recent years point cloud acquisition using either a laser scanner or a camera through photogrammetry
has become very popular. This has lead to the collection of a vast number of point clouds leading to
the necessity to handle them e�ciently, produce variations of them through metamorphosis, search for similar
point cloud representations from a database and classify them through object detection for various autonomous
applications. One way to tackle these problems is to provide to the point cloud a higher semantic meaning
through semantic segmentation.
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Figure 1: Semantic segmentation of point clouds

Semantic segmentation of a point cloud is the process of assigning to each of its points a semantic label.
This label usually classi�es the point to a perceptually meaningful part. Point cloud semantic segmentation
di�ers from the known general term point cloud segmentation. In point cloud segmentation the aim is to
partition the point cloud into homogenous areas which have a geometric shape like the planar roof and walls
of a building, while in semantic segmentation the aim is to give to the segmented parts a characteristic that
makes sense in human perception. Examples of the later can be seen in Fig. 1 which shows the classi�cation
of all points into their perceptually meaningful parts labelled with di�erent colors.

Semantic segmentation can be unsupervised using various techniques like convexity analysis [17] or using
the protrusion function, as it is adopted in this paper. Recently, supervised techniques have been introduced
using machine learning techniques like for example Maximum Likelihood Classi�ers [19], Support Vector Ma-
chines [21], Random Forests [7]. Though the most active �eld of machine learning in semantic segmentation
is nowadays deep learning. With this approach the point cloud is either (i) transformed into multi-view im-
ages [33], (ii) transformed into voxels by partitioning it into a volumetric grid [24], and (iii) used directly
with its coordinates [28] or with its edge connectivity [39]. In all cases, convolutional neural networks are
used to process and generate features. These convolutions are either one-dimensional, two-dimensional or
three-dimensional.

The main problem with supervised learning is that there is a need of a signi�cant number of annotated
point clouds with labels to train the neural networks, which is cumbersome and needs a lot of human labor.
Also, to make things worse, for each new part there is a need to provide new annotations for the network to
process it. Of course, a neural network has the ability to generalize so as to be able to label points belonging
in a variant of the speci�ed class, but it can't generalize to label a completely new part that it has not been
trained to recognize. In contrast, unsupervised semantic segmentation does not have this limitation. It can
be used to segment a variety of objects using general geometric characteristics that a wide variety of objects
have. A class of point clouds that are of interest in this work is those that are sampled from articulated
objects, i.e., having protrusions. This work, extents the work of semantic segmentation of polygonal meshes
presented in [2] to unstructured point clouds. With the proposed methodology there is no need to reconstruct
the polygonal mesh surface of the object, a task that can be quite challenging and time consuming, especially
with the presence of noise.

The rest of the paper is organized as follows. An overview of previous research conducted on point cloud
segmentation is presented in Section 2. In Section 3, the proposed methodology for the semantic point cloud-
segmentation is presented. Section 4 details the experiments carried out to evaluate the segmentation quality
of the proposed approach, and presents an extensive comparison both with the mesh-based counterpart and
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with a point-based method in the literature. Section 5, presents a discussion highlighting the di�erences of
the proposed point-based method with the mesh-based approach. Finally, Section 6 summarizes the results,
and conclusions are drawn.

2 PREVIOUS WORK

According to [40], point cloud segmentation can be divided in methods in which the extracted parts do not
have a strong semantic meaning, i.e. they correspond to speci�c prede�ned objects or structures in a scene,
and those that the parts have strong semantic information. In [40] this semantic information is supposed to
be the product of a machine learning process (clustering methods). In this paper, though, it is assumed that a
semantic segmentation algorithm is capable to segment the object into semantically meaningful parts, like for
example in Fig. 1, the chair object is segmented into its legs, seat and back. If the given application requires
an automatic semantic label to be given to the part like foot, leg, arm, head, human, etc. object recognition
can be performed based on geometric features (like [29]) or machine learning techniques. In the following
both methods will be shortly analyzed. The non-semantic point cloud segmentation is referred as point cloud

segmentation.

2.1 Point Cloud Segmentation

Point cloud segmentation can be divided in four groups: edge-based, region growing, model �tting, and
clustering based.

2.1.1 Edge-based

In edge-based segmentation, �rst, feature curves are found in the point cloud and then the parts enclosed in
these feature curves are extracted. Representative work of this approach is [5] where the feature curves are
found when sudden changes in the normal direction occur. The work of [16] further improved the complexity
of this approach. The problem with the edge-based approach is its limited applicability since it mostly works
on range images where the noise level is low. Also there is no guarantee that the detected feature curves will
create closed contours so as to extract the parts belonging inside their boundaries.

2.1.2 Region growing

In the region growing segmentation the most common approach is to start with a seed element like a point
in the cloud and grow it by adding neighbours based on various criteria. These criteria are usually geometric
features (like normal vectors, curvature) that measure the similarity of the point to be added with the existing
region. Besl and Jain [4] describe a two-stage region growing approach in which seed elements are selected
based on mean and Gaussian curvature of points of the range-image achieving an initial coarse segmentation.
In the second stage region growing further adds point elements guided by bivariate surface �tting. Additional
work in region growing to segment building plane structures is reported in [13, 38, 26].

Selecting a single point as a seed element is not ideal for massively large point clouds. In these cases
a region of points is preferred as a seed element. An approach to select regions can be achieved by the
voxelization of the area of the point cloud. Deschaud et al. [9] present a voxel-based approach in which the
seed element is a voxel containing a subset of the point cloud. Vo et al. [38] proposed an octree-based region
growing approach for fast initial seed region creation and growing.

The main disadvantage of the region growing approach is that it depends on the criteria for merging which
can fail to correctly add elements or lead to oversegmentation.
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2.1.3 Model �tting

The basic concept of the model �tting segmentation is to �t basic geometries on subsets of the point cloud like
planes, spheres, cylinders, tori, etc. In this way the segmentation of the point cloud is achieved by assigning as
segmentation parts the points that �t these primitives. The basic methodologies for model �tting use either
the Hough Transform [15, 10] (HT) or RANdom SAmple Consensus [12] (RANSAC).

1. The Hough transform algorithn �rst creates the parametric representation of the model that needs to be
�tted, then it discretizes the parametric representation into a grid and �nally the sample points are used
for voting for the best �tting parameter tuple on the grid. There has been many subsequent algorithms
based on the Hough transform to improve its e�ciency like the Probabilistic Hough Transform [18]
(PHT), Randomized Hough Transform [41] (RHT) and Kernel-based Hough Transform [11] (KHT).
At that time a comparison of all these algorithms for their suitability to segmentation, performed by
Bormann et al. [6], revealed that RHT [41] was the best performing algorithm. Later, Limberger et al. [22]
extended KHT [11] to 3D point clouds and showed that their approach for segmentation outperforms
RHT [41].

2. The Ransac algorithm [12] has two main steps. The �rst step is hypothesis generation. In this step
N random points are chosen and a set of parameters are estimated conforming to the shapes that are
expected to be found in the scene, like sphere, planes, cylinders, tori, etc. Second, at the hypothesis
evaluation step the most probably hypothesis is chosen, speci�cally the shape that best �t the point cloud.
The advantage of Ransac is that it can perform robustly even when the point-cloud is contaminated with
high levels of noise. In the context of Point Cloud Segmentation, RANSAC is used in plane segmentation
like building façades [1, 3], building roofs [8] and indoor scenes [20].

2.1.4 Clustering

Clustering is the process of gathering elements into groups with the same homogeneous pattern. In machine
learning it belongs in the �eld of unsupervised learning. This means that the extracted parts usually do not
hold a semantic meaning, it is just a group of elements with similar properties. These properties in point cloud
segmentation can be geometric features, spectral features or its spatial distribution. The most widely used
methods that use clustering for segmentation are K-means and Fuzzy clustering.

1. K-means is the most widely used Clustering method. It separates the point cloud into K regions based
on a similarity-metric, which can be the Euclidean, Mahalanobis or Manhattan distance. It has been
used for single tree crown segmentation [25] and planar structure extraction from roofs [30].

2. In K-means clustering each point of the point cloud belongs to only one cluster. In Fuzzy clustering each
point belongs to all of the K clusters with di�erent membership weights. The point is most probable
to belong to the cluster with the maximum weight. As in K-means, the points are clustered using
various similarity metrics. Sampath et al. [31] use fuzzy clustering for segmentation and reconstruction
of building roofs.

2.2 Point Cloud Semantic Segmentation

In point cloud semantic segmentation the extracted parts needs to have a perceptual meaning in human
cognition. The result may be either the product of a machine learning process after training of a model with
semantic labels or a method that segments according to how human perception does [14] like in the case of
the current work. A recent trend in semantic point cloud segmentation is the use of machine learning methods
that use either traditional classi�ers or deep learning methods.
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2.2.1 Classi�cation of point cloud

These methods use traditional classi�ers in machine learning like Gaussian Mixture Models [19], Support
Vector Machines [42, 21] and Random Forests [7]. Other methods use statistical approaches like Markov
Networks [32], Simpli�ed Markov Random Fields [23] etc. In recent years these traditional machine learning
methods have become less popular giving their place to Deep Learning methods.

2.2.2 Deep Learning methods

Deep Learning leverages the classi�cation capabilities of Neural Networks consisting of hundreds of hidden
layers, thus the word deep. The most popular Neural Networks for classi�cation and segmentation are the
ones which layers perform convolutions (convolutional neural networks). The problem in directly applying
these networks to point cloud semantic segmentation is that the point cloud has not a grid structure like an
image has. Thus, there was a need for methods able to perform convolution on point clouds. Depending on
the data that the Neural Network receive as input the methods that perform segmentation can be categorized
to multiview-based, voxel-based and point-based.

1. Multiview-based. In these methods the point cloud is transformed into 2D images taken from di�erent
views. Segmentation is performed on these images and the results are combined to produce the �nal
3D segmentation [33]. These methods were conceived in the early stages of using convolutional neural
networks to segment point clouds and are not so popular anymore, since it is di�cult to capture the full
3D shape of a complicated object or scene in 2D images.

2. Voxel-based. In these methods the point cloud is transformed into a voxel representation, thus giving it
order and structure. On this representation 3D convolutional neural networks can be used to perform
segmentation. The segmentation can then be transferred to the point cloud using for example tri-linear
interpolation [34]. The main problem of this approach is that the shape of the 3D object is becoming
coarse thus there is a possibility to miss features that need to be segmented.

3. Point-based. In these methods the point cloud is not transformed into a di�erent representation but use
the point cloud directly. A basic representative of this method is the work of Qi et al. [28] which do not
use convolutional neural networks but directly apply multi-layer perceptrons creating augmented features
while also performing rigid transformations (rotations, translations) in the training process to capture a
general pose of the object. The work Wang et al. [39] use edge connectivity (k-nearest neighbors) to
perform convolutions thus capturing the relationships that the points have.

Among the various methods explored above, it is evident that deep learning techniques have gained con-
siderable popularity for point cloud semantic segmentation. However, it is worth noting that these methods
necessitate the use of human-made annotations during training. Additionally, a considerable number of sam-
ples are required to train the neural network e�ectively, ensuring that it does not under�t and can generalize
accurately. In contrast, the method proposed in this paper can perform semantic segmentation of articulated
objects without any training. Moreover, it can also aid in the annotation of training samples for deep learning.

3 PROTRUSION-ORIENTED POINT CLOUD SEMANTIC SEGMENTATION

The work of Agathos et al. [2] segments semantically the triangle mesh of an object containing protrusions.
It's extension to point clouds that capture the geometry of an object with protrusions, is not trivial and
its constituent steps to achieve a successful segmentation require methods and algorithms suitable for point
clouds. The development of such algorithms is a challenging task since, contrarily to polygonal meshes, there
is no de�nition of any kind of surface representing the object. Furthermore, the proposed algorithm is not using
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(a) (b) (c)

(d) (e)

Figure 2: (a) Visualization of the protrusion function calculated on the point cloud, blue to red depict small
to large values. (b) The salient points of the object are illustrated with di�erent colors. (c) The salient points
are grouped according to the protrusion they belong. (d) The core of the object is illustrated in yellow. (e)
The �nal semantic segmentation of the point cloud is illustrated with each part having a di�erent color.

any other information, like normal vectors, except the raw coordinates of the point cloud. In subsection 3.1
an overview of the steps of the algorithm is given followed by a detailed description of each step in the next
subsections.

3.1 Overview of Algorithm

Given a point cloud P consisting of N points {pi}i=1,...,N the steps to achieve semantic segmentation are:

(a) Computation of the protrusion function on the point cloud. In this step a function is de�ned which
values distinguish the points on protrusions from the ones that belong near the center of the object,
Fig. 2(a).

(b) Computation of the salient points. These points are the extrema of the protrusion function and belong
to the protrusions, Fig. 2(b).

(c) Grouping of the salient points. The salient points are grouped according to the protrusion they belong,
Fig. 2(c).

(d) Computation of the core of the object. The core (points near the center) of the object is found, Fig. 2(d).

(e) Boundaries and part extraction. The segmentation boundaries are extracted. These are the points that
separate the protrusion from the rest of the object. Then the semantic parts are extracted, Fig. 2(e).
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Algorithm 1 Compute Geodesic Regions

Input: PointCloud,EGG, thres
Output: baseIndexes, geodesicRegions

1: procedure DivideInGeodesicRegions

2: processedIndexes = ∅
3: remainingPntNumber = N
4: indexes = {1, . . . , N}
5: while remainingPntNumber > 0 do
6: neighbors = ∅
7: idx=a random member of indexes
8: indexes− = idx
9: ProcessedIndexes+ = idx

10: neighbors+ = idx
11: baseIndexes+ = idx
12: neighborhood = GeodesicNeighborhood(PointCloud, idx,EGG, thres)
13: for n in neighborhood do
14: if n not in processedIndexes then
15: indexes− = n
16: processedIndexes+ = n
17: neighbors+ = n
18: remainingPntNumber −−
19: geodesicRegions+ = neighbors

3.2 Computation of the Protrusion Function

The protrusion function fprot : R3 → R is de�ned for each point p of the point cloud P as:

fprot(p) =
∑
p′∈P

g(p, p′) (1)

where g(p, p′) the geodesic distance of point p to point p′. The geodesic distance is found by applying
the Dijkstra algorithm [35] using the Elliptic Gabriel Graph [27] to provide connectivity between the raw
points. The protrusion function receives small values at the center of the object and high values at its extrema
(protrusions), see Fig. 2(a).

The problem with the computation of the protrusion function is its high complexity since it has to be
calculated for each point of the point cloud making it intractable to point clouds consisting of thousands of
points. In [2] an approximation to the protrusion function is proposed and it is followed also in this work.
Speci�cally, the point cloud is divided into non overlapping geodesic regions. These regions are created by
applying the Dijkstra algorithm constrained with a distance threshold on randomly chosen points of the point
cloud.

To ensure consistency and comparability across all point clouds, it is assumed that the point cloud has
been scaled to �t within the unit cube. This scaling facilitates the use of threshold values mentioned in this
paper, which remain consistent and constant regardless of the point cloud being segmented.

In Algorithm 1 the aforementioned procedure to divide the point cloud in geodesic regions is shown in
pseudo-code. It receives as input the point cloud (PointCloud), the elliptic Gabriel graph (EGG) and the
threshold value (thres) required for the creation of the geodesic neighborhood. After its completion the output
will consist of the indexes of the centers of the geodesic regions (baseIndexes) and the indexes of the point
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Algorithm 2 Compute the Geodesic Neighborhood

Input: idx, PointCloud,EGG, thres
Output: geodesicNeighborhood

1: procedure GeodesicNeighborhood

2: g = array(N,+∞)
3: geodesicHeap = ∅
4: geodesicElement = {idx, 0.0}
5: g(idx) = 0.0
6: geodesicHeap+ = geodesicElement
7: while geodesicHeap not empty do
8: geodesicElement = geodesicHeap top element and extract it
9: v = index(geodesicElement)

10: neighbors = EGG(v)
11: for va in neighbors do
12: dist = g(v) + ||PointCloud(v)− PointCloud(va)||
13: if dist < thres and dist < g(va) then
14: geodesicElement = {va, dist}
15: geodesicHeap+ = geodesicElement
16: g[va] = dist

17: geodesicNeighborhood = ∅
18: for idx = 0 to N − 1 do
19: if g(idx) < +∞ then

20: geodesicNeighborhood+ = idx

cloud contained in each region (geodesicRegions). In this procedure a random index (idx) is chosen from
the point cloud and it is set as a base index. Then the geodesic neighborhood around this point which radius
is smaller than thres is found. From these neighbors a new region is created containing the points that do
not belong in other regions.

In Algorithm 2 the procedure to calculate the indexes of a geodesic neighborhood is shown in pseudo-code.
It receives as input the center index (idx), the point cloud (PointCloud), the elliptic Gabriel graph (EGG)
and the required threshold (thres) to constrain its extent. It returns the indexes of the geodesic neighborhood
(geodesicNeighborhood). In the algorithm, a priority queue (heap) is used to store the elements already
visited having as key the geodesic distance. Elements are extracted from and added in the priority queue as
long as the geodesic distance is smaller than the threshold set. Finally all indexes of the point cloud whose
geodesic distance is smaller than +∞ are added in the geodesic neighborhood.

Having partitioned the point cloud into NR geodesic regions the protrusion function can be approximated
as:

fprot(p) '
∑

i∈baseIndexes

g(p, pi)area(geodesicRegions(i)) (2)

where area(geodesicRegions(i) is the area of the geodesic region with center pi. It is computed by �nding
the mean-radius of the 1-ring neighborhood of each point contained in the region and taking the sum of the
disk areas de�ned by these radii.
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Figure 3: Top row, the salient points found on a cow and pig model. Bottom row, the salient points are
grouped according to the protrusion to which they belong.

3.3 Computation and Grouping of the Salient Points

The salient points are points that belong to the protrusions of the point cloud, where the protrusion function
receives a local maximum. A point v of the point cloud is considered to belong on a protrusion of the point cloud
if its protrusion function is greater than a threshold, i.e. fprot(v) > tprot. A point vs belonging to a protrusion,
is also a salient point if its protrusion function for a neighborhood Pvs around it receives a local maximum, i.e.
fprot(vs) > fprot(v), v ∈ Pvs . The neighborhood Pvs can be either a small geodesic neighborhood created
by Algorithm 2 with a small value of threshold (e.g. thres < 10−3) or a k-ring neighborhood which can be
created from the connectivity of the elliptic Gabriel graph. Fig. 3, top row, shows the salient points found on
a cow and pig model following the aforementioned methodology.

As it can be observed on the top row of Fig. 3, the protrusion corresponding to the head of the cow and
pig model has more than one salient points. These salient points represent the same protrusion and should be
grouped together. Assuming the set of salient points is de�ned as S = {si, i = 1...Ns}, a value Ts is de�ned:

Ts =

∑Ns−1
i=1

∑Ns
j=i+1 g(si, sj)

Ns(Ns − 1)
(3)

where g(si, sj) denote the geodesic distance of the salient points si and sj .
A group of salient points C contains the salient points whose geodesic distance with each other is smaller

than the threshold value Ts and is de�ned as:

C = {si ∈ S : ∀sj ∈ C, g(si, sj) < Ts} (4)

Fig. 3, bottom row, shows the grouping of the salient points for the cow and pig models. All salient points
that belong to the heads are grouped into the same cluster.
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Figure 4: The cores of the cow and pig models are illustrated with yellow color

The representative salient point of each protrusion, is the salient point of the group C belonging to the
protrusion with the highest protrusion value, i.e.

Rep(C) = {si ∈ C : fprot(si) >prot (sj),∀sj ∈ C} (5)

3.4 Computation of the Core of the Object

A crucial step of the segmentation process is the extraction of the core of the object. By core extraction, it is
meant the approximation of the main body of the object. An algorithm which approximates the main body
of the object is the one that can acquire all the points of the point cloud except those that belong to the
protrusions of the object, separating the later from each other.

The core approximation is performed by using the minimum cost paths between the representative salient
points, see Eq. (5). It is assumed that Ŝ = {ŝi, i = 1, . . . Nc} is the set of representative salient points, where
NC denote the number of clusters found in subsection 3.3 and ŝi the representative of the i

th group of salient
points. Also, let Pa = {Pij , i, j ∈ {1, . . . , NC}} be the set of all minimum cost paths of the points of Ŝ,
where Pij denote the minimum cost path between ŝi, ŝj . The minimum cost paths are found by backtracking
from the destination to the source salient point after applying the Dijkstra algorithm on all representatives
using the elliptic Gabriel graph for connectivity between the points of the point cloud.

The central concept of this algorithm revolves around the expansion of a point set in ascending order of
their protrusion function values. This expansion continues until the enlarged set encompasses a predetermined
percentage of all elements within Pa. By employing this method of point set expansion, the algorithm ensures
that it not only reaches the protrusions but also covers an area contained within them. Additionally, a threshold,
denoted as tc, is de�ned within the algorithm, which represents the percentage of minimum cost path coverage.

In Fig. 4 the cores of the cow and pig models are illustrated. It can be observed that in both cases the
core spreads from the center of the objects to their protrusions separating them.

3.5 Boundary extraction of the protrusions

The boundary of a protrusion separates it from the main body of the object. It is considered that between the
boundary and the main body of the object an abrupt change in the area happens. The goal is to detect this
change, mark this region as the protrusion boundary, and extract the points of the point cloud belonging to
it. To achieve this, closed successive regions of points from the point cloud are constructed using a distance
function Dŝ associated to the salient point representative ŝ of the protrusion. The abrupt change that marks
the protrusion boundary is detected by examining the ratio of the areas of successive regions. Fig. 5 illustrates
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Figure 5: Left, successive regions constructed shown with di�erent colors, the abrupt change in area happens
in the vicinity of the red arrow. Middle, the green points mark the segmentation boundary. Right, the graph
cut re�nes the segmentation boundary and passes through deep concavities.

the successive regions constructed on the left, and the points that mark the abrupt change in area are shown
in the middle.

In the following, the de�nition of the distance function Dŝ that creates the closed regions and the procedure
to place the closed regions of points on the protrusion is presented.

For a speci�c representative salient point ŝ that represents a protrusion, the distance function Dŝ for each
point v of the point cloud P is de�ned as the shortest distance between ŝ and v. The shortest distance is
computed using the Dijkstra algorithm with source ŝ and connectivity de�ned by the elliptic Gabriel graph.
The cost for each edge (u, v) of the elliptic Gabriel graph is de�ned as:

cost(u, v) = δ
‖u− v‖

average_dist
+ (1− δ) |fprot(u)− fprot(v)|

average_prot
(6)

where δ ∈ [0, 1], average_dist and average_prot the average values of all pair di�erences in length and
protrusion, respectively. A proper balance between the two terms of Eq. (6) creates a closed region of points
as it is shown in Fig. 5(left). In this work, the value of δ is set to 0.4.

Let vmin denote the point belonging to the core of the object with the minimum geodesic distance from
ŝ and let Dcoremin = Dŝ(vmin). Let PD be the subset of P where each point v has distance function in
the range Dŝ(v) ∈ [(1− d1)Dcoremin, (1− d2)Dcoremin)], where d1 and d2 denote the extents of this subset.
In Fig. 5(left) the union of all the coloured regions illustrate the aforementioned point cloud subset. The
successive regions of points should be placed in this subset. Let lreg be the number of regions that the set

PD is divided. The successive regions will have width ε = (δ1+δ2)Dcoremin

lreg
. It is trivial to extract the points

that belong in this width with proper thresholding. Fig. 5(left) illustrates the construction of twelve successive
regions on the human feet with di�erent colors. The regions start from the bottom of the right foot, pass
from the core, and end up to the left foot of the human point cloud.

The search for the area where the protrusion boundary belongs is performed iteratively by examining the
ratio of the areas between successive regions which points belong in the interval [(1 − d1)Dcoremin, (1 −
d1)Dcoremin + i ∗ ε] and [(1− d1)Dcoremin, (1− d1)Dcoremin + (i+ 1) ∗ ε], i = {1, . . . lper − 1}. Let areai
and areai+1 be these areas respectively. The following ratio ri is de�ned:

ri =

{
areai+1

areai
if areai+1 > areai

areai
areai+1

if areai+1 ≤ areai
, i = 1, . . . , lper − 1 (7)
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The search terminates when there is a rk greater than a threshold rmax. When this happens this region is
considered to contain the segmentation boundary. This region is thinned with thresholding providing the �nal
segmentation boundary, see Fig. 5(middle).

In order to avoid creating skewed segmentation boundaries the representative salient point is re�ned before
searching for the segmentation boundary. The procedure to do this starts by �nding the point pmin of the
point cloud with the minimum geodesic distance from all salient points belonging to the group. Then the point
cmin belonging to the core with minimum geodesic distance to pmin is found. Let dmin denote the geodesic
distance between pmin and cmin. Then the �rst point pthres belonging to the geodesic path connecting
pmin to cmin, starting from pmin, with geodesic distance greater than 0.3dmin is selected. Then the region
containing the points with protrusion function greater than fprot(pthres) is selected. The protrusion function
constrained in this region is found and the point with the smallest protrusion function is regarded as the re�ned
salient representative. For further details see [2], Section 3.4.

3.6 Segmentation Boundary Re�nement

As can be seen in Fig. 5 the segmentation boundary does not entirely reside where human perception would
place it. Ho�man and Singh [14] describe how human perception place the segmentation boundaries on salient
parts (protrusions). Speci�cally the segmentation boundaries should reside at highly concave areas. In order
to �nd highly concave areas in a point cloud the jet-�tting function of CGAL [36] is used. This function �ts
to each point of the point cloud a polynomial from which the principal curvatures are computed. This �tting
is also quite robust in cases where the point cloud is contaminated with noise. From the principal curvatures
the Gaussian curvature is computed. Deep concavities reside in areas where the Gaussian curvature receive
large negative values.

As in [2] a minimum cut approach will be followed to place the segmentation boundaries. The �ow network
graph is de�ned by the elliptic Gabriel graph and the edge-capacities required for the graph cut algorithm will
be de�ned on the midpoints of each of its edges. Speci�cally for each edge e = (u, v) of the elliptic Gabriel
graph the middle point pe is found by averaging the points of the point cloud corresponding to its endpoints.
The Gaussian curvature of pe is denoted as Ge.

Three subsets of the point cloud are de�ned. Set A contains all points of the examined protrusion, set
C contains the points in which the segmentation boundary is contained, and set B contains the rest of the
points of the point cloud. Let Gc = (VC,EC) be the subset of the graph de�ned by the points of C and
the edges of the Gabriel graph which endpoints belong to C. Also, let VCA be the points of A which have at
least one point in C as a 1-ring neighbor and let VCB be the points of B which have at least one point in C
as a 1-ring neighbor. The �ow network graph G = (V, E) is constructed by de�ning also two more points s,
t with V, E de�ned as:

V = VC ∪VCA ∪VCB ∪ {s, t}
E = Ec ∪ {(s, v),∀v ∈ VCA} ∪ {(t, v),∀v ∈ VCB}∪

{euv ∈ EGG : u ∈ VC, v ∈ {VCA ∪VCB}}
(8)

Assuming that on each edge of the elliptic Gabriel Graph the Gaussian value Ge is normalized in [0,1] and
it is denoted by Ĝe, the capacity of each edge e ∈ E is de�ned as Cap(e) = n ∗ Ĝe, where n = 1 when
Ge > 0 and n << 1 when Ge < 0.

Fig. 5(right) shows in blue where the minimum-cut partitions the leg extrusion. It can be observed that it
is located in the area where human perception would place the segmentation boundary.
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Figure 6: Segmentation of various models with the mesh-based approach vs the proposed approach with and
without noise.

Model mesh-based point-based point-based with noise

Armadillo

Ant

Bird

Chair

Table
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Figure 6: Segmentation of various models with the mesh-based approach vs the proposed approach with and
without noise.

Continued from previous page.

Model mesh-based point-based point-based with noise

Dog
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Fox
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Figure 6: Segmentation of various models with the mesh-based approach vs the proposed approach with and
without noise.

Continued from previous page.

Model mesh-based point-based point-based with noise

Pig

Plane

Figure 7: Segmentation of the models of Fig. 6 with WCSeg vs the proposed approach.
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Figure 7: Segmentation of the models of Fig. 6 with WCSeg vs the proposed approach.

Continued from previous page.

Method Chair Table Dog
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Figure 7: Segmentation of the models of Fig. 6 with WCSeg vs the proposed approach.

Continued from previous page.

Method Hand Human Pig Plane

WCSeg

Point-based

4 EXPERIMENTS

In this section the segmentation capabilities of the proposed algorithm are examined. First, the proposed
algorithm is compared with its mesh-based counterpart [2]. Next, the segmentation consistency of the algorithm
is tested when the point cloud is contaminated with noise. Then our method is compared against the WCSeg
method reported in [17]. Finally, the computation time to perform semantic segmentation is compared with
the mesh-based approach. In all the experiments the parameters are set to tc = 0.15, δ = 0.4, d1 = 0.3, d2 =
0.4, lper = 12 and rmax = 1.3. It has been found experimentally that these parameters produce the best
results for a broad range of articulated objects.

In Fig. 6 (�rst and second column) the proposed algorithm is compared with the mesh-based counterpart.
It is clearly shown that both algorithms are consistent into the segmentation output managing to extract
similar semantic parts. In the third column, the point cloud is contaminated with noise; speci�cally the points
of the noise-free models are randomly displaced with a maximum distance of 1 percent from their original
position. It can be observed that despite of this heavy noise, the segmentation is consistent with the noise-free
segmentation. The di�erences between the mesh-based segmentation and the point-based segmentation are
due to the fact that the two methods, although similar in spirit, operate on two entirely di�erent domains.
Also, the underneath algorithms are very di�erent and therefore it is impossible to produce identical results.
However, it is evident that the point-based method proposed in this paper has the capacity to produce
consistent segmentation results which are in several cases closer to the human perception than those of the
mesh-based approach (see e.g., Armadillo, Ant, Donkey, Fox, Human).

In Fig. 7 the comparison of our algorithm with [17], named as WCSeg, is illustrated. In this work, the
point cloud is decomposed into approximate convex components, which are then merged into consistent parts
based on a non-local geometric signature. The code is available in [37]. From the given results it can be
observed that the approach proposed in this paper segments the point clouds more consistently.

It is worth noting that both the mesh-based approach and the WCSeg method have been unable to provide
valid semantic segmentations when the point cloud (or mesh data) is contaminated with noise. Therefore, we
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are unable to provide any results from these algorithms in such cases.
In Table 1 the execution time of the proposed point-based approach vs the mesh-based approach is listed,

for all models of Fig. 6. The calculations were performed on the same processor (Intel I5-11600K with 12
threads) taking advantage its multi-core capabilities with OpenMP. It can be observed that the execution time
of the proposed point-based approach is competitive with the mesh-based approach.

Table 1: Execution time of the proposed point-based vs the mesh-based approach (in seconds).

Model #Points #Triangles mesh-based time point-based time

Armadillo 172974 345944 13.308 8.220

Ant 14800 29596 0.931 1.038

Bird 5986 11968 0.558 0.650

Chair 9153 18306 0.681 0.309

Table 13714 27424 0.642 0.580

Dog 9328 18652 0.933 0.430

Donkey 10436 20868 0.834 0.435

Fox 4712 9420 0.557 0.270

Glasses 7407 14810 0.272 0.426

Hand 43442 86880 2.928 2.456

Human 2639 5274 0.348 0.176

Pig 8411 16818 0.768 0.335

Airplane 7351 14698 0.376 0.440

5 DISCUSSION

Given the extensive experiments detailed in Sec. 4, we are able to summarize the advantages of the proposed
point-based method over the mesh-based approach as follows: (i) The new method eliminates the need
for triangulation of the point cloud before segmentation - a process that can be complex and error-prone,
especially when noise is present. (ii) The new method is capable of handling point clouds with complex shapes
and signi�cant deviations in the sampling ratio, see Fig. 8. Creating polygonal meshes from such point clouds
can often be a challenging task. (iii) The new method demonstrates consistency in handling noisy point clouds.
In contrast, mesh-based approaches typically necessitate rigorous preprocessing to �lter out noise and ensure
a high-quality triangulation prior to segmentation.

On the other hand, the proposed point-based approach needs a su�cient sampling so as to create proper
connectivity between the points of the point cloud. Also, protrusions that are very close to the main body
can be miscalculated and connected with the main body (or other parts) due to the absence of connectivity
between the points.

6 CONCLUSIONS

In this work, a new methodology for the semantic segmentation of point clouds has been presented based on
the main work�ow implemented for polygonal meshes by Agathos et al. [2]. New algorithms have been devised
for each step of the methodology which are applicable to point clouds. With the new methodology a point
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Figure 8: Segmentation of two complex point-clouds with varying sampling and missing information.

cloud of an articulated object can be successfully segmented to semantic parts without the need to produce
a polygonal mesh which can be a tedious process in cases of complicated topology and/or noise. Also, the
new methodology does not need the normals of the points of the point cloud making it more resistant to
noise. This work has an advantage over machine learning methods because it can segment a vast variety of
articulated objects, as Fig. 6 and 7 show, without the need of preprocessing as in neural networks. Also in
terms of computational time the proposed segmentation is as fast as the mesh-based segmentation of [2].
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