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Abstract. Human pose estimation aims at detecting human joint points from input 
data such as images and videos, or building a human body model for motion analysis. 
However, due to the ambiguities of human occlusion, depth blurring and the lack of 

training data, the accuracy of motion capture is still far from satisfactory. This paper 
reviews the advances of human pose estimation methods in markerless motion 

capture since 2019. We propose three types of representations for the human body, 
and detect that a unified volumetric model provides more detailed motion 
representation. We introduce datasets and evaluation metrics widely used for 2D and 

3D pose estimation. Comparisons and discussions are conducted on different model 
frameworks for human pose estimation based on accuracy, robustness, and speed, 

summarizing the strengths and weaknesses of various methods. We discover that 
pose estimation methods based on the Transformer framework exhibit better 
accuracy and robustness, while kinematic and physical knowledge greatly assist in 

solving 3D pose estimation. Additionally, lightweight methods are often overlooked 
in research. In conclusion, this paper serves as a guide for researchers interested in 
the field and assists newcomers in selecting and developing human pose estimation 

methods. 
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1 INTRODUCTION 

As a popular computer vision task, markerless motion capture aims to extract body part positions 

and pose from markerless images or videos utilizing human pose estimation (HPE) methods. 
Markerless motion capture shows broad application prospects in different fields. For example, in 

game development[100], it can be used to generate realistic character animations and enhance the 
immersion of games. In the field of motion medicine[7, 11, 43, 44, 92], markerless motion capture 
can assist in rehabilitation training to help patients regain normal movement functions. In virtual 
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reality technology, it can be used for body interaction, allowing users to interact with virtual 
environments in a natural way. In industrial design[5, 45], it can assist designers in optimizing the 

human-computer interaction of products, improving user experience and work efficiency. 

Nowadays, the most commonly used motion capture methods include marker-based motion 

capture, inertial motion capture and markless motion capture. Marker-based motion capture 
methods use infrared cameras and markers to identify body postures, but this method requires 
trained personnel to manually place markers, and it is prone to errors, usually with an error close to 

10mm or 10°[18]. Additionally, when markers are placed close to each other, they can easily occlude 
each other, making motion tracking difficult. To address this issue, one approach is to increase the 
number of cameras capturing the markers from different angles, but this increases computational 

costs and complexity[82]. Another commonly used motion capture method is inertial motion capture, 
which uses inertial measurement units (IMUs) to track the positions of body joints. Inertial motion 

capture provides quantitative, reliable, and easy-to-collect motion capture data. However, this 
method also has limitations as IMUs themselves have drift and are susceptible to external magnetic 
fields[5, 29]. 

Markerless motion capture uses highly trained neural networks to estimate the joint center 
positions of data in motion images or videos. It reduces dependence on professionals and improves 
the reliability of data by eliminating the need for physical markers. Currently, there are some 

successful commercial markerless motion capture systems available, such as Theia3D and 
VisionPose. The current research trend of markerless motion capture technology mainly focuses on 

improving accuracy and stability while reducing hardware costs and complexity. Some research 
directions include the combination of multimodal sensors, such as depth cameras and inertial sensors 
[27, 32, 41, 129, 134], to obtain more accurate and stable pose estimation results. Additionally, 

researchers are also working on addressing pose estimation challenges in multi-person scenarios, 
such as interference and conflicts between poses. 

In recent years, many scholars have discussed the usage of HPE in markerless motion capture 

from different applications. Colyer et al. [18] studied the applications in biomechanics and discussed 
the difference between the markerless motion capture methods and the marker-based motion 

capture ones. They pointed out that the current markerless motion capture methods have not yet 
achieved the accuracy required by most analysis in motion science, but the recent methods have 
greatly improved accuracy. Mathis et al. [68] reviewed deep learning-based markerless motion 

capture methods, and detailed the process and applications of markerless motion capture. However, 
this survey focused more on animal motion capture methods and did not investigate human capture 

methods. Therefore, this survey focuses on markerless motion capture methods after 2019, with a 
focus on the core of markerless motion capture methods - HPE methods. 

The review searched for relevant literature on markerless motion capture through different 

combinations of keywords like "motion capture", "markerless", "human pose estimation", "2D" and 
"3D" on Google Scholar, IEEE Xplore, and Science Direct. References from the selected articles were 
also obtained. The review selected English journal articles or conference papers related to markerless 

motion capture systems between 2019 and 2023, aiming to provide useful information for 
researchers interested in this field, explore the application of markerless motion capture in the real 

world, and discuss viable directions and challenges that need to be overcome in this technology. 

This paper focuses on reviewing the HPE methods for markerless motion capture, including not 
only 2D HPE, but also 3D HPE. We initiate our discussion in Section 2 by exploring various 

representations of the human body. Subsequently, we introduce a range of existing human body 
datasets as well as corresponding evaluation metrics. Section 4 is dedicated to discussing the 
equipment employed in capturing HPE. In Section 5, we delve into the details of prior 2D and 3D 

methodologies and highlight the lightweight-based methods, which have been relatively 
underemphasized in prior reviews. Section 6 involves a critical analysis of recent HPE methods, 

focusing on their accuracy, robustness, and speed. Finally, in Section 7, we outline potential areas 
of future research in this field. 
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2 HUMAN BODY REPRESENTATION 

Human body model is a critical aspect of HPE, which aims to extract relevant keypoints and features 

from input data. Human body is usually represented in three common types: skeletal model, planar 
model, volume model, as shown in Figure 1. 

 

 
 
Figure 1: Human body model. (a) Skeleton model where simple graphics such as dotted lines are 

used to represent the shape of human body. (b) Cardboard model which regards the body as an 
organic connection of different blocks. (c) Volume model which represents human body by using a 
collection of simple geometry. (d) Pictorial Structure Model introduced by Felzenszwalb and 

Huttenlocher [21]. 

2.1 Skeleton Model 

Skeleton model is a representation where the skeleton joints are connected with each other, as 
shown in Figure 1(a). The parameters are defined as the lengths of adjacent joints and the rotation 
angles. Felzenszwalb and Huttenlocher [21] introduce the Pictorial Structure Model (PSM), as shown 

in Figure 1(d). PSM is a widely used graph model that has been successfully applied in 2D HPE and 
3D HPE. The main idea is to optimize the joint positions by considering both their appearance and 
spatial relationships. Recursive Pictorial Structure Model (RPSM)[79] recursively discretizes the 

ground space around each joint position into a finer-grained grid, which is more suited to recover 
3D pose from multi-view 2D pose heatmap. Ma et al. [64] proposed ContextPose by taking 

advantages of the PSM and Graph Neural Network (GNN), allowing the usage of limb length 
constraints for 3D HPE. 

2.2 Planar Model 

In addition to skeletal models, planar models are often used to represent the appearance of the 
human body. The plane model commonly represents the human body using rectangles that are 
similar to the human silhouette, as shown in Figure 1(b). A common example is the Cardboard 

model[40], which contains one limb and eight half-limbs. Each body part is represented by an 
average of RGB colour. The other commonly used planar model is the Active Shape Models 

(ASMs)[19]. 

2.3 Volume Model 

The skeletal model can only represent human movement and cannot express shape and texture 

information. In contrast, volume models use geometric shapes to represent model components, such 
as cylinders, cones, spheres and other geometric shapes, as shown in Figure 1(c). Volume models 

can be categorized into rigid body models and non-rigid body models based on their deformation 
characteristics. Rigid body models refer to models that do not undergo shape deformation when 
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subjected to external forces, such as cylinder models and skeletal models. Non-rigid body models, 
on the other hand, allow for deformation. Given the non-rigid nature of the human body, recent 

focus in research has been on more complex non-rigid body models to provide a more accurate 
description of human behaviour. A representation of non-rigid body models is the triangular mesh, 

which is usually derived from high-definition 3D scans. Loper et al. [60] proposed a learn-based 
method, Skinned Multi-person Linear Model (SMPL), which combines human shape, position-related 
shape change together. The parameters consist of resting pose templates, blending weights, pose-

related blending shapes, identity-related blending shapes, and regressors from vertex to joint 
position. Unlike previous models, the SMPL can simulate human skin textures and dynamic soft-
tissue deformations. Osman et al. [73] proposed STAR to formalize sparse correction blend shapes, 

reducing the parameters by 80%. STAR extended pose correction formulation by correcting pose 
and shape regression. This change makes the deformation more realistic and consistent with health-

care applications. Saito et al. [86] proposed SCANimate, which can learn detailed clothing 
mannequins from raw scans. 

HPE can be divided into body pose, face pose and hand pose estimation. However, SMPL can 

only be used for body estimation. Some researchers try to combine the three models together to 
achieve whole-body pose estimation. Based on the SMPL-H[84], Pavlakos et al. [75] extended the 
fully articulated hand and face models, which inherits the advantages of the SMPL. However, the 

representations of facial expression, hand and body are isolated. GHUM & GHUM(ite)[111] is capable 
of driving facial expressions, hand and full body movements. It consists of a medium-resolution of 

GHUM with 10,168 vertices and low-resolution of GHUML(ite) with 3,194 vertices. 

The human body is a complex organism composed of a torso, limbs, and a head, encompassing 
both kinematic information and surface texture. In the previous context, we introduced three types 

of human body models, where skeletal models and volumetric models represented by SMPL have 
gained attention in research. Particularly in recent years, the SMPL model has become a widely used 
model for human representation in various datasets. In 3D HPE, utilizing the architecture of a human 

body model can help infer occluded torso or body joints, leading to improved robustness. The model 
needs to adhere to kinematic knowledge and general physics principles to reduce unrealistic 

inferences. Furthermore, models like GHUML and SMPL-X integrate human body models to provide 
more detailed expressions of human motion. However, volumetric models have a large number of 
parameters, so simplifying the model while maintaining its fidelity to real human bodies is one of 

the focuses of current research. 

3 DATASETS AND EVALUATION METRICS 

As human movement gestures change a lot in different environments, it is hard to create a generic 
dataset to meet every application requirement. Thus, many researchers often choose datasets that 
are appropriate to their task. In the following, we introduce several existing datasets and evaluation 

metrics that have been commonly used over the last few years. According to the different dimensions 
of human pose information included in the dataset, we divide the dataset into 2D and 3D datasets. 

3.1 2D Datasets 

Max Planck Institute Informatics (MPII) Human Pose [2] is the first large-scale benchmark dataset 
for HPE, in which images are downloaded from YouTube. It contains 25,000 images covering 410 

human activities such as dancing and running. 

Microsoft Common Objects in COntext (MSCOCO) [58] was created in 2014 for object detection, 
keypoint detection and instance segmentation. In the 2017 version, the train and val sets change 

from 83,000/41,000 to 118,000/5,000. Also, they introduce a new unannotated dataset of 123,000 
images, labelled with 17 keypoints of the human body, as shown in Figure 2. COCO-WholeBody is a 
variant of COCO [38] and contains 133 marked points (68 on the face, 42 on the hands and 23 on 

the body and feet). 
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The Pose Track [1] is a 2D video-based body dataset, containing approximately 1356 video 
sequences, 46,000 annotated video frames and 276,000 body pose annotations, as shown in Figure 

3. It is mainly used for multi-person pose estimation, where each person has a unique track ID and 
is tagged with 15 body keypoints. AI Challenger Human Keypoint Detection (AIC-HKD) [108] is the 

largest 2D human pose dataset. It contains 300,000 high-resolution images with multiple people 
and various poses by Internet search engines, in which 210,000 images are used for training. The 
CrowdPose [53] is a HPE dataset for dense crowds. A total of 20,000 high-quality images were 

captured from 80,000 people. The Human-in-Events (HiEve) [59] is a large video-based dataset, 
consisting of 32 video sequences from nine different scenes with 49,820 frames, 1,302,481 bounding 
box, 2687 trajectory annotations, 1,099,357 human pose annotations and 56,643 action 

annotations. 

 

Figure 2: Examples from the COCO dataset [58]. 

 

 

Figure 3: Examples from the Pose Track dataset [1]. 
 

 

Table 1: Datasets for 2D pose estimation. 

Dataset 

Name 
Year Image/Video Single-Person/Multi-Person Joints 

Number of images 
Evaluation metrics 

Train Val Test 

MPII[2] 2014 
Image Single 16 29k - 12k PCPm/PCKh 

Image Multiple 16 3.8k - 1.7k mAP 

COCO2016 2016 Image Multiple 17 45k 22k 80k AP 

COCO2017 2017 Image Multiple 17 64k 2.7k 40k AP 

COCO-

WholeBody

[38] 

2020 Image Multiple 133 200k mAP & mAR, OKS 

AIC-
HKD[108] 

2017 Image Multiple 14 210k 30k 60k AP 

PoseTrack[

1] 
2017 Video Multiple 15 292 50 208 mAP 

CrowdPose

[53] 
2019 Image Multiple 14 10k 2k 8k mAP 

HiEve[59] 2020 Both Multiple 14 19video - 13video AP 
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3.2 3D Datasets 

HumanEva [91] contains over 250,000 images acquired by a marker motion capture system. 

Human3.6M [34] contains 3.6 million human poses and is organized into 15 training scenarios. The 
dataset was captured using four digital cameras, including one time-of-flight sensor and ten motion 

cameras, as shown in Figure 4. 
 

 

Figure 4: Examples from the Human3.6M dataset[91].  

 

 

Figure 5: Examples of the CMU Panoptic dataset[39]. 
 

MPI-INF-3DHP [69] is a 3D HPE dataset that contains complex outdoor scenes. It consists of over 
1.3 million frames which were captured from 14 cameras. CMU Panoptic dataset [39] (as shown in 

Figure 5) uses a large camera system with 480 lenses to capture people's interactions in various 
social activities. Garau et al. [25] applied PanopTOP to the Panoptic dataset and generated a new 
dataset, named PanopTOP31K.  
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3D Poses in the Wild (3DPW) [96] is a large 3D dataset for HPE, using 9-10 inertial sensors to 
track objects. Over 51,000 frames of the accurate 3D pose were captured, covering movements 

from walking, walking upstairs, drinking coffee to riding in a car. 

3DPeople [78] is the first dataset for HPE with clothes, containing approximately 2 million images 

from 40 men and women with 70 actions. The data is acquired using four cameras and annotated 
with RGB colours, 3D skeletons, body parts, fabric segmentation masks, depth maps, optical flow 
and camera parameters. AMASS [66] contains fifteen sub-datasets and their own recorded human 

data that were mapped to SMPL [60]. HUMBI [121] is a large multi-view dataset, which captures 
772 different objects through 107 simultaneous HD cameras. SMPLy [50] is a new dataset containing 
742 objects from 567 scenes, yielding 24,428 images covering indoor and outdoor scenes. 

 

 

Figure 6: Examples from the AGORA dataset[74]. 
 
Avatars in Geography Optimized for Regression Analysis (AGORA) [74] includes 4240 scans covering 

more than 350 different objects, in which 1051 scans were used for testing (3387 images), 2930 
scans for training (14,529 images), and 259 for validation (1225 images), as shown in Figure 6. It 

contains 3D poses and shapes of children and extends SMPL-X space to capture the differences 
between children and adults. 

DensePose COCO [30] is a large dataset for dense HPE, containing 50,000 real markers with 

over 5 million actual annotations, as shown in Figure 7. It was constructed with an annotation 
pipeline so as to achieve image-to-surface correspondence. 
 

 

Figure 7: Examples of the DensePose COCO dataset [30]. 
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Table 2: Datasets for 3D pose estimation. UV refers to texture coordinates used to map textures 
(such as images or patterns) onto the surface of a three-dimensional model. In this context, U 
represents the horizontal coordinate, and V represents the vertical coordinate. 

 
3D Occlusion Human 50K (3DOH50K) [125] is constructed for the occlusion problem and contains 

51,600 images captured in real scenes with six cameras. It provides 2D and 3D annotations and 
SMPL parameters for the generated meshes. 

Self Contact dataset [71] is a self-contact dataset proposed by Lea Mvller et al. Many existing 

datasets deliberately avoid physical occlusion and interaction. In contrast, this dataset contains self-
exposure grid data from six subjects. 

Multiple People Synthetic (MPSD)[72] is a single-image multi-person dataset containing 3D 

human models, RGB images, depth maps, instance segmentation and 6D degrees-of-freedom spatial 
locations. 

Previous datasets seldom contain children and people with complex body shapes, which might 
not meet the requirements in medical applications [57]. Most of them focus on simple movements, 
with little attention given to interacting activities engaged in body contact. Handling occlusion and 

making accurate representation are the key problems for multi-person motion capture. In Table 2, 
we have summarized commonly used 3D datasets as well as the latest datasets. In recent years, 
researchers have started to focus on the construction of outdoor datasets, which often consist of 

real or synthetic images of outdoor scenes. For example, AGORA and AMASS datasets are two such 
examples. It is evident that the latest datasets tend to use volumetric models such as SMPL or SMPL-

X to represent the human body structure. The use of full-body models like SMPL-X enables better 
representation of detailed human motion. 

3.3 Evaluation Metrics 

Currently, numerous metrics have been proposed to evaluate the accuracy of pose estimation 
methods. In the following, we introduce the most commonly used metrics. The following metrics 
mentioned in the text are only used to measure the accuracy of pose estimation methods on the 

Dataset Name Year 
Capture 

system 
Environment Joints 

Number of frames/videos Evaluation 

metrics Train Val Test 

HumanEva-

I[91] 
2010 

Marker-based 

MoCap 
Lab environment 15 ≈6.8k ≈6.8k ≈24k MPJPE 

Human3.6M[34] 2014 
Marker-based 

MoCap 
Lab environment 17 ≈1.5M ≈0.6M ≈1.5M MPJPE 

CMU 

Panoptic[39] 
2016 

Markerless 

MoCap 
Lab environment 15 65 videos(5.5 hours) 3DPCK 

MPI-INF-

3DHP[69] 
2017 

Markerless 

MoCap 

Indoor and 

outdoor 
15 ≈1.3 M 3DPCK 

3DPW[96] 2018 
Hand-held 

cameras with 

IMUs 

Indoor and 

outdoor 
18 60 videos(≈51k frames) MPJPE&MPJAE 

DensePose 
COCO[30] 

2018 - Outdoor UV 50k RCP 

3DPeople[78] 2019 - 
Indoor and 

outdoor 
mesh models 2.5M - 

AMASS[66] 2019 
Marker-based 

MoCap 
Indoor and 

outdoor 
SMPL,SMPL-X 2420.86 minutes - 

HUMBI[121] 2020 
Markerless 

MoCap 
Lab environment SMPL 93k+17.3M+24M+26M AUC 

SMPLy[50] 2020 
Markerless 

MoCap 

Indoor and 

outdoor 
SMPL 567sequences（24428frames） MPJPE&3DPCK 

3DOH50K[125] 2020 
Markerless 

Mocap 
Indoor SMPL 50310 - 1290 MPJPE 

AGORA[74] 2021 - Outdoor SMPL，SMPL-X 14k 1.2k 3k MPJPE&MVE 

Self contact[71] 2021 - Indoor SMPL-X 
8752 self-contact、16752 no self-contact 

and 9491 unclear poses 
MPJPE/MV2VE 

MPSD[72] 2021 - 
Indoor and 

outdoor 

volumetric 

voxel 
450k CD、P2S、IoU 
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corresponding datasets, and do not include evaluation metrics for markerless motion capture in 
practical applications. 

Percentage of Correct Parts (PCP)[22] measures the percentage of correctly predicted parts, 
with higher value indicating better performance. 

Percentage of Correct Key Points (PCK)[116] measures the percentage of correctly predicted 
keypoints. A predicted body joint is defined as correct if the distance from the actual joint is within 
a certain threshold. 

 PCK=
1

i

i

i

d
T

S
 (3.1) 

where id  indicates the distance between the i th predicted keypoint and the valid keypoint. When 

id

S
 is less than or equal to the threshold T , the function ()  returns 1. In 3D pose estimation, the 

deformed body of PCK is often used, known as 3DPCK. 

Percentage of Detected Joints (PDJ)[94] is commonly used to evaluate the 2D pose estimation 
models. The distance between the predicted joint and the actual joint is considered to be correct if 
it is beyond a certain fraction of the trunk diameter. Toshev and Szegedy [94] suggested that PDJ 

could be used as an alternative to the PCP metric to address the problem of short limbs.  

Average Precision (AP) is a generalized measure to calculate the performance degradation of a 

model [58]. AP measure is an index to measure the accuracy of keypoints detection according to 
precision and recall. Mean Average Precision (mAP) is the mean of average precision over all classes. 
It has been applied to the evaluations of MPII[2] and PoseTrack[1]. Average Recall (AR) is another 

metric used in the COCO keypoint evaluation. AP, AR, and their variants are reported based on an 
analogous similarity measure: object keypoint similarity (OKS) which plays the same role as the 
Intersection over Union (IoU). 

Mean Per Joint Position Error (MPJPE)[34] calculates the mean Euclidean distance error between 
the actual joint coordinate and the measured joint coordinate in the Human3.6M[34]. 

Geodesic point similarity (GPS)[30] is used to measure object keypoint similarity. 

 

2

2

,1
GPS exp

2
j

pp
j

p Pj

g i i

kP
 (3.2) 

where jP  represents the set of actual points annotated on the person instance, pi  is the vertex value 

estimated by the model at point p , and pi  is the actual point of p . 

Pose Structure Score (PSS) [47] is used to evaluate the structural soundness between the 

predicted pose and the actual pose. 

 PSS , ( ), ( )p q C p C q  (3.3)

Where 
2

2
argmin k

k
C p p , ( , )i j  i j

i j
 (3.4) 

Here, p  is the predicted pose and q  is the actual pose. 

4 CAPTURING EQUIPMENT 

The RGB camera is one of the most commonly used camera types in motion capture. However, it 
has inherent limitations in capturing 3D information as it cannot provide depth information. To 

overcome this limitation, depth cameras have emerged as a viable alternative and have been 
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adopted by many motion capture researchers and users.  With the development of depth-sensing 
technology and machine learning, easy-to-use equipment for 3D motion analysis have been 

commercially available. Microsoft Kinect V1 (also known as Xbox 360 Kinect) was released in 2010 
for capturing body movement in video games. It calculates 20 keypoints coordinates (shown in Table 

3) using a depth map obtained from a depth sensor[118]. The difference between depth cameras 
and traditional cameras for markerless motion capture is whether it produces depth images[18]. The 
depth information is helpful to alleviate the problems of shadows, poor lighting conditions and 

cluttered environments[18]. Generating depth images relies on the technology of structured light 
(SL) and time of flight (ToF). The Kinect V1 uses an infrared structured light 2D camera to project 
deformable scattering patterns onto the scene. Kinect V2 used ToF to measure distances [17].In 

addition, Azure Kinect is a new type of camera with the highest depth camera resolution. In Table 
3, we summarize the three Kinect depth cameras. 

Although a single depth camera can improve the performance of human capture, it is still less 
effective in dealing with occlusions among objects. For complicated tasks, several works have used 
multiple Kinect sensors to complete body scans. Bortolini et al. [6] used four sets of Kinect V2s to 

obtain human joint angles and movement paths for ergonomic analysis. Jiang et al. [37] used two 
Kinect sensors to collect human skeletal information and make data fusion from joint angles. Large 
errors might be produced if the Kinect sensors are not placed in the recommended positions [77]. 

Another approach to improve the robustness of Kinect in complex environment is to correct data 
errors by reconstructing the unreliable part of Kinect poses [90]. Shum et al. [90] proposed an 

optimization method to construct a motion database. They calculated the reliability values of the 
pose joints and used them as weights to extract a set of kinematically similar poses. The local 
principal component is further used to optimize the poses. Plantard et al. [76] proposed a method 

that uses filtered pose maps to represent the intrinsic relationships between poses. 

Existing research works mainly focus on images captured from conventional RGB and RGB-D 
cameras. The development of event cameras [24] offers new opportunities for human pose capture. 

As an emerging bionic imaging sensor, event cameras differ in many ways from conventional frame-
based cameras. Instead of capturing images at a fixed frequency, event cameras asynchronously 

measure the change of brightness and refer to this change as an event. 

 
 Kinect V1 Kinect V2 Azure Kinect 

 

 
  

Released date June 2010 July 2014 June 2019 

Color camera 

resolution 

1280×720px@12fps 

640×480px@30fps 
1920×1080px@30fps 3840×2160px@30fps 

Depth camera 
resolution 

320×240@30fps 512×424@30fps 

NFOV unbinned—640 × 576px@ 30 fps 

NFOV binned—320 ×288px @ 30 fps 

WFOV unbinned—1024 ×1024px @ 15 
fps 

WFOV binned—512 ×512px @ 30 fps 

Depth FOV 57°H×43°V 70.6°H×60°V 

NFOV unbinned—75°×65° 

NFOV binned—75°×65° 

WFOV unbinned—120°× 120° 
WFOV binned—120°×120° 

Optimal measuring 
range 

0.4-4.0 m 0.5-4.5 m 0.5-3.86 m 

Depth sensing 

technology 
SL ToF ToF 

Body tracking 

technology 
- 

Random Forests model based 

on depth images 

Deep Neural Network model based on 

depth images 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 21(3), 2024, 392-423 

© 2024 U-turn Press LLC, http://www.cad-journal.net 
 

402 

Body tracking joints 

   

 
Table 3: Comparisons of three Kinect depth cameras. 

 
The event, expressed as a triplet (x, t, p), measures the significant change with respect to pixel x, 
time t, and the polar state p [114]. Compared to the conventional cameras, event cameras have 

attractive features: high temporal resolution (milliseconds), high dynamic range (140 dB ~ 60 dB), 
low power consumption, and high pixel bandwidth (kHz level). As a result, event cameras can 
capture very fast motion without suffering motion blur. DHP19 [9] is an early dataset that uses event 

cameras for pose estimation. In DHP19, a convolutional neural network (CNN) is designed to 
estimate 2D human poses and detect 2D human joints from a stream of events. Unfortunately, the 

high temporal resolution results in very sparse measurements within each frame interval because 
the changes in brightness from frame to frame are very subtle, and because the event stream 
encodes only temporal intensity changes, it is difficult to initialize tracking and prevent drift. Event 

Cap[114] is the first approach to capturing high-speed human motion using a single event camera. 
It utilized a pre-trained CNN-based human detection module to obtain an initial estimate and took 
event streams to reconstruct high-frequency motion details. They proposed an optimization 

algorithm based on hybrid asynchronous batch processing to address the low signal-to-noise ratio, 
drift, and initialization difficulties of event cameras. Event HPE[135] inferred optical flow from events 

through unsupervised learning and relied on optical flow features to estimate 3D body shapes. Their 
method needs to provide or detect the starting pose and shape on the first frame of grayscale image, 
but avoids the input grayscale image stream like EventCap. Due to the high temporal resolution, low 

latency, high dynamic range, and low power consumption, event cameras have been applied in a 
number of computer vision tasks, including camera pose estimation, feature tracking, optical flow, 
multiview stereo, gesture recognition, motion deblurring and so on. 

In addition to the two cameras mentioned above, recent works used fisheye cameras[99, 127] 
for gait analysis by combining motion capture systems, pressure pads, and other aids[23] to capture 

human movement. 

5 METHODS IN DETAILS 

As an important part of markerless motion capture, HPE methods have been developed in recent 

years. Similar to the classification method for datasets in Section 3, HPE methods can be divided 
into 2D and 3D pose estimation methods. Additionally, since pose estimation methods in videos 

often involve time, we summarize them as a separate section. 

5.1 2D Pose Estimation 

Recent methods have achieved great success with the development of deep learning, it is still 

challenging to handle images with complex environments and clothing. To address these challenges, 
previous work classified HPE methods into single-person and multi-person pose estimation according 
to the number of people in the image. In this section, we introduce the two types of methods in 

detail. 
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5.1.1 Single-person pose estimation 

The regression-based methods usually directly map the input image to the body joint coordinates 

through the fully-connected (FC) prediction layer, which is more straightforward than the heatmap-
based methods, as shown in Figure 8. But at present, there are only a few methods that use this 

design. This is due to the lack of spatial and contextual information, which makes the learning of 
human pose model challenging due to the intrinsic visual ambiguity in joint location [122]. DeepPose 
[94] is the first regression-based method that uses cascaded deep neural networks to learn 

keypoints from images. Mao et al. [67] proposed a transformer-based network, which takes the 
feature map of the CNN as input and outputs the human joint coordinates in a formulaic way. They 
avoided the destruction of the spatial structure of the convolutional feature map caused by reducing 

the network parameters of the FC layer using global average pooling. Li et al. [54] provided two 
solutions for pose estimation: a two-stage approach and a sequential process. They develop an 

encoder to generate contextual features and passed them to the decoder to detect human body in 
a bounding box. The cropped image is further fed into a network to obtain the final keypoints. 
 

 
 

Figure 8: Regression-based methods [131]. 
 

HPE is essentially a regression problem. Regression-based methods have achieved good results due 

to their ability to learn nonlinear feature representations. These methods can obtain continuous 
output through end-to-end training. 
 

 
 

Figure 9: Pipeline of Heatmap-based method [131]. 

 
Due to its high accuracy performance, the heatmap-based method has become a standard label 
representation method for HPE (shown in Figure 9). These methods generate a 2D Gaussian 

probability distribution centered on the ground-truth joint position, which avoids false positives. 
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Figure 10: HRNet architecture[93]. Feature maps at different resolutions are exhibited parallelly 

with downsample or upsample connection. 
 

 
 

Figure 11: HigherHRNet architecture [13]. 

 
Previous high-resolution image processing needs to downsample high-resolution bounding box to 
low-resolution images, and then upsample back to the original resolution. The Simple Baselines[110] 

utilizes three back-evolution layers after the backbone network to obtain the final predicted 
heatmap. It is worth noting that quantisation error can be introduced during the above resolution 

reduction. Zhang et al. [122] propose a Distribution-Aware Representation of Keypoints (DARK) for 
more accurate localization of joints in low-resolution images. Through the distribution approximation 
based on Taylor expansion, the distribution information of heatmap activation is considered 

comprehensively. In the process of coordinate decoding, the unbiased heat map is used to mitigate 
the quantization error. Li et al. [57] suggested to use horizontal and vertical coordinates separately 
for keypoint localization. Instead, HRNet[93] is a representative heatmap-based method that uses 

multi-stage architectures. Repeated multi-scale fusion allows the high-resolution to low-resolution 
network to continuously exchange information in parallel. To handle small people in images, 

HigherHRNet[13] (shown in Figure 11) constructs a high-resolution feature pyramid and generates 
high-resolution feature map by assigning different resolution of training targets to the feature 
pyramids. Zhang et al. [128] proposed a compound loss function to measure the similarity between 

the generated high-resolution images and the real high-resolution images. But converting heatmaps 
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to joint coordinates requires post-processing, which may not be differentiable, making the 
framework not end-to-end learnable. 

5.1.2 Multi-person pose estimation 

Existing works for multi-person pose estimation can be classified into top-down methods (shown in 

Figure 12) and bottom-up methods (shown in Figure 13). Next, we introduce the problems, 
advantages and development of the two methods in recent years. 
 

 
 

Figure 12: Pipeline of the Top-Down method. 
 

 
 

Figure 13: Pipeline of the Bottom-Up method. 
 

The top-down method consists of two stages: human detection and individual pose estimation. The 
human body detector in the first stage is greatly affected by the environment, and it will be greatly 
affected when people get close to each other and are blocked. It directly affects the next stage of 

pose estimation. The second stage uses the existing single-person pose estimator. The top-down 
method is closely related to the number of people in the image, and each person's posture is 
estimated separately. In addition, the accuracy and complexity of the estimation depend on the 

individual pose estimator. Qiu et al. [80] generated initial pose through a heatmap-based method, 
and then used an Image-Guided Progressive GCN (IGP-GCN) and a cascaded feature adaptation 

module to optimize the final pose. Li et al. [53] proposed joint candidate Single-Person Pose 
Estimation (SPPE) to output target and interference candidates, and then performed joint association 
to obtain joint connection graph. 

The bottom-up method has two main steps including keypoints detection and association of body 
keypoints. To handle images with limited resolution, Kreiss et al. [49] proposed a two-headed neural 
network, in which the Part Intensity Field (PIF) is used to predict the confidence score, position, and 

size of joints, and the Part Association Field(PAF) is used to obtain the relationship between joints. 
Based on the predicted keypoints heatmap and component heatmap, Li et al. [52] obtained 

candidate keypoints by suppressing nonmaximum probability points. 
 

Method 

COCO MPII LSP 
CrowdP

ose 
#Params GFLOPs 

AR AP 
PCKh@

0.5 
PCP 

PCKh@
0.5 

AP 

Single-person 
pose 

estimation 

Regression-
based 

methods 

TFPose[67]  72.4 90.4     20.4 

DeepPose[94]    61     

PRTR[54] 80.2 73.3 89.5    57.2M 37.8 

DARK[122] 81.1 76.2 90.6    63.6M 32.9 
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SimDR[57] 81.2 75.9     66.3M 14.6 

Heatmap-

based 

methods 

HRNet[93] 81.2 76.3 92.3    63.6M 32.9 

HigherHRNet[13] 74.9 70.5    67.6 63.8M 154.3 

Zhang et 

al.[128] 
  78.9  79.6    

CAL[98] 82.8 78.2     110.2M 47.2 

Multi-person 

pose 

estimation 

Top-down 
methods 

MSPN[56] 83.1 78.1 92.6      

Simple 

Baseline[110] 
79.0 73.7    60.8 68.6M 35.69 

SPPE[53]      66.0   

Mask R-CNN[31]  63.1       

Bottom-up 

methods 

SAHG[120] 74.7 67.5       

SWAHR[62]  73.8     63.8M 154.6 

PIFPAF[49]  66.7       

Simple Pose[52] 68.1        

OpenPose[10]  61.8       

 
Table 4: Comparison of accuracy of 2D pose estimation methods in various datasets. Different 
methods use different data sets, choose the most commonly used COCO, MPII, LSP, CrowdPose 

datasets to use different evaluation indicators to measure each data set. #Params and GFLOPs are 
calculated for the pose estimation network. If it is not pointed out, there is no data. 

 
In the standard heatmap generation, different keypoints are covered by Gaussian kernels with the 
same standard deviation, which means that different keypoints are supervised by the same 

constructed heatmap. Yu et al. [120] incorporated scale information into heatmap generation for 
keypoints and proposed a scale-aware heatmap generator (SAHG). To alleviate the problem of 
unbalanced keypoint detection at small scales, they adjusted the contribution values among the 

joints by a weight distribution loss function. Luo et al. [62] propose a scale adaptive heatmap 
regression (SAHR), which can learn to adjust the standard deviation for each keypoint by itself. The 

SAHR may aggravate the imbalance between fore-background samples, which potentially restricts 
the improvements of SAHR. Thus, they introduced weight-adaptive heatmap regression (WAHR) to 
reduce the loss of easy samples. 

The bottom-up method shows higher robustness than the top-down method. The bottom-up 
method usually uses the method based on heatmap, and the change of character scale in the image 

will significantly affect the performance of pose estimation. In most cases, they can't predict the 
exact posture of smaller people. 

To sum up, with the rapid development of deep learning, the performance of 2D HPE has been 

significantly improved. In recent years, stronger and more robust network models have enhanced 
the performance of 2D HPE methods, such as HRNet, DARK, SimplePose, OpenPose and so on. The 
HPE methods mentioned above are sorted out in Table 4, and the accuracy, the number of 

parameters and the complexity of the algorithm are compared respectively. We can see that the 
heat map-based method has more accurate results than the regression-based method, but the 

computational complexity and the number of parameters is too large. In the multi-person pose 
estimation, the top-down method is better than the bottom-up method. As a whole, the single-
person HPE method achieves better results than the multi-person method. This is due to the 

existence of mutual occlusion in the multi-person scene, although the top-down human body 
detector may not be able to recognize most of the overlapping methods, but for the bottom-up 
method, it is more difficult to obtain the position of the human body node. In addition, it is worth 

noting that the heat map-based method has become a standard HPE method because of its excellent 
performance, but this is accompanied by an increase in the amount of calculation. it is difficult for 

these methods to run efficiently on mobile devices (mobile phones, tablet computer, etc.). Therefore, 
how to reduce the amount of calculation and improve the computational efficiency is one of the 
challenges of the existing HPE methods. 
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5.2 3D Pose Estimation 

3D HPE aims at generating 3D spatial coordinates of human joints, which is more difficult than the 

task of 2D pose estimation. Similarly, previous methods can be categorized into single-person 
methods and multi-person methods. When performing 3D HPE from monocular RGB image, the lack 

of depth information for human keypoints often requires the incorporation of multiple-view images 
for pose estimation. By leveraging RGB image data from multiple viewpoints, a more accurate 3D 
human body model can be reconstructed, leading to more precise HPE. In addition to using multi-

view images, other sensors can be utilized to obtain 3D human pose information. For example, depth 
cameras can capture depth data to provide more accurate 3D HPE results. 

5.2.1 Single-person pose estimation 

Single-person 3D HPE methods can generally be categorized into three types: direct 3D pose 
generation from images, 2D pose estimation followed by 3D pose mapping, and model-based 

approaches. 

The Direct method is to train deep CNN end-to-end to estimate 3D human poses directly from 
the input images, as shown in Figure 14. Zhou et al. [133] used Part-Centric Heatmap Triplets 

(HEMlets) as intermediate states. They first acquired HEMlets from input image via ConvNet, and 
then regressed volumetric joint heatmap. The direct method benefits from the rich information 
contained in the image, such as the front and back direction of the limb. However, it will also be 

affected by many factors, such as background, lighting, clothing and so on. Networks trained on one 
dataset cannot be well extended to other datasets with different environments[51]. 

 

 
 

Figure 14: Pipeline of Direct methods. 
 

 
 

Figure 15: Pipeline of Lifting-based methods [131]. 
 

The Lifting-based method first generates 2D keypoints from input image, and then lift 2D pose to 
3D one, as shown in Figure 15. Estimating 3D pose from 2D representation is essentially an ill-posed 

problem, because there may be multiple valid 3D poses for a single 2D pose, which makes it difficult 
to infer the only valid solution, especially in the case of severe occlusion [51, 97, 105]. Li and Lee 
[51] introduced the mixture density networks (MDN) into the process of 3D HPE. They suggested 

using the negative log-likelihood of minimizing Gaussian multimodal mixing to estimate multiple 
assumptions from 2D to 3D poses. Therefore, they used the mixing coefficients and variances of 

Gaussian kernels output by MDN to represent the uncertainty of each 3D pose. Cai et al. [8] exploited 
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the temporal and spatial relationships of 3D HPE through GCN. They designed non-uniform graph 
convolution to apply different weights for different neighborhoods of a joint. GCN can achieve good 

results in 3D HPE because graph convolution has good feature extraction ability for graph structure 
data[51]. However, the features extracted by the existing architecture are too simple to use multi-

scale and multi-level features, which limits the expression ability of the model. Xu and Takano [115] 
proposed a Graph Stacked Hourglass Networks to extract multi-scale features to enable high-
accuracy 3D HPE. 
 

 
 

Figure 16: Pipeline of the Model-based method. 

 
Model-based methods focus on estimating the parameters of regression grid models such as SMPL, 
as shown in Figure 16. Madadi et al. [65] regressed SMPL parameters by using 3D articulated points 

and sparse human surface marker points, thus avoiding the artefacts produced by direct regression. 
Kolotouros et al. [48] regressed the parameters of SMPL by deep learning and used them to initialize 
the iterative fitting routine. Afterward, these parameters are used for supervision to reduce the 

regression and optimization cycles. Xiang et al. [109] proposed 3D Part Orientation Fields (POFs) to 
encode 3D orientation of body parts. Rong et al. [85] performed this task by running the face, hand, 

and 3D pose regression modules independently. Then, they combine the three outputs through an 
integrated module. The depth regression of PyMAF proposed by Zhang et al. [123] used multi-scale 
spatial features to achieve high-level and detailed results. Model-based methods are ill-conditioned 

and suboptimal due to loss of depth information or ambiguity of joint orientation and shape 
parameters. However, 3D joints and surface markers can better deal with this problem[65]. 

The direct use of human models for structural representation is often affected by noise and 

artifacts. Taking advantage of prior knowledge can improve accuracy and efficiency to some extent. 
By constraining the human model with kinematic knowledge, many works have obtained better 

performance for 3D HPE. Xu et al. [112] suggest incorporating kinematic regularisation into the deep 
model. They not only optimize 3D key points but also perform kinematic structure correction for 
noisy 2D inputs. Skeletor[35] uses temporal continuity and body prior to reducing the noises in 3D 

HPE. Weng and Yeung [107] combine a set of physical constraints and prior knowledge in a joint 
optimization process. MotioNet[89] uses a Deep Neural Network (DNN) to decompose 2D joint 

position sequences into skeletal length-dependent and 3D joint rotation sequences, which are then 
fed into forwarding kinematic layers to output 3D positions. Santesteban et al. [88] added soft tissue 
dynamics to the parametric model. In the real world, human motion involves spatial and structural 

kinematic principles: the human skeletal structure exists in three-dimensional space and generates 
keypoints by projecting onto a two-dimensional plane. The positions of these keypoints should 
comply with the geometric constraints of perspective projection. The distance between two adjacent 

joints remains constant throughout the entire motion sequence. The estimated 3D trajectory formed 
by the same joint should be smooth and continuous, implying that there should be reasonable 

transitions between the positions of adjacent joints at different time points, rather than abrupt jumps 
or discontinuities. 

5.2.2 Multi-person pose estimation 

We classify multi-person 3D pose estimation into top-down methods (shown in Figure 17) and 
bottom-up methods (shown in Figure 18). Top-down methods first detect edges, and then estimate 
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each person's 3D pose. In contrast, bottom-up methods first generate body joint positions and depth 
maps, and then correlate the individual joints based on the depth maps. 

 

 
Figure 17: Pipeline of the 3D multi-person top-down method [131]. 

 

Similar to the 2D domain, the top-down method uses the person detector to crop the area containing 
one person, and then executes the 3D single person pose estimator. LCR-Net[83] is the first method 
that estimates multi-player 3D human pose from a single image, where pose suggestions are 

obtained by locating K anchor poses on the region of interest. PandaNet[4] utilized pose-aware 
anchor selection to reduce ambiguous anchors. Jiang et al. [36] added a new branch on the R-CNN 
pipeline to generate SMPL parameters. In order to punish the intersection between SMPL models, 

they introduced internetworking loss to punish the intersection of the reconstructed population, and 
introduced another Loss function to punish the difference between the reconstructed human depth 

order and the actual depth order. 
The bottom-up method is more difficult than the former, but the results are better. Li et al. [57] 

proposed a two-branch framework that uses both top-down and bottom-up networks. The final 3D 

pose is obtained by feeding the output of the two networks into an integrated network. 
 

 
 

Figure 18: Pipeline of the 3D multi-person bottom-up method [131]. 

 
They also proposed a two-person pose discriminator to handle natural interactions between multiple 

people. Zhang et al. [126] proposed VoxelPose, which is a part of 2D HPE information provided by 
different cameras through multi-branch networks, which is finally integrated into 3D HPE. Mehta et 
al. [70]used spatio-temporal skeleton model to predict 2D and 3D poses and generated coherent 

skeleton joint angles in real-time. In the first stage, they only deal with the analysis of visible joints 
and their parent joints, which reduces computational overhead. In the second stage, they use whole-
body context and other intermediate information to reason and obscure joints. In the first stage, 

they designed a new architecture-SelecSLSNet. This allows the entire method to work in real time at 
a speed of 25-30fps on a single consumer GPU. 

5.2.3 Pose estimation from multiple views 

The location information from a monocular image is known to be limited. Recent works intend to 
obtain the positional relationship of the same target from multiple cameras. 

Existing multi-view HPE methods are typically divided into three stages. The first stage is to 
detect human keypoints in independent 2D views. The second stage involves grouping the 
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corresponding poses of the same person in different views based on appearance and geometric cues. 
The third stage is to estimate the 3D poses of each individual using standard methods such as 

triangulation or PSM. In multi-view settings, the primary challenge is to find the corresponding 
relationships of keypoints across different views and associate them with the corresponding 

individuals. Qiu et al. [79] proposed the use of RPSM to recover 3D poses from multi-view 2D poses. 
Compared to PSM, this method achieved a 50% reduction in error. Dong et al. [20] enhanced the 
cross-view consistency with appearance features. They utilized a person's Re-ID network to extract 

appearance features for each individual. These features were then used to calculate appearance-
based distances. They also formulated a convex optimization problem to solve for the optimal 
correspondence matrix, and employed rank constraints to enforce cycle consistency. Remelli et al. 

[81] also adopted the idea of explicit fusion. They transformed the latent features with known 
camera extrinsic characteristics into a canonical 3D space and then stacked the transformed features 

from multiple views together for joint inference. The methods mentioned earlier explicitly establish 
correspondences between joints in the same or different views, there are also several methods that 
indirectly handle joint correspondences through other strategies. AdaFuse[130] utilizes a pose 

estimation network to generate 2D heatmaps for each view. It establishes point-to-line 
correspondences between two views using epipolar geometry. The sparse representation of the 
heatmaps is then explored to implicitly determine point-to-point correspondences. Background 

pixels in individual views are influenced by epipolar lines in other views. To address this, AdaFus 
applies the SoftMax operator to eliminate responses and obtain the most reliable joint locations in 

the ground truth joint positions. VoxelPose[95] projects 2D pose heatmaps from multiple views into 
a 3D common space and performs 3D pose estimation on candidate voxel representations for each 
individual in the 3D space. By doing so, VoxelPose implicitly establishes associations between joints 

within a single view and across different views, effectively reducing the impact of erroneously 
established cross-view correspondences. However, it should be noted that this method involves 
performing 3D convolutions on all voxel positions, which can be computationally intensive. 

 

 

Table 5: Accuracy Comparison of the 3D pose estimation methods. The methods in this table are 

applicable only to RGB images. 

Method 

Human3.6M MPI-INF-3DHP 3DPW Campus Shelf 

Protocol 

#1 

Protocol 

#2 
PCK AUC MPJPE 

PA-

MPJPE 
PCP PCP 

Single person 

pose 

estimation 

Direct 

prediction 
HEMlets[133] 39.9 32.1 75.3 38     

Lifting 

methods 

Wehrbein et al. 

[105] 
44.3 32.4 84.3      

GraphSH[115] 35.8  80.1 45.8     

RepNet[97] 89.9 65.1 82.5 58.5     

Cai et al. [8] 48.8 39.0       

Li and Lee [51] 52.7 42.6 67.9      

Model-based 

methods 

SMPLR[65] 62.6 52.2       

SPIN[48] 62.5    96.9 59.2   

Frankmocap[85]     94.3 60   

HMR[42] 87.9 56.8 72.93  130 76.7   

POFs[109] 58.3        

PyMAF[123] 57.7    92.8 58.9   

HKMR[26] 59.6 67.74       

Pose2Mesh 64.9    88.9 56.3   

Multi-person 

pose 

estimation 

Top-down 

methods 

LCR-Net[83] 53.5 61.2 70.6      

PandaNet[4]   72      

Jiang et al. [36]  52.7 69.12      

Bottom-up 

methods 

VoxelTrack[126]       96.7 97.1 

Xnet[70] 63.6  82.8 45.3 103.3 60.7   

Human pose estimation from 

multiple views 

Dong et al. [20]       96.3 96.9 

AdaFuse[130] 19.5        

VoxelPose[95]       96.7 97.0 

Remelli et al. [81] 34.2        
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5.2.4 Pose estimation from other sources 

Although the ordinary RGB camera is the most common device for 3D HPE, depth cameras and other 

sensors can also achieve the goal of 3D HPE. In this section, we provide a brief introduction to these 
alternative devices. 

As discussed earlier, the depth images generated by depth cameras can provide depth 
information of key points, which alleviates the depth blur problem of key points in 3D HPE. Wang et 
al. [104] designed a dual-input network that takes RGB images and depth information as inputs, 

and generate feature streams through feature map generator. Bashirov et al. [3] converted the 
depth information to the SMPL pose parameters using the SMPL-X model. Since depth information 
is not effective in representing smaller body parts, they used RGB images to obtain the pose 

information. 

Recently, an important trend in HPE is fusing image and IMU data to achieve more realistic pose 

estimation [27, 32, 41, 129, 134]. The underlying logic of this approach is to build a parametric 3D 
human body model and optimize its parameters to minimize the discrepancies between the model 
and both image and IMU data. 

In summary, the results of the 3D HPE methods mentioned above are summarized in Table 5. 
According to Table 5, we can see that the accuracy of lifting methods is higher than that of model-
based methods, which is because lifting methods adopts the strategy of upgrading from 2D to 3D. 

The progress of 2D HPE methods greatly improves the performance of 3D HPE. However, the key 
point location information obtained from a single RGB image is limited, and obtaining the key point 

from a single image is an ill-posed problem. The multi-view 3D HPE method achieves the best results 
because multiple views can alleviate the occlusion problem and provide depth information of the 
node, but the integration of multiple views increases the calculation cost. Although the existing 3D 

HPE method has achieved good results on Human3.6M, the error rate on outdoor data set 3DPW has 
increased significantly. This is because the outdoor environment is more complex, and factors such 
as light, object occlusion, crowd occlusion and clothing seriously affect the algorithm performance. 

Therefore, model generalization is a challenge faced by 3D HPE method. In addition, the use of 
physical knowledge and kinematic knowledge to constrain the human body model can help the HPE 

method to reason out the blocked body parts or reduce many unreasonable positions of the human 
body model. 

5.3 Pose Estimation from Video 

The methods of HPE from video aim at establishing correlations of all joints in  time and space. Wang 
et al. [102] created a spatial-temporal tube and used a Clip Tracking Network to clip all video frames. 

Yang et al. [117] used the trajectory of the acquired pose from previous frames as input via a GNN. 
They produced the final pose by aggregating the predicted and detected poses in the same frame. 
ChallenCap[62] acquired an initial noisy skeletal motion map from monocular video. Then, they used 

a motion optimizer with 3D prior knowledge and 2D contour information to optimize the skeletal 
motion. To address the temporal consistency problem and reduce the feature dependence of human 
motion, Choi et al. [14] proposed a temporally consistent mesh recovery system (TCMR) to remove 

the residual link between static and temporal features. The SMPL parameters were predicted by 
using temporal features in the PoseForecast. However, the trajectory of each joint is different 

throughout the spacetime and needs to be learned separately. 

Owing to their high efficiency, attention mechanisms have been widely used in computer vision 
tasks such as object detection, attentive mechanisms for pose estimation from videos have attracted 

increasing research interest. Attention mechanisms can be divided into spatial, channel, layer, and 
mixed attentions. Kocabas et al. [46] proposed VIBE to distinguish real human motion and motion 
generated by temporal pose. However, adversarial training at the sequence level could produce 

kinematically plausible motion sequences without actual 3D labels. Wang et al. [101] proposed 
spatial-temporal mesh attention convolution (MAC) and used weakly supervised learning for HPE. 

Additionally, Li et al. [55] proposed a Transformer-based method, named MHFORER, to learn the 
Spatio-temporal representation of multiple pose hypotheses. In PoseFormer [132], the authors 
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designed a temporal structure to capture the correlation between human joints in time. The attention 
maps computed by the self-attentive mechanism module might not be stable. To solve this problem, 

Wei et al. [106] proposed a motion continuity attention (MoCA) module that can better adapt to 
different temporal action contents. Zhu et al. [134]'s method achieved the best performance, mainly 

by using the Dual-stream Spatiotemporal Transform (DSTformer) as the motion encoder in the 
process of 2D to 3D pose estimation. The motion encoder not only learns the 2D pose with added 
noise, but also utilizes the long-range relationship among skeleton keypoints. In Table 6, we have 

summarized the methods discussed in this section, and it is observed that the methods utilizing 
Transformer achieve higher accuracy, particularly on the 3DPW dataset, compared to the methods 
mentioned earlier. This improvement can be attributed to the attention mechanism employed in 

Transformer． 

 

 

Table 6: Accuracy of human posture estimation from video. 

5.4 Lightweight Methods 

In recent years, with the popularity of mobile devices and the advancement of virtual reality (VR) 

and augmented reality (AR) technologies, mobile VR and AR have become hot topics of interest in 
both academia and industry. Many state-of-the-art methods for HPE take advantage of high-
resolution networks, which make the networks more powerful. However, the number of required 

parameters and computational complexity multiplies, making it difficult for deep network models to 
be applied to mobile devices. Recently, many research efforts have been put into developing 

lightweight networks to improve efficiency and accuracy. The lightweight network design method is 
divided into two categories: lightweight network structure design and model compression. Based on 
MobileNetV2 [87], Choi et al. [15] proposed MobileHumanPose, a single-stage model for mobile 

devices, to solve the fine-tuning problem. Wang et al. [103] used deconvhead to remove the 
redundant refinement of the high-resolution branch on MobileNetV2, and then performed scale-

aware multi-resolution fusion through a single branch, and used the neural architecture to search 
and optimize the model and use a large convolution kernel. Yu et al. [119] proposed Lite-HRNet, 
which combines the shuffle module in ShuffleNet [63] and the high-resolution design pattern in 

HRNet together, achieve feature fusion of channels and spaces through attention mechanisms. The 
best AP of Lite-HRNet in COCO dataset is 70.4%, and the number of parameters is only 1.8M. 
Compared with HRNet-W48, although AP is reduced by 5.1%, the number of parameters is reduced 

by 61.8 M. Luo et al. [61] proposed FastNet by using a modified asymmetric bottleneck module as 
the basic component. In addition, many researchers[12, 113] have proposed methods based on 

Neural Architecture Search (NAS). Among them, Xu et al. [113] proposed ViPNAS which allows joint 
optimization of spatial and temporal layer search through a single pass framework. The method 
based on neural architecture search achieves better results of other lightweight methods, but their 

own number of parameters is several times that of other methods. 

In Table 7, we summarized the results of lightweight HPE methods mentioned earlier. By 
comparing with Table 3, the lightweight model architectures have reduced the parameter count by 

over 90%, resulting in a significant decrease in computational complexity. For example, Lite-HRNet 
has a GFLOPs of 0.70, while HRNet-W48[93] has a GFLOPs of 32.9, reducing the computational 

complexity by 97.87%. On average, the accuracy of lightweight models decreased by around 5%, 

Method 
Human3.6M MPI-INF-3DHP 3DPW 

MPJPE PCK AUC MPJPE PA-MPJPE 

Human Pose 

Estimation in Video 

TCMR[14] 62.3   95.0 55.8 

VIBE[46] 65.9   93.5 56.5 

MHFormer[55] 43.0 150    

PoseFormer[132] 44.3 88.6 56.4   

MixSTE[124] 39.8     

MotionBERT[134] 37.5   68.8 40.6 

MPS-Net[106] 47.4   84.3 52.1 
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with the NAS-based methods showing the best performance and having the highest number of 
parameters compared to other lightweight methods. 

 

 

Table 7: Accuracy comparisons of lightweight network architectures. #Params and GFLOPs are 
calculated for the pose estimation network. 

6 DISCUSSIONS 

In the above sections, we have introduced deep learning-based methods, human representation 
models and capture devices for HPE. In the following, we further discuss the performances of these 
methods from three perspectives: accuracy, speed, and robustness. 

Accuracy. The accuracy of 3D HPE methods has been improved by 70 mm over the last decade 
with the improvements of 2D HPE. Usually, the multi-view methods produce more accurate results 

than the monocular image ones. At present, the most advanced 3D HPE method[134] using 
monocular images has realized 16.9mm average MPJPE on Human3.6M. In their method, geometric 
prior knowledge is used for multi-hypothesis aggregation. The multi-view HPE method reaches 

15.6mm average MPJPE[16]. The multi-view method can provide more information about the 
position of the keypoints, which is helpful to solve the position ambiguity of the keypoints of 3D HPE 

in a single image. Although the information from multi-views reduces self-occlusions and extra-
occlusions, the usage of multiple cameras is much more expensive. 

As heatmap-based methods usually take high-resolution images as inputs, the prediction 

accuracy will be greatly reduced if low-resolution images are used as inputs. How to balance accuracy 
and network computational complexity has become one of the concerns of heatmap-based methods. 
By using different Gaussian kernels, the accurate location of each key point is realized. For example, 

Yu et al. [120]'s method and Luo et al. [62]'s method continuously learn and adjust the standard 
deviation of the Gaussian kernel for each keypoint and achieve 69.4% AP and 72.0% AP, 

respectively, on the COCO test-dev dataset. 

Vision Transformer shows excellent strength in HPE, and the reason comes from its own attention 
mechanism. Attention mechanism can pay more attention to global, local and contextual 

information, which not only improves the performance of the model, but also reduces the amount 
of calculation. The state-of-the-art model MotionBERT(Finetune) [134] has achieved 16.9mm 
average MPJPE in Human3.6M. Compared with the monocular image method, the MPJPE is reduced 

by 2.7mm on average, and is better than the multi-view method. Table 5 lists several of the best 
results achieved using Transformer's pose estimation method. 

Robustness. There are certain challenges in extending 3D HPE to outdoor environments. This 
is because most of the existing large-scale motion capture datasets are collected indoors, such as 
Human3.6M and Total Capture. As a result, the performance on outdoor datasets is poorer, for 

example, MotionBERT [134] achieves the best performance on the Human3.6M dataset but only 
achieves 76.9mm MPJPE on the 3DPW dataset. To overcome this discrepancy, it is necessary to 
collect more outdoor data and use data augmentation techniques to improve the model's 

generalization ability. 

Methods 
COCO Human3.6M 

#Params GFLOPs 
AR AP Protocol #1 Protocol #2 

Lite-HRNet[119] 76.2 70.4   1.8M 0.70 

FastNet[61] 77.1 71.4   9.0M 3.2 

MobileHumanPose [15]   35.2 51.4 4.07M 5.49 

LitePose[103]  40.6   1.7M  

ViPNAS[113] 81.2 74.7   16.3M 1.44 
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To improve the performance of the model in outdoor environments, the following methods can 
be considered: firstly, utilize existing outdoor datasets such as AGORA and DensePose to acquire 

diverse outdoor scenes and a variety of human pose data. This will help improve the model's 
generalization ability. Secondly, by using data augmentation techniques [28], introduce training data 

with different backgrounds and human poses to increase the model's ability to recognize occlusions. 

Occlusion is an important challenge in monocular human detection. To address this issue, image 
context understanding and prior knowledge of body structure can be utilized to infer the positions 

of occluded body parts. For example, by leveraging joint constraints and the assumption of body 
part coherence for pose estimation, the accuracy of estimating occluded regions can be improved. 

Additionally, multi-view methods are commonly used solutions in handling occlusion problems. 

By using multiple cameras or viewpoints to observe the target from different angles and jointly 
analyzing images from multiple views, object occlusion can be reduced, thereby improving the 

accuracy and robustness of HPE. 

Speed. Previous methods have used complex networks to achieve high precision, but the 
predictions require a large amount of computation. Some recent lightweight networks allow 

algorithms to run on low-performance devices, which enables affordable markerless motion capture 
by mobile phone cameras. Deployed on low-end devices (iPhone7 with CPU), [33] can run faster 
than 20 fps, while high-end devices (iPhoneXS with NPU) have throughput above 160 fps. It is 

difficult for other large network architectures to perform faster than 10 fps on CPU and GPU. The 
Xnect[70] runs at 27 fps on laptops equipped with Intel i7-8780H and 1080-MaxQ. The existing low-

end devices basically meet the computing requirements of the lightweight method and can meet 
some entertainment needs. 

7 CONCLUSIONS AND FUTURE DEVELOPMENTS 

In this paper, we review the recent developments in human pose estimation methods for markerless 
motion capture. According to the number of people in the input image, we provide single-person 
and multi-person pose estimation methods in different dimensions. In addition, we also focus on 

video-based and lightweight methods. We also compare and discuss different models and methods 
in terms of robustness, accuracy, and speed, analysing their advantages and disadvantages. 

Furthermore, we review current datasets and evaluation metrics from various dimensions and 
compile commonly used capture devices in human pose estimation. Thus, this review serves as a 
guide for researchers interested in this field and as a reference for studying existing models and 

developing new methods. So far, there are still several problems that need to be solved in the future. 
In the following, we propose possible directions for future works. 

A unified overall model deserves to be explored in the future. Existing models of faces, 
hands, and bodies are isolated from each other and therefore unable to take full advantage of the 
large-scale data analysis and model-building processes that are emerging in the context of deep 

learning. Full-body models help capture and deeply analyse subtle interactions in virtual reality as 
well as physical 3D Spaces. 

Attention mechanism plays an important role in 3D pose estimation. Transformer gets 

attention because of its excellent performance in posture regression, and researchers apply attention 
mechanism to CNN. However, the Transformer method has a large amount of computation and needs 

a simple and efficient model structure. 

Most approaches ignore the close interaction between humans and 3D scenes. Reducing 
body intersection and occlusions by adding knowledge of physical movements will be an interesting 

direction in the future. 

Faster and lighter network architectures need to be explored to reduce the cost of 
computation. At the same time, the accuracy of pose estimation should be guaranteed. Thus, many 

applications will be benefitted. 
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