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Abstract. Die casting is a widely used technology in industrial production, 

particularly in the automotive industry, for its ability to mass-produce complex 
shapes quickly. A significant challenge in the process is predicting and minimizing 
defects such as "soldering failure." This paper presents the development of a 

surrogate model that predicts soldering failure in die-cast products based on their 
geometrical features. By comparing the performance of the surrogate model to a 

conventional rule-based method, we find a significant improvement in accuracy. The 
surrogate model is constructed using 3D shape data of die-cast products and 
corresponding information on the occurrence of soldering defects, employing a 

machine-learning algorithm to create the model. Our results indicate that the 
surrogate model based on geometrical features effectively predicts the soldering 
phenomenon between the die and molten metal in the die-casting process. This 

research has potential applications in defect prediction for various die-casting 
processes and automatic shape optimization using VAE latent space. 
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1 INTRODUCTION 

Die casting is widely used in industrial production because it mass-produces products with complex 

shapes at high speed. Especially in the automotive industry, die casting has attracted renewed 
attention in recent years from the viewpoint of vehicle weight reduction and reduction of the number 
of parts in products, e.g. [1]. To ensure high competitiveness as an industrial product, it is necessary 
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to supply products that correctly reflect market trends on time, and for this purpose, it is crucial to 
shorten the lead time for product development. 

  
Usually, the product development process in the automotive industry follows the flow below. 

  

Product design ⇒ die design ⇒ Productivity simulation  

⇒ Process design ⇒ Functional evaluation ⇒ Mass production 

  

If a high-quality design that considers the process design up to the product design stage is realized, 
it can reduce the number of redoing and shorten the product development lead time. However, at 
the product design stage, only the product shape is determined, so it is basically judged whether or 

not it meets the product shape standards set by rule-based settings. However, it is only sometimes 
possible to make good pre-predictions for products with complex shapes, and this has become a 

factor causing rework. 

2 LITERATURE REVIEW 

One way to solve this problem is to predict the product's productivity using simulation before actually 

producing the product and rectify issues beforehand. Indeed, simulation technology is widely 
adopted and has become a standard technique in industrial product development processes [2]. 

Efforts are also ongoing to enhance accuracy, for instance, in casting simulation, traditionally 
focusing on fluid analysis of molten metal, but now also incorporating calculations for ambient air 
compression behaviors to examine the back pressure influences and improve accuracy regarding 

splashing behaviors at the spout [3]. Additionally, research is being carried out to reduce 
computation time using quantum computers to speed up the examination cycle [4]. However, even 
if these technologies are put into practical use, preparing model information of the mold for 

manufacturing is necessary to execute a simulation. Including revisions, it takes several days to 
complete a simulation once. Therefore, even if improvements in simulation accuracy and time 

reduction are realized, only part of the problem of long preliminary examination time utilizing 
simulation is solved, leaving the challenge of easy defect prediction in the early stages of product 
development unresolved. 

Given these limitations with simulation technology advancements, an alternative approach is 
actively pursued, which involves analyzing and utilizing big data obtained from defect occurrence 
information of actually produced products in the past and accumulated simulation results to convert 

pattern recognition into added value for current and future productivity predictions [5]. Among these 
efforts, the technique known as surrogate modeling, which employs machine learning or other 

methods to predict using patterns obtained from known data instead of executing detailed 
simulations, is gaining traction as it enables the reduction of computation costs and pre-required 
information. For instance, Amir Pouya proposed a model capable of predicting the cross-sectional 

temperature distribution of the welding pool by learning laser welding processing parameters using 
a neural network [6]. Additionally, Andres and others reported the effectiveness of a predictive 
model utilizing SVM as a means to estimate the cross-sectional shape of aircraft blades at a low 

computation cost [7]. Therefore, surrogate models, performing necessary predictions with reduced, 
original information based on known data, are likely to solve the problem of accurately predicting 

product quality from product shape in the early development stages. However, many of the cases 
reported so far simplify the problem by reducing three-dimensional phenomena to two dimensions, 
and it needs to be clarified whether it can be directly applied to phenomena where complex three-

dimensional shapes are the subject of prediction. Also, there are very few reports on the 
effectiveness of surrogate models for defect occurrence in the casting process based on the 

geometric information of the product. If the possibility of realization is shown, it significantly impacts 
the industrial product development process. Hence, in this study, we accurately extracted the 
geometric information of the 3D model of die-cast products using VAE [8] shape feature technology 

and constructed a surrogate model that replaces the execution of detailed simulation by learning the 
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features as input to the neural network. We evaluated the technical feasibility by comparing the 
prediction accuracy with the conventional rule-based prediction. 

3 TARGET FAILURE 

In the die-casting process, aluminum remains stuck to the die surface after the product is taken out, 

as shown in Fig. 1, and this phenomenon is called "soldering”. This is a defect that has a significant 
impact on productivity and is a high-priority issue. 
 

 

 

Figure 1: Die soldering Image of actual die-casting process. 
 

As reported by Han et al. [9], the mechanism of die-casting die soldering is the formation of 

intermetallic compounds by the diffusion reaction between the Fe component of the die and the Al 
component of the molten cast metal, and the degree of soldering can be defined as a function of 
temperature and time from the Arrhenius equation, e.g., equation (2.1), where k is the rate constant, 

This the absolute temperature, A is the pre-exponential factor, E is the activation energy for the 
reaction, and R is the universal gas constant. From this equation, the extent of the reaction varies 

exponentially with absolute temperature. Here, the results of a simple simulation of the temperature 
change of the die surface, which is touching molten metal during the die-casting process, are shown 
in Figure 2. As can be seen from the results, the drastic temperature change of the die due to contact 

with molten metal is limited to a few mm on the surface. Therefore, the phenomenon of die/molten 
metal soldering in the die-casting process can be estimated to some extent by the balance between 
the thickness of the product, which determines the amount of heat, and the heat capacity of the die 

surface, which determines how much the die temperature rises due to the heat input from the 
product. Based on the above, we assume that the die soldering phenomenon is appropriate for the 

task of creating a surrogate model based on shape characteristics and selecting it as the target 
defect. 
 

 
Figure 2: (a) Setup of brief simulation, and (b) simulation result of die temperature change over 
time at each depth from die surface. 
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𝑘 = 𝐴𝑒𝑥𝑝 (−
𝐸𝑎

𝑅𝑇
)      (2.1)  

4 TARGET DATA 

4.1 Simulation of the Prediction Target 

In this study, the target for prediction is the "integrated soldering reaction time," which is a risk 

index for soldering occurrence predicted by detailed simulation using TopCAST, a casting simulation 
software sold by Toyota Systems, Inc. The integrated soldering reaction time is a numerical value 
calculated by experimentally weighting the thermal diffusion on the die surface as a function of 

"temperature" and "time," which can accurately predict actual soldering defects. Although various 
methods are used to represent the 3D model geometry in fluid simulation, TopCAST uses the voxel-

based VOF method. 

 
Figure 3: Image of differences between (a) Original shape and (b) VOF shape 

4.2 Parts to be Analyzed 

This study analyzed 113 kinds of transaxle parts produced by Toyota Motor Corporation by die casting 

in the past. Figure 4 shows an image of the product shape. 

 

 

 

Figure 4: Image of product shape 

5 RULE BASED JUDGEMENT MODEL 

As a rule-based prediction method, in this study, we used the SAT (Shape Analysis Tool) function 

implemented as a standard function of TopCAST. This function indicates the risk of soldering by 
calculating the volume ratio of the die and the molten metal inside the sphere (measuring ball in 

Figure 5) with the appropriate diameter, e.g., equation (4.1). 
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Figure 5: Concept of rule-based prediction. 

 
 

 
                                                        (4.1) 
 

6 CREATION OF A SURROGATE MODEL 

The procedure for constructing the surrogate model is as follows. First, cut out a cube centered on 
each surface cell of the target 3D model shape. Next, train VAE using each cubic shape created at 

each point on the surface. Then, we can get the encoder, which can translate the cubic shape feature 
to the vector. Finally, the neural network will be trained with the feature vector as input and the 

simulation result on the cube center as output. The flow of estimation is shown in Figure 6. 
In this study, 20 of the 113 parts were used to train the VAE, and then 73 of the remaining 93 
components were used to train the NN. Further details regarding the VAE and neural network 

structure will be described in the following sections. 

Figure 6: Image constructing surrogate model. 

 

6.1 Evaluation Method of Surrogate Model 

When the correct and predicted data were plotted on the 3D model geometry, the clumps of regions 
with values above a threshold were each defined as soldering regions, and the degree to which the 
regions in the correct data and the regions in the predicted data matched over the entire part was 

evaluated. 
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In this study, the F1 score was used as the evaluation index, and the threshold value at which 
the F1 score is the maximum was obtained for both the surrogate model and the rule-based model. 

 

 
Figure 7: Example of evaluation results. 

 
 
 

 
 
 

 
 

 
 
 

 
 
 

Figure 8: Image of evaluation method. 

6.2 Voxel-Based Variational Autoencoder and Neural Network 

A Variational Autoencoder (VAE) is constructed in the present study, drawing inspiration from a 
model that demonstrates high accuracy in object classification tasks [9]. A VAE is an autoencoder, 
a neural network trained to replicate its input data at the output layer. The 'variational' part adds a 

probabilistic layer, making it a probabilistic graphical model. The VAE compresses data into a lower-
dimensional space and then reconstructs it into its original space. During this process, the VAE learns 
to capture the essential characteristics of the data in the lower-dimensional space, producing a 

feature vector. Initially, a simple VAE structure was adopted, as in the referenced literature. Upon 
constructing the model and conducting a significance test on the difference in F1 scores between it 

and a rule-based model, we could not achieve a statistically significant result at the 99% confidence 
level. It is worth noting that in this study, we used the bootstrap method [10] to test the difference 
in accuracy between models, create sub-samples for each product shape when resampling bootstrap 

samples, and conduct tests on the differences. The reason why the adopted model did not yield 
results meeting the 99% confidence interval may be because the shapes targeted in this study are 
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more complex than the 3D shapes targeted in the referenced literature. Based on this consideration, 
we concluded that there was a need to tune the VAE structure to capture more complex shape 

features in our application. Therefore, the final VAE structure adopted in this study included 
additional convolutional and pooling layers compared to the referenced literature. It was confirmed 

that optimizing the VAE structure by increasing the number of convolutional and pooling layers 
improved accuracy. The final VAE structure adopted in this study is illustrated in Figure 9. After 
training the VAE, the feature vectors extracted from the latent space serve as the input for another 

neural network designed for regression prediction. This neural network is a Multilayer Perceptron 
with four layers and dropout. It consists of an input layer with 100 nodes, two hidden layers with 50 
and 10 nodes, and an output layer with a single node. Each hidden layer is followed by a batch 

normalization layer with an epsilon of 2e-5 and a dropout layer with a dropout rate 0.25. The 
activation function used between the layers is the leaky ReLU function with a negative slope of 0.2, 

and the output layer uses the softplus function. Details of the learning process will be described in 
the following chapter.   

 

 
 
 

 
 

 
 
 

 
 
 

 
 

Figure 9: Architecture of VAE and Neural Network. 

6.3 Model Training 

For the VAE, the training was conducted with a batch size of 10 and for one epoch with a learning 

rate of 0.001. The optimizer used was AdaGrad, and the loss function parameters included a 
reconstruction error calculation sampling number of 1 and a KL divergence term coefficient of 1. For 

the Neural Network, the training was conducted with a batch size of 32 for one epoch and a learning 
rate of 0.001. These parameters ensured the appropriate progression of learning for each network. 
Figure 7 shows the training curve of (a) VAE and (b) Neural Network, and we can see that both of 

them were trained appropriately. The results confirm that learning progressed appropriately in each 
network. 
 

 
 

 
 
 

 
 
 

 
 

 
Figure 10: Train curve of a) VAE and b) Neural network. 
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7 EVALUATION RESULT 

We evaluated the performance of two predictive models, the Surrogate model and the Rule-based 

model, for predicting the occurrence of defects. The performance of the models was assessed using 
the F1 score, which is the harmonic mean of precision and recall. The Rule-based model had True 

Positives (TP) of 6, False Negatives (FN) of 16, and False Positives (FP) of 38, resulting in an F1 
score of approximately 0.19. On the other hand, the Surrogate model had a TP of 12, FN of 10, and 
FP of 12, leading to an F1 score of approximately 0.53. We conducted the bootstrap mentioned 

above test to validate whether there was a statistically significant difference in these results. Figure 
11 shows the transition of F1 scores as the decision threshold was varied for both the Surrogate 
model and the Rule-based model, represented by a line graph and the bootstrap distribution of the 

differences represented by a histogram. The results indicated a statistically significant difference 
between the Surrogate and Rule-based models at a 99% confidence level. 

 
 

 
 

 
 
 

 
 

 
 
 

 
Figure 11: Transition of F1 score of a) rule-based prediction and b) surrogate model prediction 
when the threshold was changed and c) Bootstrap distribution of F1 score difference. 

 

8 CONSIDERATION 

As indicated in the results, the surrogate model constructed using VAE and NN demonstrated a 
statistically significant higher F1 score than the conventional rule-based model prediction, with a 
particular tendency to reduce the false positive rate. Figure 12 depicts (a) an example of the false 

positive region predicted by the rule-based model and (b) the actual die model. In the area enclosed 
by the yellow line, no soldering was predicted by CAE and surrogate model prediction. In contrast, 

the rule-based model identified it as a concern for soldering. As seen in Figure 12(b), there is a hole 
in the concerned area, and in this hole, a separated die, as shown in Figure 13, will be inserted during 
the actual manufacturing process. This separated die, equipped with an additional cooling circuit 

inside, possesses a high cooling capacity and is applied to areas where the risk of soldering is deemed 
high based on simulation results. However, it does not apply to all parts and is only used for parts 
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that can be divided due to the die structure. Most of the learning data utilized in this research were 
the results of simulations conducted after such design efforts were made. Therefore, in the surrogate 

model, the risk of soldering was not only recognized as a physical phenomenon, but pattern 
recognition also included whether measures like additional cooling were implementable due to the 

mold shape. It is presumed that this background led to the observed difference in accuracy between 
the actual surrogate model and the rule-based model. 
 

 
 

Figure 12: Example of (a) rule-based prediction and (b) actual die model. 
 

 
 

Figure 13: Separated die model which has internal cooling circuit. 

9 CONCLUSION 

The defect prediction performance of the surrogate model was confirmed to be superior to that of 
the rule-based model, as indicated by a higher F1 score. This difference in performance was 

statistically significant, as demonstrated by the bootstrap method. Based on these results, the 
surrogate model constructed using VAE and NN can effectively predict product quality based on 
product shape, thereby potentially reducing product development lead times. 

However, it is essential to note that the data used in this study consisted of models and 
simulation results of 113 types of automobile transaxle cases. Collecting detailed product 

development-related data of this scale is difficult, which could be a limitation in applying this 
approach in other contexts or for smaller-scale projects. Additionally, while this study focused on 
predicting the occurrence of soldering defects, there are different die-casting defects, such as 
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cracking and wrinkling, which were not examined in this study. It is still being determined whether 
the surrogate model could be effectively applied to predict these other types of defects, and this is 

an essential area for further research and verification. 
Overall, this study demonstrates the potential of using a surrogate model constructed using VAE 

and NN for predicting defects in die-casting but also highlights the challenges in collecting the 
necessary data and the need for further research to assess the model's applicability to other types 
of defects. 

 
Tomoya Yamazaki, http://orcid.org/0009-0008-1771-7418 
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