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Abstract. This study introduces an improved Broyden-Fletcher-Goldfarb-Shanno (I-BFGS)
scheme, meticulously designed for support vector machines (SVMs), laying the fundamental
basis for the development of intelligence and automation in computer-aided design (CAD).
Through the incorporation of a strategically devised exponential penalty function, we have
transformed a quadratic programming (QP) under both equality and inequality constraints of
SVM into an unconstrained optimization paradigm. This refinement not only simplifies the
computational framework but also extends the algorithm’s adaptability, making the I-BFGS
scheme an effective choice for SVM applications, notably in CAD, where it can significantly
expedite the design process and curtail computational burden. Experimental results show
that the proposed I-BFGS scheme exhibits excellent performance when combined with radial
basis function (RBF) kernel, and great robustness and consistency when using sigmoid kernel.
Comparative analyses with Pegasos, LIBSVM and logistics regression further accentuate the
I-BFGS scheme’s distinctive benefits in terms of efficiency and precision, highlighting its
potential for practical applications. In essence, this research unveils a new strategy for SVM
optimization, paving the way for innovative applications in diverse fields, including CAD, by
enabling more streamlined and accurate design methodologies.
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1 INTRODUCTION

Support vector machines (SVMs) have emerged as versatile tools across a spectrum of scientific disciplines,
catalyzing groundbreaking advancements and substantially influencing research trajectories. Their versatility
is evident in bioinformatics for protein classification and genomics studies [1], in image processing for object
detection and facial recognition [2], and in neuroscience for brain imaging and neural activity prediction [3, 4].
They have also significantly impacted natural language processing [5] and cybersecurity [6], underlining their
adaptability and indispensability in contemporary scientific investigations.
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In computer-aided design (CAD), the ability to quickly and effectively attain high-quality solutions is
pivotal. Given the inherent complexity and multifaceted nature of design problems, achieving globally optimal
solutions is often impractical and computationally intensive. Hence, methods that can provide reliable and
high-quality optimum solutions are of immense value [7, 8]. SVMs, with their adaptability and robustness,
can be invaluable in influencing design trajectories, aiding in model generation, shape recognition, and the
optimization of design parameters, thereby enhancing the overall efficiency and efficacy of the design process
[9].

One of the foundational advantages of SVMs is their formulation of their dual form as quadratic pro-
gramming (QP) under both equality and inequality constraints, which offers pathways to more efficient and
trustworthy computational solutions [10]. However, compared with unconstrained problems, the constrained
QP problems are significantly more complex, especially for large scale datasets, which is precisely the challenge
faced in SVMs. In response to this problem, many efforts and contributions have been made in different
directions. On the one hand, some researchers endeavor to find an alternative way to avoid this complex form,
instead of optimizing the original SVM problem directly. Notably, Shalev-Shwartz et al. present the Pegasos
algorithm, which harnesses subgradient methods and stochastic gradient descent (SGD) to achieve solutions,
demonstrating impressive performance and ensuring fast convergence even for voluminous datasets [11]. Their
main breakthrough lies in solving the problem that the hinge loss function in the original SVM problem has
non-differentiable points and combining this with an efficient algorithm SGD, which greatly improves the com-
puting speed, even if loses a certain amount of accuracy and stability compared to gradient descent (GD) or
Batch-GD algorithm [12, 13]. Similarly, Chapelle designs an alternative approach by replacing the hinge loss
with a smooth loss function, thus also making both GD and SGD feasible [14].

On the other hand, historically, due to the existence of non-differentiable points in hinge loss, optimizing
the original problem is relatively difficult and requires a lot of calculations, therefore early work still mainly
focuses on the optimization of the dual problem. By iteratively incorporating the constraints with the greatest
deviations from the required conditions into the model, Joachims’ cutting-plane algorithm effectively solves
this complex problem but typically requires a fine control in terms of working set size and constraint scale to
reach a trade-off between efficiency and accuracy [15]. Platt’s sequential minimal optimization (SMO) method
strategically breaks down the dual QP problem into smaller, more manageable sub-problems, achieving precise
and efficient computation, and has become the most common solution for SVMs today [16]. The well-known
commercial packages LIBSVM and SVM-Light are based on improvements to this algorithm [17, 18]. However,
the SMO algorithm still has certain limitations, such as sensitivity to the choice of kernel function, and difficulty
in handling large datasets or sparse data. Therefore, the exploration of new methods that can address these
challenges is still ongoing.

In light of these limitations, there has been a growing interest in revisiting conventional optimization
strategies such as GD, SGD, Newton’s method, and quasi-Newton methods, which are underpinned by solid
theoretical foundations and are universally applicable [19, 20]. Especially for quasi-Newton methods such
as BFGS, they have been further enhanced with some advanced features such as memory optimization [21],
momentum terms [22] and adaptive learning rates [23]. However, these algorithms often meet with obstacles in
this direction for SVMs as they cannot be directly applied to constrained optimization problems. They typically
necessitate integrating other methods first such as the interior-point method to transform the constraints
[24]. For example, Suykens and Vandewalle present the least squares support vector machine (LSSVM),
which changes the constrained optimization problems to linear equations, and provides the possibility for the
application of the BFGS algorithm in this direction [25]. Then, Chen et al. design the sparse accelerated
limited memory BFGS algorithm specifically for training the LSSVM classifier, which eliminates redundancy
and noise in large-scale, high-dimensional data by exploiting sparsity, and maintains good performance and
efficiency when dealing with large sparse datasets.

In this paper, we ingeniously transform the standard quadratic programming problem with equality and
inequality constraints in the dual form of SVMs into an unconstrained convex optimization problem by employ-

Computer-Aided Design & Applications, 21(4), 2024, 610-624
© 2024 U-turn Press LLC, http://www.cad-journal.net

http://www.cad-journal.net


612

ing an exponential penalty function [26]. Subsequently, we employ the improved Broyden-Fletcher-Goldfarb-
Shanno (I-BFGS) scheme to train the SVM classifier. BFGS, an esteemed iterative optimization technique,
is particularly adept at handling unconstrained nonlinear minimization problems [27, 28, 29, 30]. Evolving
from Newton’s method, BFGS is characterized as a quasi-Newton or a second-order convergence technique.
Its hallmark is the iterative approximation of the inverse Hessian matrix, obviating the need for its direct
inversion, a requirement in the traditional Newton’s method, which confers a distinct computational edge
[31]. In convex optimization problems, it can quickly approach the global optimal value with a small number
of iterations. This scheme is particularly beneficial for CAD applications, where precise and computationally
efficient outcomes are crucial, enabling the development of advanced and optimized design models [9].

This article is structured as follows: Section II delineates the datasets and their preprocessing method-
ologies. Section III elucidates the framework of this scheme and its derivation. Section IV presents the
experimental results and a convergence analysis. Section V encapsulates our conclusions. A block diagram
encapsulating the core thrust of this paper is depicted in Fig. 1.
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Figure 1: Block diagram of this paper.

Our principal contributions include:

1. We introduce an improved BFGS scheme for SVMs, which innovatively integrates an exponential penalty
function to eliminate the equality and inequality constraints complicating SVM solutions. Furthermore,
an approximation matrix supplants the inverse of the Hessian matrix in the BFGS, further mitigating
computational demands.

2. Experimental evaluations across diverse datasets reveal that the SVM classification efficacy of our pro-
posed I-BFGS approach either matches or surpasses the compared methods, especially when combined
with sigmoid kernel, showing robustness to kernel selection.

3. The potential foundational approach for further integration within CAD systems, contributing to ad-
vancements in computer-aided design and its applications by providing fast and reliable approximate
global optimum solutions to complex design problems.

2 DATASETS

To rigorously assess the efficacy of the proposed methodology, we employ six publicly accessible, structured
classification datasets in our experimental evaluations. All these datasets are geared towards binary classifica-
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tion, with class labels designated as -1 and 1. Each dataset possesses a distinct number of features, thereby
offering a varied dimensional landscape for comprehensive evaluation. The datasets and their respective di-
mensions are as follows:

1. Wine [32]: 13 features.

2. Iris-setosa [33]: 5 features.

3. Miners or Rocks [34]: 60 features.

4. Breast Cancer [35]: 30 features.

5. Age-Related Condition [36]: 56 features.

6. Smoke [37]: 25 features.

To ensure a holistic evaluation across balanced datasets, we meticulously adjust three datasets (“Breast
Cancer”, “Age-Related Condition”, “Smoke”) through undersampling. This maneuver ensures a near-equivalent
number of instances across both classes. Conversely, the other trio of datasets (“Wine”, “Iris-setosa”, “Miners
or Rocks”) are preserved in their inherent imbalanced configurations, reflecting pronounced disparities in class
distribution. The “Wine” dataset, originally multi-class, was transformed into a binary dataset by amalgamating
wines from categories 2 and 3. The “Iris-setosa” dataset was derived by isolating the “setosa” class from the
comprehensive “Iris” dataset, labelling it as 1. Simultaneously, the remaining non-“setosa” categories were
consolidated into a singular class, labelled as -1. Crucially, all datasets are devoid of missing values and
have undergone normalization. This refinement not only expedites computational processes but also curtails
potential numerical instabilities, ensuring the optimization process remains unaffected [38].

3 FRAMEWORK

This section first establishes the original SVM model and its transformation into an unconstrained optimization
problem, and then solves it with the I-BFGS scheme to obtain the predicted value of SVM. For clarity, Algorithm
1 summarizes this process.

3.1 SVM Model

The basic idea of SVM is to classify data by constructing a hyperplane, or linear decision function, which is
determined by a coefficients matrix w and a deviation coefficient b. The function takes the form

f(x) = wTx+ b, (1)

where w ∈ Rn×1, b is a scalar and x ∈ Rm×n is the feature matrix. For example, dataset D can be expressed
as

D =


(xT

1 , y1)

(xT
2 , y2)
...

(xT
m, ym)

 =


x11 x12 · · · x1n y1

x21 x22 · · · x2n y2
...

...
. . .

...
...

am1 am2 · · · amn ym

 , (2)

where feature vector xi ∈ Rn×1 and feature label yi ∈ {1,−1}. The positive or negative of the value of f(x)
decides which class the unlabeled data x belongs to.
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To find the hyperplane that has maximum margin, that is, to find w and b that satisfy certain constraints,
and it is equivalent to minimizing the square paradigm of margin. Therefore, solving the decision function can
be transformed into a QP problem, which is also the basic form of SVM

min
w,b

1

2
∥w∥2 (3)

s.t. yi(w
Txi + b) ≥ 1

with i = 1, 2, . . . ,m.
(4)

To avoid several training data from excessively influencing the dividing hyperplane, constraint (4) can be
adjusted slightly by introducing a relaxation variable ξi to construct “soft-margin” SVM

min
w,b

1

2
∥w∥2 + C

m∑
i=1

ξi (5)

s.t. yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0

with i = 1, 2, . . . ,m.

(6)

Defining two Lagrangian multiplier α and µ, QP problem (5) and (6) can be transformed as a Lagrangian
function, i.e., a min-max problem

L ≡ min
w,b

max
αi≥0
µi≥0

1

2
∥w∥2 + C

n∑
i=1

ξi

+

m∑
i=1

αi(1− ξi − yi(w
Txi + b))−

m∑
i=1

µiξi.

(7)

Take the partial derivative with respect to w, b and ξi be 0, and we can get

w =

m∑
i=1

αiyixi. (8)

0 =

m∑
i=1

αiyi. (9)

C = αi + µi. (10)

In this regard, dual problem of (5) can be obtained by substituting (8)-(10) into (7)

max
α

m∑
i=1

αi −
1

2

m∑
i=1

m∑
j=1

αiαjyiyjx
T
i xj (11)

s.t.
m∑
i=1

αiyi = 0

0 ≤ αi ≤ C

with i = 1, 2, . . . ,m.

(12)
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Furthermore, kernel function can be applied in formula (11) for the case of linear indivisibility

min
α

1

2

m∑
i=1

m∑
j=1

αiαjyiyjK(xi,xj)−
m∑
i=1

αi (13)

s.t.
m∑
i=1

αiyi = 0

0 ≤ αi ≤ C

with i = 1, 2, . . . ,m,

(14)

where for RBF kernel:
K(xi,xj) = exp

(
−γ∥xi − xj∥2

)
, (15)

and for sigmoid kernel:
K(xi,xj) = tanh

(
βxT

i xj + θ
)
. (16)

3.2 Standard QP Problem

By defining

α =


α1

α2

...

αm

 , (17)

q =


−1

−1
...

−1

 , (18)

y =


y1

y2
...

ym

 , (19)

x =


x1

x2

...

xm

 , (20)

U = yyT ⊙ xxT. (21)

Equations (13)-(14) can be expressed as

min
1

2
αTUα+ qTα (22)
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s.t. yTα = 0

0 ≤ α ≤ C.
(23)

It can be expressed as a standard QP problem form

min
1

2
αTUα+ qTα (24)

s.t. yTα = 0 (25)

Kα ≤ c, (26)

where

K =

[
I

−I

]
∈ R2m×m, (27)

c =

[
C

0

]
∈ R2m×1, (28)

and I is identity matrix.

3.3 Improved-BFGS Scheme Design

Quasi Newton methods are often used to solve unconstrained optimization problems. In this paper, a penalty
function is introduced to convert the standard QP form of SVM into an unconstrained problem. First, the
penalty part is

P (α) = p

2m∑
i=1

N(Qi,α) (29)

with Qi = ci −Kiα (30)

N(·) = e−σQi (31)

where σ > 0, p > 0. Then, the above penalty function is used to replace the inequality constraints (27), and
it satisfies {

P (α) ≈ 0, if Qi ≥ 0

P (α) ≫ 0, if Qi < 0
. (32)

When the inequality constraint (27) is met, P (α) yields a value close to zero, indicating a small result. However,
if the inequality constraint is not met, P (α) produces a large value as a substantial penalty. Therefore, the
inequality (27) constraint can be substituted by the penalty function, and the standard QP problem (25)-(27)
can be rewritten as

min
1

2
αTUα+ qTα+ P (α) (33)

s.t. yTα = 0. (34)

By utilizing the Lagrange multiplier method, we can obtain

L(α,λ) =
1

2
αTUα+ qTα+ P (α) + λTyTα. (35)
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Subsequently, take the partial derivative with respect to α and λ, and one has
∂L(α,λ)

∂α
= Uα+ q + yλ+ pσ

m∑
i=1

(e−σQi ·KT
i ) = 0

∂L(α,λ)

∂λ
= yTα = 0

. (36)

Define

A =

[
U y

yT 0

]
∈ R(m+1)×(m+1), (37)

z =

[
α

λ

]
∈ R(m+1)×1, (38)

h =

[
−q − pσ

∑2m
i=1(e

−σQi ·KT
i )

0

]
∈ R(m+1)×(m+1). (39)

In this sense, equation (36) can be rewritten as a compact form:

g = Az − h. (40)

Newton’s method, a second-order optimization algorithm, builds on the principles of gradient descent by
incorporating second-order derivative information via the Hessian matrix. By accounting for the function’s
curvature and implementing a local quadratic approximation, this method refines the search direction utilizing
both the Hessian matrix and the gradient. Although this technique offers a more nuanced and precise approach
compared to basic gradient descent, its real-world deployment is often stymied by the hefty computational
demands of calculating, storing, and inverting the Hessian matrix, especially for expansive problems. Moreover,
in the context of non-convex problems, a non-positive definite Hessian matrix can compromise the descent
direction of the search.

Given these challenges, the BFGS algorithm emerges as a viable solution. As a Quasi-Newton method,
it mimics the prowess of Newton’s method without necessitating the direct computation and storage of the
Hessian matrix. Instead, the BFGS algorithm leverages an approximation matrix, B, typically initialized as
an identity matrix, to estimate the inverse of the Hessian matrix. This matrix is iteratively updated using
data from both the current and preceding gradient and position. As a result, the BFGS algorithm significantly
reduces computational complexity compared to Newton’s method. Moreover, the continuously updated matrix
B remains positive-definite, ensuring that the search direction consistently aligns with the descent direction.
Specifically, the update rule for the conventional BFGS is

zk+1 = zk − ηkB
−1
k gk, (41)

where ηk is the step size. By denoting sk = zk − zk−1 and uk = gk − gk−1 the BFGS can approximates the
inverse of the Hessian matrix by the solution of secant equation Bksk = uk. Then, the update rule of Bk can
be defined as

Bk+1 = Bk +
uku

T
k

uT
k sk

− Bksks
T
kBk

sTkBksk
. (42)
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Algorithm 1 I-BFGS for SVM Optimization

1: Input: Training data set D = (xi, yi), i = 1, ..., n, where xi is the input vector and yi is the target
value; parameters for penalty function C, p and σ; tolerance ε for convergence, max iteration max_iter, and
kernel function K ;

2: Output: α and λ, bias b, prediction value ypred;

Initialize:

3: Set objective function L of the transformed unconstrained SVM dual problem;

4: Choose initial α0, λ0 and set z0 = [α0;λ0];

5: Set initial Hessian matrix approximation G0 as an identity matrix;

6: Choose initial step size η0;

7: Set k = 0;

Repeat:

8: Compute the designed exponential penalty function P (α) according to formulas (29)-(32);

9: Compute A using chosen kernel K;

10: Compute the gradient gk = A · zk − hk using A and P (α);

11: if ∥gk∥ < ε then

12: exit loop {convergence criteria met};

13: end

14: Calculate the direction of descent dk = −Gk · gk;
15: Perform a line search to find the step size ηk that minimizes the objective function along the direction dk;

16: Update the state zk+1 = zk − ηkB
−1
k gk, and sk = zk − zk−1,uk = gk − gk−1,ρk = uT

k sk;

17: Update the Hessian matrix approximation using the I-BFGS update rule: Gk+1 = (I − ρksku
T
k )Gk(I −

ρkuks
T
k ) + ρksks

T
k ;

18: k = k + 1;

Until convergence criteria are met

19: Choose support vectors whose αi between 0 and C;

20: Compute bias b = 1
Ns

∑Ns

i=1

(
yi −

∑Ns

j=1 αjyjK(xi,xj)
)

for SVM by using yi, αi of support vectors and
chosen kernel;

21: Compute prediction value ypred,i = sgn
(∑Ns

i=1 αiyiK(xi,x) + b
)
;

22: Return α, λ, b, ypred.

Even so, obtaining the search direction still necessitates the computation of the inverse of the approximation
matrix Bk, which may impose high computational costs and cause numerical instability due to the near
singularity. This problem can be solved by employing the Sherman-Morrison formula [39] to directly update
the inverse of Bk. Then, the update rule of Bk can be replaced by

Gk+1 = (I − ρksku
T
k )Gk(I − ρkuks

T
k ) + ρksks

T
k , (43)
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where
ρk = uT

k sk. (44)

Finally, the improved BFGS solver for SVM has been constructed, with

zk+1 = zk − ηkGkgk. (45)

4 Experiment

This section presents a comprehensive evaluation of the I-BFGS scheme for SVMs, validating its effective-
ness compared with the Pegasos SVM [11], LIBSVM [18] and logistic regression [40]. The experiments are
conducted on six publicly available, small, structured binary classification datasets.

4.1 Experimental Setup

The datasets employed in our evaluations are structured for binary classification, where class labels are des-
ignated as -1 and 1. For enhanced computational efficiency and to mitigate potential numerical instabilities,
all datasets underwent normalization, thereby optimizing the subsequent analytical processes. Rigorous pre-
processing ensured each dataset was devoid of missing values. Table 1 outlines the respective sizes of these
datasets, and a five-fold cross-validation method is employed to ensure the robustness of the evaluation and
avoid overfitting for each scheme.

4.2 Experimental Results

As shown in Fig. 2, it is evident that the I-BFGS scheme, regardless of the kernel functions employed,
exhibits steadfast convergence across all datasets. The comprehensive performance comparison is presented
in Table 1, where I-BFGS, Pegasos, LIBSVM, and Logistic Regression are evaluated side by side across various
datasets and kernel functions. Among them, LIBSVM and logistic regression are used as baselines for auxiliary
comparison as they are the most common and mature algorithms in machine learning. We delve into these
observed patterns in the ensuing sections:
Performance with RBF Kernel When using the RBF kernel, it can be observed that each of the three SVM
methods excels over the other two at certain times, with not much difference in performance, indicating that
they have comparable levels of performance and are suited to their respective data distributions. For instance,
I-BFGS achieves the best performance on “Wine”, Pegasos on “Miners or Rocks”, and LIBSVM on “Age-Related
Condition”.
Performance with Sigmoid Kernel With the sigmoid kernel, the I-BFGS scheme and LIBSVM demonstrate
consistently great performance across multiple datasets, which implies excellent generalization ability. Even
occasionally not performing as well as them with the RBF kernel, their variability is not significant, suggesting a
relative insensitivity to the choice of kernel. However, LIBSVM exhibits a substantial performance decline on the
simplest dataset, “Iris-setosa”, possibly due to the data distribution being unsuitable for this type of algorithm.
In contrast, Pegasos performs significantly worse with the sigmoid kernel compared to other algorithms, with
much greater performance variability when compared to its own performance with the RBF kernel. Specifically,
on the “Iris-setosa” and “Miners or Rocks” datasets, the Pegasos algorithm seems completely unable to handle
these types of data distribution and gets an accuracy of only 32.90% and 57.82% respectively. These contrasts
in Pegasos emphasize the need for careful kernel selection. Moreover, to a certain extent, the performance
comparison on the “Iris-setosa” dataset suggests that the I-BFGS scheme with the sigmoid kernel shows less
dependency on parameter selection compared to the other two SVM algorithms.
Logistic Regression Benchmark Logistic Regression, often used as a baseline in classification tasks, shows
its robustness with stable scores across all metrics for the different datasets. In most cases, its performance is
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Figure 2: Gradient Convergence Curve of (a) Wine Dataset. (b) Iris Dataset. (c) Miners or Rocks Dataset.
(d) Breast Cancer Dataset. (e) Age-Related Conditions Dataset. (f) Smoke Dataset.

not as superior as SVM methods. However, it significantly outperforms all SVM-based methods on the “Breast
Cancer” dataset, with 97.17% accuracy, 97.12% recall and 96.86% F1-score, demonstrating the enduring value
of logistic regression in binary classification tasks, particularly when the decision boundary is linear or near-
linear. This result aligns with our predictions because most of the datasets faced by current machine learning
exhibit nonlinear distributions.

4.3 Conclusive Insights

In essence, the I-BFGS scheme, especially when combined with the RBF kernel, consistently delivers robust
performance across a spectrum of datasets. Conversely, Pegasos exhibits more performance variability, with its
efficacy seemingly tethered to kernel selection, particularly underwhelming with the sigmoid kernel. LIBSVM
as a business library with well-rounded improvement and mature optimization techniques, remains a strong
contender and has achieved first place in most cases, slightly better than other algorithms. It can demonstrate
the potential value of the innovation of the I-BFGS scheme by providing a comparison with this industry
benchmark. Cumulatively, these findings accentuate the proposed I-BFGS scheme as a promising avenue for
SVM optimization.
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Table 1: Comparative experiment results with different methods among various datasets

Dataset Size Kernel Method Accuracy (%) Precision (%) Recall (%) F1-score (%)

Wine 179

RBF
I-BFGS 98.89 100 98.00 98.95
Pegasos 98.33 96.90 100 98.39
LIBSVM 97.18 94.64 97.45 95.82

Sigmoid
I-BFGS 89.35 98.33 72.67 81.29
Pegasos 73.13 55.21 100 70.53
LIBSVM 96.63 93.44 97.01 94.95

Logistic Regression 96.62 95.21 95.52 95.21

Iris-setosa 149

RBF
I-BFGS 100 100 100 100
Pegasos 100 100 100 100
LIBSVM 100 100 100 100

Sigmoid
I-BFGS 100 100 100 100
Pegasos 32.90 32.90 100 49.34
LIBSVM 84.55 53.33 53.33 53.33

Logistic Regression 100 100 100 100

Miners or Rocks 208

RBF
I-BFGS 83.70 91.79 75.36 81.84
Pegasos 87.03 91.67 77.61 83.94
LIBSVM 79.51 79.58 76.35 77.44

Sigmoid
I-BFGS 67.96 68.80 64.71 64.79
Pegasos 57.84 53.62 67.58 59.30
LIBSVM 78.18 77.73 75.38 76.04

Logistic Regression 74.02 72.48 72.37 71.93

Breast Cancer 424

RBF
I-BFGS 94.34 94.77 93.47 94.04
Pegasos 95.99 96.93 94.68 95.78
LIBSVM 95.05 94.59 95.54 94.85

Sigmoid
I-BFGS 92.92 95.67 90.27 92.74
Pegasos 90.10 90.21 90.04 89.99
LIBSVM 94.99 94.38 95.44 94.72

Logistic Regression 97.17 96.81 97.12 96.86

Age-Related Condition 204

RBF
I-BFGS 73.01 68.95 84.52 75.26
Pegasos 76.49 78.28 73.58 75.18
LIBSVM 78.93 78.86 80.88 79.41

Sigmoid
I-BFGS 71.60 79.93 64.24 68.04
Pegasos 64.71 66.26 60.01 62.67
LIBSVM 78.69 78.48 80.48 79.11

Logistic Regression 77.95 79.59 77.27 77.91

Smoke 502

RBF
I-BFGS 74.10 68.56 89.29 77.41
Pegasos 76.08 69.03 94.88 79.84
LIBSVM 72.30 69.12 80.87 74.24

Sigmoid
I-BFGS 74.50 68.29 91.10 78.05
Pegasos 65.34 61.11 84.85 71.00
LIBSVM 73.22 68.53 86.26 76.05

Logistic Regression 73.69 69.10 85.89 76.52

5 Conclusion

Our research has presented an improved Broyden-Fletcher-Goldfarb-Shanno (I-BFGS) scheme for SVMs, con-
verting it from a quadratic programming problem under equality and inequality constraints to an unconstrained
one by introducing an exponential penalty function. The I-BFGS scheme provides efficient approximations,
essential for generating intricate models and optimizing designs within practical timeframes. Compared to
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Pegasos, LIBSVM, and logistic regression, I-BFGS with RBF kernel demonstrates superior performance, and
when combined with sigmoid kernel, it shows consistency across datasets, implicating the insensitivity to kernel
selection. Additionally, it is significantly more suitable than logistic regression for non-centralized datasets,
which are more common in the field of machine learning. The proposed I-BFGS scheme streamlines CAD
modelling by offering efficient design and predictive analytics, showing promise for tasks such as automated
defect detection and structural optimization, and is poised to significantly enhance design and manufacturing
with more precise and feasible solutions.
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