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Abstract. Implementing an alternative reality for Metaverse implies modeling 
optimized digital content to guarantee real-time interaction and high-quality 
rendering. Even if 3D reconstruction based on 3D scanning techniques provides a 

good replica of real objects, the output files are challenging to use in this application. 
On the other hand, manually developed optimized 3D models require much time and 

effort. This aspect becomes crucial in scenarios including thousands of 3D models 
with which humans should interact. This paper proposes a method to automate the 
3D modeling process of items whose shapes can be classified according to predefined 

geometrical categories. The dataset for this study relates to products, which present 
a wide variety of shapes but are attributable to just a few formal archetypes. In the 
proposed pipeline, metric orthographic images of the object to be digitally 

reproduced are analyzed by Convolutional Neural Networks (CNN)s. Subsequently, 
the same images are analyzed with Computer-Vision (CV) algorithms to extrapolate 

the characteristic dimensions related to the assigned archetypes. The method has 
been tested on different items, and the results proved the effectiveness of the whole 
approach in terms of correct archetypes recognition, parameter extraction, and 

creation of the 3D model, which are comparable with digitized 3D models with high-
quality scanning tools but much lighter in model size. 
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1 INTRODUCTION 

According to the Metaverse paradigms, humans should interact with digital content replicating real 
objects in a world that provides the illusion of an alternative reality [8]. The need for real-time 

response and high-quality rendering environments implies strict constraints on the 3D models that 
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can be used. This aspect becomes crucial in scenarios, including thousands of 3D models, such as a 
replica of large commercial areas (e.g., supermarkets) involving a massive set of different products. 

In this context, having a high-quality digital replica of consumer goods is fundamental for marketing 
and management design. The 3D models replicating consumer goods must have the same level of 

detail and fidelity as their physical counterparts. Such visually sophisticated models involve a certain 
complexity and must be frequently updated according to the marketing needs. These needs make 
reducing the development time for a single virtual replica even more critical [7]. 

3D scanning techniques allow for high-resolution sampling of objects, but the resulting high-
density meshes often limit their application in real-time rendering environments. In addition, they 
could include some imperfections due to possible acquisition errors generated by the poor optical 

response of high-reflective, monochromatic, and transparent surfaces that might be present in 
serially produced items. Even if optimizing techniques allow for reducing the mesh complexity by 

preserving the initial quality of the 3D model, manually developed meshes are still more efficient 
and preferable, imposing possible symmetries by design, optimizing the mesh density, and 
rationalizing the mesh organization in the case of UV mapping. However, the manual modeling of 

numerous items is time-consuming and includes significant issues, especially if the 3D models must 
replicate real objects in photorealistic quality.  

This work proposes a method to support the automatic 3D modeling process for objects whose 

shapes can be classified according to predefined geometrical categories (archetypes) [6]. The 
method uses orthographic images of an object to be evaluated by Convolutional Neural Networks 

(CNN)s to assign it to a specific archetypal category [20]. Based on this assignment, Computer-
Vision (CV) algorithms analyze the same images to extrapolate the characteristic dimensions related 
to the assigned archetypes. Once the category and the parameters are defined, a virtual replica is 

automatically generated through a scripted procedure running on 3D modeling software. 

2 RELATED WORKS 

Further research showed the potential of applying Artificial Intelligence (AI) and specifically CNNs in 

the modeling process to obtain a procedure that can automatically reconstruct 3D models starting 
from 2D images. Among them, the methods that reconstruct a 3D model are divided into two 

categories: supervised methods that only use a single view of the object and supervised methods 
that use a multi-view of the object. The Single View methods use a single 2D image with relative 
annotations as input. 

One of the first pioneering works in this group was done by Kar et al. [12], who developed a 
Deep Neural Network that estimates a class-specific 3D model using 2D images. Sinha et al. [22] 

extended their previous work [21] based on geometry images as an intermediate representation for 
3D surfaces. Later, they refined this work to add a CNN that also predicted the viewpoint jointly 
[26]. Recently, a new technique developed that has helped in this task, differentiable rendering. 

Kato et al. [13] proposed a Neural 3D Mesh Renderer (N3MR) and showed the potential to 
reconstruct a 3D model from a single image. To differentiate the rendering process, they propose to 
approximate the color transition across pixels, which is typically discrete, with a smooth transition 

function with improved differentiability. Also, Liu et al. proposed a differentiable rendering called 
SoftRasterizer  [14] with an application to reconstruct a 3D model. The main difference here is that 

they split the rendering process by modeling the contribution of each triangle to a pixel’s color as a 
probability function.  

Most multi-view methods use an encoder-decoder architecture to map 2D images into 3D 

volumes. They require larger datasets than the single-view methods, but having different views for 
the same object facilitates the estimation of the objective measurements. Works of Kato et al. [13] 
and Kanazawa et al. [11] use recurrent networks to combine information from multi-view images 

and recreate the 3D model but are computationally expensive and permutation-variant. Pix2Vox 
[27] and its refined version Pix2Vox++ [28] of Xie et al. use a deep neural network to obtain a rough 

3D model from each view. Then, they use a context-aware fusion module that combines the previous 
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model to generate a single refining version. These methods show the incredible advancements made 
by CNN in reconstructing a 3D model and making it look realistic. However, they all have a common 

drawback, creating an approximation of the real object. These works can only reconstruct the target 
object with the correct and precise measurements. Also, only some of the models produced are 

suitable since they use a lot of faces or voxels.  

Other works use AI to reconstruct the 3D model and to facilitate the modeling procedure, 
especially in procedural modeling. An example is the work of Huang et al. [10], which developed a 

Convolutional Neural Network that inputs a sketch of an object and generates a 3D model. In this 
case, CNN is used to extrapolate discrete and continuous features as parameters for procedurally 
modeling the 3D surface. Nash et al. instead created ShapeVAE [18], a variational auto-encoder that 

learns a generative model of 3D shape based on the input images. With this 3D model, they can 
synthesize new samples and complete partial objects. Yumer et al. [29] used an autoencoder to 

facilitate the exploration of the high-dimensional space formed by the possible combination of 
parameters in procedural modeling. In this way, they also create new possible models at high speed. 

In all these works, AI is used to help the modeling process in different ways. However, they 

generate new 3D models not associated with real objects. Therefore, a reliable method that can 
reconstruct a 3D model of a real object while maintaining its measures still needs to be solved. This 
research aims at overcoming these limitations by implementing a multistep automatic 3D modeling 

process, including different CNNs and CV algorithms, which are enabled according to specific and 
codified objects. 

3 THE METHOD FOR AUTOMATIC 3D MODELING 

The method has been developed considering a dataset related to a specific consumer goods 
category: “Personal Care” products (e.g., bottles, tubes, boxes, jars, etc.). This dataset apparently 

includes a wide variety of shapes but can be attributable to just a few archetypes. If a dataset of 
different 3D models varies in their formal macro-characteristics, the hypothesis is to use an 
automatic procedural modeling approach based on codified features and semi-automatic processes 

[4], [5], [16], [16], [19], [23], [24]. The method was implemented through an in-depth preliminary 
and iterative study to define the following steps: 

• definition of an archetypes catalog; 

• 3D digitization and generation of the orthographic views; 

• identification of the archetype category through CNNs; 

• CV analysis and extraction of the object’s profile features; 

• automatic 3D modeling according to the archetype category and the metric parameters 

extracted by the profiles.  

3.1 Definition of the Archetypes Catalog  

The proposed automatic 3D modeling process is based on recognizing pre-codified objects. 

Consequently, a list of the expected model options is required. A morphological macro-analysis was 
carried out on about 1600 objects to codify the standard geometrical features of heterogeneous 
products with archetypes that were then collected in a catalog. The “Personal care” consumer goods 

category was selected because they present an excellent geometrical variety, helpful in studying the 
applicability of the proposed automatic 3D modeling process. Packages can be straightforward and 

devoid of details, such as boxes, or very complex, like the ones defined by free-form geometries, 
minute details, and asymmetrical features. Looking at the counter products, many items share 
evident morphological characteristics, even between different brands and product subcategories, 

diverse in size, shape, and texture but attributable to formal families that require the same 3D 
modeling steps [2][3], [15]. 
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Figure 1: Percentage cataloging chart of typical shape products divided into five macro-families. 

 

The morphological analysis on the 1600 items taken into consideration highlighted that most of them 
(86%) could be modeled with double symmetry surfaces according to the principal vertical planes 

(i.e., the two planes containing the object’s vertical axis, orthogonal to the horizontal plane, and 
identifying the fontal and the lateral views), while 14% had none, being characterized by sculptural 
surfaces. According to this analysis, three main macro-families, covering 94% of the typical shape 

objects, have been identified: box, linear bottle, and curvilinear bottle. The remaining 6% includes 
shapes that can be equally distributed between soft envelopes and tubes. Furthermore, about 18% 
of the typical products, especially linear ones, show a rotational development around the vertical 

axis and can be treated. Figure 1 shows the pie chart of typical shape products divided into five 
macro-families.  

These five macro-families have been subsequently codified within a catalog used as a reference 
to implement dedicated CNNs for shape recognition of new products (Figure 2). The catalog was 
implemented according to the geometrical features of different macro-families: i) the type of 

fundamental curves/points on which the modeling will be based and ii) how these geometries are 
connected. Moreover, each macro family was hierarchically subdivided according to the features 
used for modeling the different shapes of the same macro family. The discriminant for the first-level 

features is the number of closed profiles distributed along the vertical axis and how they are 
connected. In contrast, the second-level features identify the shape of the apical part of the object. 

It is worth noting that the catalog organization depends on the strategies chosen by the human 
operator to model the different objects of the dataset. Subsequently, a unique identification code 
has been defined for each archetype, consisting of six digits, considering three pairs identifying the 

salient formal features: macro family, first-level features, and second-level features. 
The catalog is scalable and can be widened by including further families and archetypes. Thanks 

to this approach, starting from the same archetype, it is possible to generalize the digital replica of 

apparently very different products that share the same formal scheme. Figure 3 shows how 
archetype 050103 can model three different products sharing formal similarities. These involve the 

same modeling process based on four ellipses properly sized and used as generators of the object 
surfaces. 

3.2 3D Digitization and Generation of the Orthographic Views 

Once a catalog of shapes is defined, the following step of the generative process relies on 
automatically identifying a random object and assigning it to the correct category according to the 

http://www.cad-journal.net/


681 

 

Computer-Aided Design & Applications, 21(4), 2024, 677-692 

© 2024 U-turn Press LLC, http://www.cad-journal.net 
 

criteria specified in the previous section. Such a process is crucial to let a computer-based procedure 
decide the proper sequence of modeling steps to generate the random object using standard surface-

modeling functions. 

 

 
Figure 2: Graphical representation of the archetypes catalog. In the red text, the five macro-families 
with their two-digit code. In the green text, the two-digit code indicates the first-level features. In 
the blue text, the two-digit code of the second-level features. The sequence of these three codes is 

the six-digits identification code of a single archetype.  
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(a) (b) (c) 

 

Figure 3: A example of how a catalog archetype can replicate real products. (a) pictures of three 
different products, (b) the reference archetype 050103, and (c) a digital replica of the products 

modeled by applying the main dimensions of the products to the archetype. 

 

This 3D shape identification can be implemented automatically with an AI-based method using 

different approaches. The approach chosen here aims to minimize the neural network's 
computational complexity, and for this reason, it uses the orthographic views of the unknown object 
as starting point. 

Orthographic views of the object can be generated by directly shooting the same object with a 
standard camera from conventional directions and then elaborating the image to transform a 

perspective view into an orthographic one. This process assumes that the camera positioning and 
shooting directions should observe a precise pattern that is not trivial to implement automatically. 

For this reason, a 3D digitization experimental process was implemented based on a “Structure 

From Motion/Image Matching” (SFM/IM) process to speed up the orthographic data capture. The 
photogrammetric shooting set is based on multiple cameras and controlled lights. Furthermore, a 
set of codified targets were allocated on the shooting set, and their relative distances were 

preliminarily measured, allowing the 3D digitization results to be scaled to the actual size. As a 
result, an approximated mesh model of the object is generated and used as the first processing 

stage for two purposes: i) generate a metrically accurate 3D replica of the real object; ii) extract the 
six metrically accurate orthographic views of it (front, rear, left, right, top, bottom), needed for the 
following steps of the process. This methodology can be used effectively when the products are 

optically cooperative with the photogrammetric acquisition; for example: without transparent, 
excessively reflective, or completely monochromatic parts. 

According to the catalog and the different 3D modeling strategies for each archetype, a plan has 

been implemented to elaborate and treat the orthographic images. Figure 4 shows the main steps 
of the process, starting from the CNN and CV analyses to the final 3D modeling. 

3.3 Identification of the Archetype Category Through CNNs 

The development of the catalog led to the implementation of different CNNs for the automatic 
recognition of a specific archetype, starting from orthographic images of the real product. The CNNs 

have been implemented with MobileNet [9], which allows the implementation of efficient CNNs widely 
used for image recognition. The results obtained with MobileNet were satisfactory even if compared 

with sophisticated CNNs like VGG16 [20], which also required more time for training. Our CNNs were 
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trained with heterogeneous datasets, one for each archetype category, including real and synthetic 
orthographic images, i.e., generated by parametric 3D models. The training approach adopted in 

this research was based on the work of Su et al. [25], which demonstrates in a similar task that 
synthetic images can be profitably used in place of real images.  

 
 
Figure 4: Workflow diagram of the proposed automatic 3D modeling process. The pink circles 
represent the analyses performed through CNNs. The blue squares represent the elaboration of CV 

algorithms. The yellow rectangles are the modeling operations. 

 

Images from different databases were used for CNN training (Figure 5): i) orthographic images of 

real products obtained from the SFM/IM process; ii) photographic images of real products of known 
dimensions, not orthographic but with general characteristics suitable for the purpose; iii) images of 

the orthogonal views of 3D models that respect the characteristics of the single archetypes, 
automatically generated with random dimensions, within pre-assigned intervals, through the 
implemented automatic modeling process. Images relating to approximately 4300 real and 

hypothetical products were used. 

 

   

(a) (b) (c) 

Figure 5: Example of frontal views used as the basis for CNN training, coming from different 
datasets: (a) orthophotos from SFM/IM process; (b) front image of the real product; (c) rendering 

of the orthographic front view of a hypothetical product of the category 050103. 
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To optimize the use of different types of images in 2D CNN networks, a pre-processing task was 
carried out to standardize images and make the whole process more efficient (Figure 6). Specifically, 

the following steps were taken: i) conversion from color to a black-and-white image to improve and 
speed up the process of analyzing the silhouette of the object (white); ii) addition of black pixels at 

the sides of the image to allow the random rotation of the images, which simulates real photographic 
images, without cutting the shapes of the objects; iii) conversion to 1:1 format, as a requirement of 
the MobileNet network, to avoid possible distortions; iv) resize the image to 224x224 pixels, as a 

requirement of the MobileNet network. 

Thanks to the reduced size of MobileNet and the development of different CNNs, one for each 
archetype category, we could train each CNN without requiring comprehensive datasets. In all the 

networks used in the project, an attempt was made to maintain a constant proportion of the number 
of images present in each of the three sets: training at around 70%, validate 20%, and testing at 

10%.  

 

 

(a) 

 

(b) 

Figure 6: Image standardization: (a) original orthographic image of the product; (b) elaborated 

images feeding the CNNs. 
 
The attribution of the images starting from the dataset to these three groups occurs randomly. The 

training of the networks provided highly positive results, as seen in the confusion matrix in Figure 
7. Almost four-hundred products equally distributed among the eight categories of first-level features 
of the macro-families 04 and 05 have been correctly identified. Only six were attributed to the wrong 

category. 

 

 

Figure 7: CNN Confusion Matrix related to classifying four-hundred products equally distributed 
among the eight categories of first-level features of the macro-families 04 and 05. 
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The main steps of the method substantially answer three questions that allow, with an ever-
increasing degree of detail, to identify the correct cataloging of an object. The first CNN defines 

whether the object is catalogable, analyzing the object’s orthographic front and side views and 
verifying the required double symmetry of the object. The second CNN performed for the objects 

defined as catalogable discriminates the main archetype category by analyzing the object’s 
orthographic top and bottom views. In addition, the second CNN allows identifying other atypical 
products whose analysis of the top and bottom side does not provide results compatible with the 

catalog, even if both front and side views were symmetric. It is worth noticing that a deeper analysis 
of these atypical products could lead to new categories of products that would extend the number 
of items within the catalog. According to the specific category, other CNNs were implemented to 

analyze the side view for identifying the second-level features again.  

The steps the CNNs perform are supported by standard CV algorithms and others specifically 

developed for implementing the proposed method. For example, the first CNN’s work for verifying 
the object’s symmetry is based on the analysis of the principal components of the image carried out 
with CV algorithms.  

3.4 CV Analysis and Extraction of the Object's Profile Features 

As discussed in section 3.3, according to the archetype, the last CNN identifies the second-level 
features by analyzing the lateral view of the product again. Then the front and lateral views are then 

elaborated with a CV algorithm to extract the pixels constituting their silhouette curves. This 
algorithm includes functions of OpenCV (https://opencv.org/), a cross-platform library for real-time 

CV applications. In particular, the OpenCV functions findContours and drawContours have been used 
to extract the pixels. Due to the irregular positioning of the pixels along the edges, a 1D median 
filter has been applied. Figure 8 shows the results of these elaborations. 

 

 

Figure 8: Derivative analysis of the silhouette curves extracted with the CV algorithm of the half-
front and half-lateral views. 
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After these image elaborations and according to the identified category, a dedicated derivative 
analysis of the silhouette extracts the sizes and positions of the reference geometries used for the 

automatic 3D modeling. The analysis of the object's front view starts from the object's base, and it 
seeks slope changes. The calculation of the derivative is approximated with the local slope of the 

function. Since calculating the slope value between two successive pixels is often insignificant, the 
algorithm analyzes the slope over a range of pixels (step). The step changes according to the 
complexity of the shaper defined by the category and ranges between 5 and 10 pixels in our 

implementation. This operation identifies the position (Z coordinate) of the geometric primitives 
corresponding to the specific archetype. Once this phase has been completed, it is possible to extract 
the object’s dimensions (X coordinate) in the points corresponding to the primitives. The other 

dimension of the same primitive is elaborated from the lateral view (Y coordinate) at the same 
position (Z coordinate). 

The analysis described in section 3.1 shows that approximately 18% of the considered products 
across the macro-families 04 and 05 present a rotational symmetry. A different 3D recognition and 
modeling strategy have been implemented for these products to extract more formal details faster. 

No other CNN analysis is required if the product’s top and bottom views identify circular shapes. The 
CV algorithm described above extracts the points (pixels) of the silhouette curve from the front view 
of the object, and they are directly used for the subsequent modeling operations. Figure 9 shows 

how the points extracted by the CV algorithm can generate high-detailed curves to be directly used 
for modeling objects with rotational symmetry. 

 

 

(b) 

 

(c) 

 

(a) 
 

Figure 9: Example of the method applied to a rotational object: a) reference images of the product 
used for the CNN analysis; b) silhouette curve elaborated from the points extracted by the CV 

algorithm; c) magnification of the silhouette to show the obtainable level of detail with this product. 

3.5 Automatic 3D Modeling According to the Archetype Category 

Usually, geometric modeling for real-time rendering is performed with polygonal modeling 

techniques. However, according to the proposed method, objects are modeled starting from curves 
and surfaces, and then they are tessellated with a proper polygonal density. Even with the limited 

number of parameters gathered from the CNN and CV analysis, better shape control led to obtaining 
high-quality 3D polygonal models. For this reason, it was necessary to identify a software application 
capable of managing automatized operations to generate suitable geometries. The software used for 

testing the method was Rhinoceros (https://www.rhino3d.com/), which allows: i) modeling curves 
and surfaces and the subsequent Sub-D conversion and check; ii) automated data input and 
modeling through a scripting language [1], [4], [5] [16] [16], [19].  
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The code language used for scripting is Phyton (https://www.python.org/), a cross-platform 
language used to execute a series of commands as a script or to make links between different 

applications; also used in this study for image-based shape analysis. The processing pipeline to be 
carried out to realize each archetype was outlined using the chosen modeling software and scripting 

language to identify the sequence of actions suitable for optimizing the quality of the result and the 
computational efficiency. This phase was carried out considering the subsequent conversion of the 
operations into scripts; the choices made aim at the generalization of the parameters and the 

repeatability of the approach. 

The procedure for most of the archetypes, except for boxes and objects with rotational 
symmetry, was developed with the following step: a) definition of dimensional parameters; b) 

drawing of reference curves (ellipses, lines, arcs, etc.), set up so that they all have a coherent and 
functional orientation for the construction of the surfaces; c) modeling of vertically developed 

surfaces based on the drawn curves (extrusion, striped loft, normal loft, uniform loft, sweep2rail); 
d) bottom part modeling (planar surface); e) top part modeling (planar, ellipsoid, lofted end point 
surface); f) Surface normal check. Once the surfaces are completed, the model is converted to 

polygonal geometry as QUAD and SubD surfaces. 

QUAD surfaces are optimized for i) preserving the shape of curved surfaces, the representation 
of edges, and the correct transition between surfaces; ii) obtaining a visually satisfactory smoothed 

model; iii) limiting the number of polygons. This solution is ideal for items that do not need more 
details and are ready to be texturized. SubD surfaces are extracted to obtain a polygonal model 

composed of a minimal number of faces coherent with the subdivision of the previously defined 
surface patches. This solution provides a polygonal reference mesh optimal for adding shape details 
using the typical Box Modeling technique (i.e., sculpting the shape from an elementary 3D primitive). 

Once the optimal modeling path of the archetypes had been defined, this was translated into a 
scripting language using specific functions implemented in the modeling software. To generate the 
3D model of a product, it is necessary to know the archetype to be used and, based on this, to have 

the related dimensional parameters, which typically are taken in correspondence with the peaks of 
the surface curvature gradients. The execution of a single script requires about 5-10 seconds, 

ensuring high efficiency compared to a manual modeling approach. Figure 10 presents the 
representative images for the main steps of the proposed method. 

 

    

(a) (b) (c) (d) 
 

Figure 10: Main 3D modeling steps of the proposed method, based on the identified archetype and 
the extrapolated dimension. Example on a product of archetype 050204: (a) main curves and point 
of the products, extracted from the orthographic images thanks to the CNN and CV analysis, the 

curves are built in a number consistent with the identified archetype and the starting point always 
lies on the XZ plane, so that the orientations are consistent; (b) 3D surface model obtained: sequence 
and type of surfaces are related to the identified archetype, at the end of the construction a check is 
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performed on normals orientation; (c) model conversion to Quad Mesh (d); model conversion to 
SubD surfaces. 

 
Figure 11 shows some results obtained by applying the proposed process; starting from the 

reference images loaded in the system, the 3D models for surfaces were obtained, subsequently 
converted into mesh and sub-D, and ready for any modeling operations suitable for adding detail 
finishes. 

 

   

    

    
(a) (b) (c) (d) 

Figure 11: Examples of reference images and 3D models obtained through the proposed process 
related to different categories of archetypes: (a) macro-family box, archetype 020101; (b) macro-
family tube, archetype 030101; (c) macro-family linear bottle, archetype 040303; (d) macro-family 

curved bottle, archetype 050303. 

4 VALIDATION OF THE METHOD 

The proposed method was evaluated from qualitative results and execution times. The results of the 
CNN and CV analyses for attributing a product to a specific archetype category were largely positive; 
over 90% of the attributions were correct. Two possible reasons for the remaining 10% of discrepant 

models: 1) the images introduced into the process were not perfectly orthographic when coming 
from the dataset of photographic images of real products; this highlights the crucial role of the real 
product acquisition for the proper implementation of the method; 2) the manual classification made 

by the human operator was sometimes inaccurate; here, the method demonstrates its potential for 
category detection by overcoming human uncertainty. It is interesting to note that the analysis of 

CNN uncertainty on a decision, if studied critically, can lead to improve and extend the catalog 
categories. 

The 3D models created with the proposed method were also subjected to qualitative verification, 

comparing the results with reference models obtained through three-dimensional scanning. The 
digitizing system used to generate the reference models is the eviXscan 3D Optima Heavy Duty 
device manufactured by Evatronix (https://evixscan3d.com). This sensor is based on the structured 

http://www.cad-journal.net/
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light principle and consists of a blue light pattern projector in the center of the unit and two 5 MPixel 
side cameras. Each shot generates a 3D image (range map) of 5 million points, eliminating possible 

occlusions thanks to the double camera. In the test object acquisitions, the maximum standard 
deviation of error found in areas of overlap between 3D images was 32 µm. 

The surfaces obtained from the proposed process were visually and computationally compared 
with the reference model. The analysis carried out on a visual level was performed by comparing 
the superimposed models and observing them from various perspectives. This qualitative 

comparison allows the observer to grasp the differences and to critically evaluate whether these are 
to be considered significant within the process or attributable, as found, to detail features not 
considered in the defined modeling flow (Figure 12). 

 

 

  
 

Figure 12: Qualitative comparison of a 3D model of a product archetype 050204. 
 
For the quantitative comparison of the two models, a function was used to calculate the deviation of 

the nodes of the reference mesh model (obtained from the 3D survey) concerning the surfaces of 
the model generated with the process described here. The median and average distance values 

obtained in the tests were always less than one millimeter (Figure 13). The comparison was executed 
for objects of all the identified categories, and all qualitative and qualitative results validated the 
proposed process. Finally, from the point of view of temporal profitability, it should be emphasized 

that the execution time of the entire process, from identification to the 3D model in its various forms, 
for a single product is approximately 20 seconds, of which about 5-10 seconds for the modeling 
phase. 

 

 

 

Point test statistics: 
Total points: 25231 

Close point count: 25211 
Average distance: 0.4432053 
Median distance: 0.3376578 
Standard deviation: 0.387879 

Maximum distance: 2.976924 
Minimum distance: 2.654054E-05 
(Measures are in mm) 

 
Figure 13: Quantitative comparison of a 3D model of a product archetype 050204. 
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5 CONCLUSION 

This work presents a method to automate the modeling of 3D models of a massive set of products 

sharing the same shape structure. The method is based on the definition of a catalog collecting the 
archetypes of products. This catalog allows the grouping of different products according to the 3D 

modeling strategies elaborated by the human operator. The case study's catalog includes objects 
with at least double symmetry. However, objects without these specific symmetrical features can be 
included by adding further dedicated CNNs, provided a strict modeling strategy can define their 

geometry. It is worth noticing that objects with no catalogable geometry cannot be included. As 
emerged during the implementation, CNNs could lead to identifying new archetype groups, and it 
can support the human operator in developing alternative modeling strategies for these new 

products. According to this assumption, the method has great potential even if applied in other fields 
with different products with a well-defined and recognizable geometry. 

The different CNNs, implemented according to the catalog, are used in sequence to speed up 
the analysis and increase the reliability of the results. The confusion matrix analysis proves that the 
CNNs can effectively identify different products from the catalog of archetypes by using orthogonal 

views of the real product. The measurement technique developed with CV algorithms allows 
extracting the right product dimensions or the rotational shape profile to build accurate and 
optimized 3D models. 

The comparison with referenced 3D models shows that the errors are very low and often are 
located in areas of models containing details that are knowingly neglected. The comparison made 

with reference models reveals an accurate reconstruction of the object. In conclusion, the developed 
method shows promising perspectives for future works by optimizing the orthophotos analysis, 
increasing the variability within the catalog, creating new catalogs, or developing and adding new 

pipelines working with point clouds of 3D scanned objects. 
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