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Abstract. The lightening of the components is playing an increasingly predominant role
in modern industry to create ever more sustainable machines, reducing energy consumption
while increasing the performances. Indeed, components and subassemblies are usually made
of multiple materials to satisfy the design requirements. The de�nition of the material lay-
out within the component's could be a challenging process and may lead to sub-optimal
designs. The proposed Generative Design approach faces this task with an iterative topology
optimization based algorithm. Indeed, with the proposed approach it is possible to optimize
the materials lay-out and their related inner interfaces within a speci�ed design domain. The
approach consists of a two level optimization method and it can consider also non-linear
hyperelastic materials as in the case of automotive seats. The production of seats requires
a large use of polyurethane foam, combined with plastic and/or metal frames. In particular,
the car seats consist of di�erent materials such as steel frame, �lled polyurethane foam for
seat cushions and vertical backrests, and external textiles. For the considered test case,
the method here developed proposes an optimization loop to consider the in�uence of the
polyurethane foam in the topological optimization of the plastic part of the seat, allowing the
possibility to modify boundary regions between the di�erent materials. This loop continues
optimizing both material regions, achieving an optimized material distribution of the multi-
material part.
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1 INTRODUCTION

In the recent years, sustainability and attention to energy and material savings have become fundamental in
the majority of the engineering �elds and industries. With the aim of creating ever more sustainable machines,
the lightening of the components is playing an increasingly predominant role to reduce energy consumption,
maintaining, or possibly improving, the structural or dynamical performances. To carry it out, the concept of
lightweight design is being strongly developed [21, 32, 23], looking also to bio-inspired structures that replicate
the natural principle of "putting speci�c functional material only where is needed". Nowadays, CAD/CAE
tools can help designers to obtain this purpose, with methods and procedures that currently can be realized
due to the technological and manufacturing levels, in additive or other production processes [12]. By the
way, it has to be said that the message "complexity for free" related to the raise of Additive Manufacturing
technologies has been discovered as not completely true. In fact, the additive technologies have their own
constraints and limitations and the translation of them into design constraints and requirements represents a
current challenge for researchers and designers [6]. The research reported in this paper aims to develop, test
and assess an iterative and automated Generative Design method based on topological optimization in order
to optimize the multi-material distribution of components. Indeed, in the case of multi-material parts, the
available commercial tools do not consider the possibility to change (at every iteration) the target volume and,
most of all, the space distribution related to each material during the optimization work�ow. In particular,
the presented methodology has been applied to an automotive case study: the inner portion of a car seat
to be composed by di�erent functional materials. In the following sections, it is reported the state-of-the-
art, the methodological approach, and the testing and the assessment of the proposed approach onto a case
study reporting an approximated 3D model of an automotive seat's base. Conclusions and the possible future
developments are reported in the last section of the paper.

2 STATE OF THE ART

Currently, to achieve lightweight designs, three macro-techniques are most widespread due to their e�ective-
ness: Topological Optimization (TO), Lattice Structures (LS) design, and Generative Design (GD). TO, LS
design, and GD techniques allow to create free-form organic shapes intended to be additively manufactured
[36].

TO is the search for the optimal material distribution changing topology, shape, and size of the part
by an iterative removal of ine�ective material [1]. This type of study starts with the de�nition of a target
volume (through the division of the entire design domain in design and non-design spaces), loading and
boundary conditions, objective function, and design constraint's ones [5, 25]. Researchers have developed
several algorithms capable of performing TO. Among them, the most relevant are the Solid Isotropic Material
with Penalization (SIMP), and the Level Set Method (LSM) [25]. In the SIMP approach, the relation between
the density design variables and the material property is given by the power-law (Eqn. (1)):

E(ρi) = g(ρi)E0 = ρpiE0 with g(ρi) = ρpi (1)

where ρ is the penalization parameter and E0 is the Young's modulus of solid material. For ρ = 1 the
optimization problem corresponds to the so-called 'variable-thickness-sheet' problem which, for the compliance
objective, is a convex problem with a unique solution. However, for the same objective, ρ > 1 penalizes
intermediate thicknesses or densities and hence favors 0− 1 solutions [25].

In the LSM approach, the boundary of the design is de�ned by the zero-level contour of the level set
function ϕ(x) and the structure is de�ned by the domain where the level set function takes positive values
(Eqn. (2)):
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ρ =

{
0 ∀x ∈ ϕ < 0

1 ∀x ∈ ϕ ≥ 0
(2)

In the past decade, numerous level set methods have emerged which can be classi�ed, for example, in
approaches for discretizing the level set function, in approaches for mapping the level set �eld onto the
mechanical model, and approaches for updating the level set �eld in the optimization process. Most often the
level set function is updated via the solution of the Hamilton-Jacobi equation (Eqn. (3)):

∂ϕ

∂t
= −V n̂ · ∇ϕ

n̂ =
∇ϕ

|∇ϕ|
∂ϕ

∂t
= −V |∇ϕ|

(3)

where t is a pseudo-time representing the evolution of the design in the optimization process and V is
the so-called speed function, or velocity �eld, advecting the level set function. The speed function V (x) at
x : ϕ(x) = 0 represents the sensitivity of moving the interface in the normal direction n̂ with respect to some
form of merit function, scaled by the spatial gradient of the level set function [25].

Pertaining to Multi-Material Topology Optimization (MMTO), currently, only few works address the prob-
lem, and most of them are related to elastic materials [20, 16, 37, 27, 29, 10]. In [20], authors propose a
two-elastic-material approach for compliance minimization with volume constraint based on the SIMP method
where two pseudo-densities are de�ned, one for the existence of the material within each element of the mesh,
while the second represent the percentage of material 1 with respect to material 2. The authors applied their
optimizer to both 2D and 3D problems, using a commercial software for Finite Element pre-processing and
analysis, and their own developed software for the TO. In [10], the SIMP interpolation scheme is adopted to
compute the loss function of a Feed-forward Neural Network and use its weights and activation functions to
predict the pseudo-density value of each point of the FE discretization. Considering non-linear MMTO, in [34],
authors report the de�nition of a Discrete Material Optimization (DMO) interpolating scheme to optimize the
2D lay-out of multi-material structures with hyperelastic behavior.

LS design is based on repeating patterns of cells in the space, maintaining the purpose of supporting loads
with the least possible weight, to achieve the optimal material distribution. These structures make possible
to lighten the components while maintaining good mechanical characteristics [4, 11]. A lattice structure
can achieve up to 70% weight reduction [33], guaranteeing structural performances. Furthermore, TO may
optimize LS distribution in the respect of many geometrical aspects (i.e. size and density, distribution of the
pattern, orientation with respect to the component's boundary).

GD methodologies exploit algorithmic methods to translate, in an automated way [26, 9, 13], requirements
and constraints of the design task into a design domain of possible solutions to be evaluated. GD approaches
encompass a wide set of tools and algorithms to generate design variants. These pertain to parametric
modelling, Grammars, structural optimization algorithms, and Arti�cial Intelligence (AI) [22]. The techniques
that have been proposed in the scienti�c literature leverage either one or more of these tools in the generative
process. Indeed, in [19], a GD method is provided to let the system develop design concepts based on
user de�ned parameters. Grammars are divided into two main categories: Shape Grammars and L-Systems.
Shape Grammars are mostly used in product design, as in the case of the jewelry design method proposed
in [18], while L-Systems are often used when performance requirements have to be considered, as in the
case of the 3D-printing supports' design method proposed in [35]. In the �eld of GD methods powered by
structural optimization algorithms, researchers are focusing their e�orts toward solutions that adopts TO
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algorithms to generate lightweight, high performance and additively manufacturable conceptual structures
[7, 8, 2]. Furthermore, a GD method adopting LS have been proposed in [28]. AI based GD methods pertain
either to Evolutionary Algorithms or to Machine Learning techniques, and are usually coupled with TO when
dealing with performance-driven solutions. Indeed, in [3], it is provided a GD methodology that couples
Genetic Algorithms and TO to derive optimized structures. In [24] it is provided a comprehensive review of
Machine Learning Generative models, focusing on Generative Adversarial Networks, Variational Autoencoders,
and Reinforcement Learning. These techniques can be used to enhance the capabilities of TO in providing
di�erent solutions along the entire design domain [14, 17, 30] and to reduce its computational cost [31].

In the following section (Sec. 3), it is proposed a generative process for lightweight design based on the
SIMP interpolation scheme with a reduced number of design variables when compared to the MMTO SIMP
approaches available in the scienti�c literature.

3 METHODOLOGY

Figure 1: Work�ow of the methodology

The goal of the presented methodology is to iteratively optimize the multi-material distribution (using two
di�erent materials) within a given design volume through a topological optimization based Generative Design
approach. Indeed, with the proposed approach it is possible to optimize the materials distribution and the
lay-out inner interface between the used materials. These ones could have di�erent mechanical behaviors, as
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in the test case reported in Section 4, where 'Material 1' has a linear elastic behavior while 'Material 2' has
an hyperelastic behavior.

The proposed methodology has been applied to approximated models of car seats. The production of
seats requires a large use of polyurethane foam, combined with plastic and/or metal frames. In particular, car
seats consist of di�erent materials such as steel frame, �lled polyurethane foam for seat cushions and vertical
backrests, and external textiles. The method here developed proposes an optimization loop to consider the
in�uence given by the presence of the polyurethane foam in the TO of the plastic part of the seat, allowing the
possibility to have moving boundaries between the di�erent materials. This loop continues optimizing both
material regions, achieving an optimized material distribution of the multi-material part.

The work�ow of the proposed methodology is presented in Fig. 1 and consists of a two-level optimization
process.

3.1 First Level Optimization

The �rst level of optimization considers as input:

� an initial envelope geometry, i.e. an initial design volume, assigned by default to be totally made by
'Material 1';

� the design structural requirements;

� an initial volume fraction parameter vfrac1 (the amount of material to be retained from the design
space when performing a topological optimization).

This level pertains to the de�nition and validation of the �nite element (FE) model to be used to achieve
the performance requirements (structural, frequency, etc.). This model is used to perform the static analysis
(FEA) under di�erent load cases for the evaluation of the structural requirements. If frequency requirements
are present, it is possible to perform the normal mode analysis to evaluate the modal frequencies of interest,
as it has been done in the test case reported in the following section (Section 4).

After the validation of the FE model, the following step is represented by the set up of the topological
optimization solver deck. The initial design volume of the component is divided into design and non-design
spaces. The design objective of the topological optimization is the minimization of the weighted compliance
of the overall system (design and non-design spaces). The design constraint is set on the upper limit of the
volume fraction (vfrac1) of the design space. Furthermore, other structural and/or frequency requirements
could be implemented as design constraints. The volume fraction constraint is the percentage of material to
be retained at the end of the TO algorithm. The constraint on this design variable must be carefully chosen to
reduce the number of iterations (computational cost) and to provide meaningful designs also with less e�ort
in the post-processing phase. In addition, symmetry and manufacturing constraints as minimum element size
and/or overhangs, etc. could be considered in this stage.

The output of the topological optimization with the assumed volume fraction (vfrac1) constraint of the
iteration 1 of the work�ow is the list of all the E design elements of the FE model with the associated
element densities of the SIMP algorithm ('dens' �le). At this point, the density threshold parameter density
is introduced to carry out the further iterations. This parameter is used by the algorithm to update the FE
model by switching the material (from 'Material 1' to 'Material 2') for all the elements of the model with
an element density lower than the threshold value. It is fundamental to notice that all the elements that are
moved from 'Material 1' to 'Material 2' are then set to non-design space and �xed in the further iterations.

3.1.1 Density Threshold Update (Criterion 1)

The criterion 1 for the density threshold parameter densityj update depends on the volume fraction parameter
vfracj value at the current iteration. The value of the density threshold parameter is carried out by a python
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script that takes the 'dens' �le as input and sorts the E elements in ascending order of the densities. Then,
the density value corresponding to the e element (Eq. (4)) of the list is retained as threshold value densityj
(Eq. (5)).

e = (1− vfracj) · E (4)

densityj = density(e) (5)

3.2 Second Level Optimization

The output of the �rst level optimization and the input for the second one is the multi-material FE model
made by Material '1' and Material '2' using the volume fraction parameter value vfrac1 to compute the
density threshold.

The second level optimization is a two-step automated loop for the multi-material lay-out distribution
optimization. Step 1 iterates over the volume fraction parameter while step 2 adopts a di�erent density
threshold parameter for a further re�nement of the optimized model.

3.2.1 Step 1: Volume Fraction Update

The �rst iteration of the STEP 1 (iteration 2) keeps the initial volume fraction parameter vfrac2 = vfrac1
to carry the topology optimization and produces an updated 'dens' �le as output. The Python script updates
the density threshold value density2 according to the initial volume fraction constraint and the FE model for
the next iteration is available.

The iterations continue with the initial volume fraction up to the infeasibility of the topology optimization
at iteration i = lnfto (last non-feasible topology optimization) due to the violation of at least one of the design
constraints. At this point, the algorithm updates the volume fraction value vfraci+1 at the next iteration
i + 1 by considering the average value between the vfraclnfto at iteration i = lnfto and vfrac = 1 (Eq.
(6)).

vfraci+1 =
vfraclnfto + 1

2
(6)

The FE model is updated according to the density threshold value and the topology optimization is
performed. Based on the result of this optimization, the volume fraction at iteration i+ 2 updates as follows
in Equation (7):

vfraci+2 =

{
vfraci+1+1

2 if (Top. Opt.)i+1 infeasible

vfraci+1 if (Top. Opt.)i+1 feasible
(7)

The TO is carried out and, if infeasible, the script updates the vfraci+2 as the average value between
vfraci+1 and vfrac = 1, meaning the volume fraction is updated towards 1. If the TO carried at iteration
i+ 1 is feasible, the algorithm keeps the vfraci+2 at the same value of the previous iteration.

The iteration stops when the change in the volume fraction value with respect to the volume fraction upper
bound is lower than a termination threshold value, retaining the last feasible topology optimization.

3.2.2 Step 2: Density Threshold Update (Criterion 2)

STEP 2 is a further re�nement of the optimized model. Indeed, it is performed when the termination criterion
on the volume fraction parameter is reached. At this point, the volume fraction parameter is set to vfrac = 1
and no more topology optimizations are performed. Instead, static and/or modal analyses are used to validate
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the optimized lay-out. This step considers as input the last feasible topology optimization iteration (k = lfto).
Indeed, the last feasible topology optimization density threshold value density = densitylfto is used to update
the FE model by switching the 'Material 1' elements into 'Material 2' ones according to the last feasible
topology optimization 'fem' and 'dens' �les. If the analyses are feasible, the optimization loop ends and
the optimized model is available for the post-processing operations. On the contrary, the script updates the
densityk+1 as the average value between densityk and density = 0, meaning the density threshold is updated
towards 0 (Eq. (8). This process ends either when a feasible value is found or when the termination criteria
is reached.

densityk+1 =
densityk

2
(8)

Instead, while all the iterations from the iteration k + 1 are feasible, the algorithm updates the density
threshold density as the mean value between the last feasible analysis (lfa) and the last feasible topology
optimization (lfto), thus looking for values closer to the upper bound densitylfto (Eq. (9)).

densityk+1 =
densitylfa + densitylfto

2
(9)

Else, the script computes the next value of the parameter as the mean value between the density value of
the last non feasible analysis densitylnfa and the last feasible one densitylfa (Eq. (10)).

densityk+1 =
densitylfa + densitylnfa

2
(10)

4 CASE STUDY

The proposed methodology has been applied to a simple case study to optimize the material distribution within
the initial design volume. The initial volume consists of a rectangular parallelepiped of 530 mm x 440mm x
120mm which represents a raw approximation of the seat's cushion assembly.

The used materials are Acrylonitrile-Butadiene-Styrene (ABS) for 'Material 1' and Polyurethane Foam
(PF) for 'Material 2'. Used individually, they do not guarantee appropriate usability. Indeed, ABS alone is
too sti�, and the foam needs a frame. The Ogden's model is used to describe the hyperelastic non-linear
and strain-rate dependent behavior of the foam, according to [15]. In the following tables are reported the
mechanical properties of the two materials: ABS (Tab. 1) and Foam (Tab. 2).

Table 1: ABS mechanical properties

MODEL Y (MPa) ν ρ ( g
mm3 )

LINEAR ELASTIC 2240 0.38 0.00106

Table 2: Ogden model's parameters for the used foam

MODEL N ν ρ ( g
mm3 ) µ1 α1 µ2 α2 µ3 α3

OGDEN 3 0.4495 0.000026 2.81 1.66 -2.8 1.61 0.0031 38.28
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4.1 Model, Analysis and Topology Optimization

The �rst level optimization requires to set up the Finite Element model to be used. Since topology optimization
requires to divide the initial volume into design and non-design spaces, it has been done once the STEP �le
has been imported in the solver environment. The above seat plate non-design volume has been retained
ensure the presence of the sitting area. The bottom parallelepiped are preserved to consider the interface
with the frame (not reported in this preliminary test). Then, the model has been meshed using �rst order
CHEXA elements for the non-design space, and �rst order CTETRA elements for the design space. Five
loading conditions for the seat have been de�ned and applied. They approximate �ve di�erent distributions
of the same load. As reported in Tab. 3, the loads are applied as uniform pressures on di�erent sectors of the
seat top surface, considering a person with mass m = 100Kg.

Table 3: Pressure loadcases.

Loadcase Pressure ( N
mm2 ) Area (mm2) Depth (mm) X (mm) Width (mm) Y (mm)

1-Full Surface 4.29E-03 2.33E+05 530 0 440 0

2-Corner 1.73E-02 5.78E+04 289 0 200 0

3-Front Middle 1.73E-02 5.78E+04 289 0 200 120

4-Side Middle 1.73E-02 5.78E+04 289 120 200 0

5-Center 1.73E-02 5.78E+04 289 120 200 120

These load collectors are associated to linear static analysis load cases only for the First Level Optimization
(iteration 1), while in the Second Level Optimization (starting from iteration 2) they are associated to non-
linear static analysis ones due to the presence of the hyperleastic material. In addition, it has been set a load
case to analyze the �rst N = 3 natural frequencies. To simulate the anchorage of the seat to the seat frame,
the elements of the non-design space region located in the bottom part of the model have been constrained
locking all their DOFs, along the entire depth in X direction, for sake of simplicity, as reported in Fig. 2.

According to the design variables for the TO de�ned in the �methodology� section, the objective function
is to minimize the weighted compliance of the overall component, while the constraints are on the upper limit
of the volume fraction of the design space and on the lower limit of the �rst N = 3 natural frequencies. The
last constraint is set according to standards and comfort requirements, also considering a factor of safety.
Indeed, the �rst N = 3 natural frequencies of the system have been constrained to be above 90Hz to prevent
dangerous frequency ranges for the human body. Four test cases are considered for di�erent values of the initial
volume fraction, to show the relevance of this parameter on the result in terms of both the computational cost
and post-processing operations (Tab. 4).

Table 4: Test cases de�nition: design objectives, constraints, initial volume fraction.

Test case Objective Freq. constr. vfrac1

1 Min. WCompl > 90Hz < 0.95

2 Min. WCompl > 90Hz < 0.80

3 Min. WCompl > 90Hz < 0.70

4 Min. WCompl > 90Hz < 0.50
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(a) FE model. (b) Pressure load 1 - Full Surface. (c) Pressure load 2 - Corner.

(d) Pressure load 3 - Front Middle. (e) Pressure load 4 - Side Middle. (f) Pressure load 5 - Center.

Figure 2: FE model, pressure load collectors and boundary constraints.

4.2 Results

Test case 1 has run 16 iterations, 14 of which are feasible. Of the initial 'Material 1' design elements, the
57% are retained while the remaining are moved to 'Material 2'. Test case 2 has run 46 iterations, 39 of
which are feasible. Of the initial 'Material 1' design elements, the 10% are retained while the remaining are
moved to 'Material 2'. Test case 3 has run 12 iterations, 9 of which are feasible. Of the initial 'Material 1'
design elements, the 15% are retained while the remaining are moved to 'Material 2'. Test case 4 has run 11
iterations, 4 of which are feasible. Of the initial 'Material 1' design elements, the 52% are retained while the
remaining are moved to 'Material 2'.

All the solutions satisfy the design constraints, however, the test cases 2 and 3 reached lighter con�gura-
tions. Furthermore, test case 3 performed the iterations in 2 hours 27 minutes while test case 2 took 9 hours
52 minutes. All the iterations have run on an Intel Core i7-1185G7 CPU laptop equipped with 32 GB RAM.

In Figure 3, it is reported the summary for each test case. In case of test 1 (Fig. 3(a)), it is possible
to notice that even if iterations 14 and 15 are feasible, they are related to the step 2 of the second level
optimization process where normal mode analyses are performed and only the last feasible one is retained.

Based on these results, it is possible to evaluate visually the results by slicing the solutions for each test
case at di�erent sections. Test cases 1 (Fig. 4(a)) and 4 (Fig. 4(d)) both retained over the 50% of the
starting ABS elements. They result in bulk, rigid and heavy con�gurations. Among these ones, test case 1
doesn't have any infeasible closed in�ll of foam elements while test case 4 does. However, test case 1 has
sparse ABS elements in the foam matrix, which must be �ltered out in the post-processing operations. In
conclusion, test case 1 performs better in terms of feasible iterations with respect to test case 4, and they
have comparable computational costs. Test cases 2 (Fig. 4(b)) and 3 (Fig. 4(c)) both retained under the
15% of ABS elements; indeed, these solutions are reasonably light when compared to a traditional seat. Both
these solutions doesn't have many sparse ABS elements in the foam matrix. However, test case 2 performs
46 iterations with a four times higher computational cost than test case 3.
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(a) Test case 1. (b) Test case 2.

(c) Test case 3. (d) Test case 4.

Figure 3: Test cases history bar plots.
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(a) Test case 1. (b) Test case 2. (c) Test case 3. (d) Test case 4.

Figure 4: Material distribution visual inspection (yellow = 'Mat. 1') at sections x = 0, 150, 350, 450.

5 CONCLUSIONS AND FUTURE WORKS

This paper presents a novel methodology for considering the multi-material design lay-out optimization by
an iterative Generative Design algorithm based on topology optimization. The methodology automatically
updates the FE model to �ll non-structural elements with the other material, which could also be modeled
with a hyperelastic behavior. The methodology has been applied to a simple case of an automotive seat whose
frame is intended to be additively manufactured to test its e�ectiveness in the optimization of the boundaries
between the two materials (ABS and Polyurethane foam). Since the volume fraction parameter in�uences
both the computational cost and the necessity for post-processing operations, the future works will pertain to
the de�nition of an automated procedure to properly select this key parameter and the process for achieving
the optimized CAD model, possibly considering a further shape optimization. It will be considered a criterion
to avoid closed volumes �lled with the other material. In addition, it will be possible to consider also Lattice
Structures for intermediate densities. Moreover, to analyze a real scenario of the seat test case, the future
steps of this study will include the reduction of the accelerations for passengers, the random solicitations from
the road, other structural requirements (displacement, etc.) and the complete model of the seat.
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