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Abstract. Low altitude security has gained widespread concern for its applications, 

e.g., cropland monitoring. In this work, an Internet of Drones architecture was 
firstly presented for low altitude scenarios. Within the presented framework, each 
drone can communicate with each other and the ground base stations while 

traveling along a fixed route. Since anomalous activities can significantly affect the 
normal operation of the Internet of Drones, it becomes critical to differentiate the 

normal surroundings from the abnormal surroundings around the drones. On the 
other hand, the vision transformer-based deep learning models have exhibited their 
superiority even over the convolutional neural network-based architectures due to 

the adoption of global receptive field. Bearing the above-mentioned issue in mind, 
we propose a novel deep learning pipeline by leveraging the vision transformer 
model for anomaly detection in the low altitude context. The sensitivity, specificity, 

accuracy, and F1 score of the proposed approach on a manually-collected dataset 
are 91.2%, 92.5%, 92.2%, and 93.7%, respectively. In addition, the experimental 

results demonstrate that the proposed deep learning pipeline can yield a promising 
outcome over the state-of-the-art algorithms. 
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1 INTRODUCTION 

The development of low-altitude security corridors (LASC) has attracted a great deal of attention. 
This architecture is built upon at least the following techniques, Internet of Things (IoT), Internet 
of Drones (IoD), modern communication, networking security, and artificial intelligence. By 

introducing machine learning algorithms, the low-altitude airspace can be fully exploited and the 
low-altitude capability of security management can be enhanced. Consequently, the machine 

vision community recently pays attention to the application of various learning methods in the IoD 
environment, such as automated identification of anomalous behaviors [13],[25] as shown in Fig. 
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1. These machine-learning approaches have shown promising performance in this field, but most 
of them still suffer from handling the vast amount of information within the district covered by 

IoD. 

 

 
 

Figure 1: The diagram of object detection in LASC. 

 

Yang et al. [32] studied the application of wireless sensor system in orchard management. Their 

presented method could be also used in orchard monitoring. To decrease the resource occupation 
for apple orchards, enhance the apple’s quality, and provide ample information, the work of [11] 
proposed an automatic apple orchard monitoring system via the Internet of Things (IoT). The 

study of [3] presented a robotic platform to monitor the status of plants. Aiming at addressing the 
monitoring issues of apple orchard in China, the study of [19] presented the wireless sensor-based 

apple orchard monitoring pipeline. Other influential work includes [1],[4], [20],[26],[27],[35].   

In recent years, the task of object detection has benefited from the deep learning backbones 
and their built-in detection-specific modules. Among them, the convolutional networks (ConvNet) 

with multi-scale and hierarchical architectures have significantly influenced the design for object 
detection [16]. However, the ConvNet may neglect the long-range relationship between its input 

samples since the performance of ConvNet primarily relies on local operator convolution.   

Moreover, Vaswani et al. [28] presented the early work of transformer for NLP, and has 
become the de facto benchmark method in plenty of NLP applications. Due to the lack of inductive 

biases like locality, the transformer-based models usually need to be trained on large corpora and 
sequential mission, e.g., BERT [8]. It was designed for generating bi-directional embedding from 
the source text by leveraging the context of both directions and all layers. To note that the pre-

trained Bert can then be further optimized to implement various tasks without substantial 
modifications made to the whole architecture. Self-attention plays a critical role in transformers. 

Straightforward application of self-attention to an image requires pair-wise operations between 
great amounts of pixels, especially in images with high resolution. To apply a transformer to image 
classification, the modification of self-attention needs to be taken into consideration in advance. 

For instance, the studies [15],[22],[33] exploited the local self-attention for each query pixel and 
the presented local multi-head dot-product blocks can take the place of convolution operators. 
Alternatively, self-attention for vision can be realized by leveraging it in different scales of images 

[30]. Plenty of attempts have also been made to combine CNN with self- attention. For instance, 
Bello et al. [2] augmented the capability of convolution modules by using self-attention 

mechanism.  

Furthermore, contrary to the hierarchical transformers in the computer vision area, the vision 
transformer (ViT) [9] is a powerful yet non-hierarchical backbone for image classification. To be 

specific, the former transformers including, Swin [18], MViT [10], PVT [29], and PiT [14], followed 
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the designs from ConvNet, e.g., convolution and pooling. On the other hand, plain backbones 
similar to ViT have been proposed with a single-scale strategy. For instance, UViT [6] introduced 

the width, depth of the network, and the resolution of input from ViT models while leveraging a 
progressive attention mechanism to deal with the images with high resolution. In the work of [5], 

Carion et al. presented a framework for object detection named after DETR, which uses a 
transformer-based model. Wu et al. [31] extracted the visual tokens to yield the representation by 
using ConvNet. Then they used transformers to operate on the extracted tokens to model the 

relationships between them.  

Inspired by the work of ViT [9] and visual transformer [31], we propose a novel transformer-
based framework composed of two channels, which focus on extracting both the spatially 

positional information and temporally sequential information, simultaneously. To be specific, we 
first split the images captured by the drones into image patches. Then the linear embeddings of 

the image patches are fed into the proposed transformer. The patches play the same role as the 
tokens in an NLP task. Accordingly, the mission of anomaly detection can be transferred as a task 
of image classification in a supervised fashion. To be specific, the anomalies in this study mainly 

refer to the anomalous objects shown in the captured images using UAVs. To avoid the global 
inductive bias, we trained the proposed model on a large dataset (ImageNet-ISLVRC) before the 
manually collected images [9]. Besides, we introduce a novel loss function to encourage the output 

to be accurate. To train this model, we collect 20,411 frames of the scenes in an LASC. The 
outcome from the experiments proved that the presented algorithm achieves superior outcomes 

over the current deep learning techniques. 

In this work, the contributions include the followings: 
• First of all, this is an early work of anomaly detection in LASC by IoD. 

• We propose a transformer-based model to implement the above-mentioned task. 
Additionally, we leverage one novel loss function to guarantee an accurate outcome. 

• Extensive evaluations demonstrate the superiority of this work over the state-of-the-art 

algorithms and shows robustness under various tasks. 

2 METHODS 

2.1 Dataset and Image Preprocessing 

In this work, the proposed spatial-temporal transformer is firstly trained on the publicly available 
database ImageNet-ISLVRC [24], which is widely exploited for enhancing the performance   of 

object detection and classification from 2010. It contains 50,000 images with labels of 1,000 
categories as the training set. Then, we collected 6,803 frames from the photographs by leveraging 

16 sets of drones (model: DJI JY03-4K; size: 31-40cm; channels: 4; material: plastic). During the 
capturing process, the sRGB color space is chosen using the light of white fluorescent. The 
collection is located at a university campus in Zibo, Shandong Province, China. In general, the 

drones were grouped into an integrated IoD, and each drone was arranged to follow a fixed route 
on the campus. To guarantee the cruising ability of the drones, each drone was charged every 15 
minutes during the tour and collected the scene photos every 30 seconds. The resolution of the 

collected images is 8192*4096. After the collection process, each sample frame was manually 
labeled as anomalous or non-anomalous using a majority voting mechanism by three experts in the 

field of machine vision.  

Moreover, the initially collected images were labeled using the annotation instrument LabelMe. 
And the annotated images were stored in MS COCO format [17]. Both the images and the 

corresponding JSON file were generated. Furthermore, to further enhance the diversity of the 
manually collected images, we performed a group of transformations on the images, including 
horizontal flip, vertical flip, and rotation. To note that each image and its transformed counterparts 

are labeled as the same category.  
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2.2 The Proposed Transformer-based Framework 

In the following, we provide details of the proposed ST-Transformer architecture for anomaly 

detection in LASC. This model is built upon self-attention-based transformers. And the self-
attention mechanism has been exploited in various works [10],[18],[29] along with or combined 

with the convolutional layers. On the other hand, in this study, we prove that transformer-based 
models can generate competitive outcomes over CNN and hybrid architectures. The proposed ST-
Transformer is illustrated in Fig. 2, which is partially derived from the work of ViT [9] that adopts 

both the image patches and sequence of the patches as its input. 

2.2.1 Input of the proposed model 

Generally, both the spatial patches and the temporal patches are taken as input for the presented 

model, which are both captured from the collected images by the drones. To provide the spatial 
information, the position embeddings are also combined into the input of the transformer. As 

shown in Fig. 2, the presented ST-Transformer is composed of two separate paths (as shown in 
Fig. 3 and Fig. 4) without sharing the weight parameters.  

In a real application, each UAV takes off after 30 seconds before capturing 1 second of video; 

During the trip, each UAV collects videos every 30 seconds. Note that the speed of the UAVs is less 
than 3m/s, and the UAVs can collect images from more than 100m away.  

In each channel, following the vision transformer and different from the standard transformer, 

this model uses the 2D embeddings. To feed the proposed model, we resize the input 

image H W Cx  into image   patches as
2( )N P C

Px , ,H W respectively represent height and 

width of an image, C  is the number of channels, P denotes the width (and height) of a patch. 

Then, the patches are transformed into a vector of length D . And the output of this process is the 

embedded patches.  

Similar to the vision transformer, a learnable embedding is attached to form a sequence of 

embeddings ( 0
0z classx ), and its corresponding output from the transformer ( 0zL ) is denoted as y . 

Furthermore, the position embedding is exploited to provide the positioning information in addition 
to the sequence of patches. 

1 2
0z [ ; ; ;...; ]N

class p p p posx x E x E x E E                                                                                    (1) 

Where 
2P CE D and ( 1)N D

posE .  

 
 

Figure 2: The proposed pipeline for anomaly detection in LASC. 
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Figure 3: A sequence of spatial image patches. 

 

 
 

Figure 4: A sequence of temporal image patches. 

 

2.2.2 Encoder  

The above-mentioned 
0z is used as the input for the proposed transformer. Inspired by the work of 

[28], the presented model treats the input patches as tokens. Each encoder contains layers, which 

includes a multi-head self-attention (MSA) layer and a multi-layer perception (MLP) layer.  

Besides the MSA module, a module of layerNorm is leveraged before every block and the 

residual block is used after every block. Two layers MLP with a Gaussian error linear unit (GELU) as 

the classification head is attached to 0zL  .  
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Note that the MSA module is built upon the conception of the self-attention (SA) mechanism. 
SA is used to measure the similarity of a query and the corresponding keys with weighting values. 

Therefore, the output can be obtained from the weighted sum of all of the values. To be specific, 

once there is an input N DZ composed of N vectors with the length of D. 

 [ , , ] QKVQ K V ZW                                                                                                        (2) 

where QKVW  denotes the weight matrix that can be updated by training. All of the weights are 

computed into the probabilities P with the following function: 

max( )
TQK

P soft
D

                                                                          (3) 

where D is the length of each vector in Q, K, and V. Finally, the output of the SA mechanism can 

be mathematically expressed as: 
( )SA Z PV                                                                           (4) 

 

Moreover, the MSA mechanism equals adopts the SA mechanism several times in parallel, which 

contributes to extracting the information in the input for each head, respectively. The output of the 
MSA is the concatenated elements of all of the heads, which is expressed as: 

1 2;  ;  ...;  h MSAMSA Z SA Z SA Z SA Z W                                      (5) 

Where h  denotes the number of heads in the MSA module.   

Furthermore, at the end of the two-way structure, we add a linear layer to fuse the extracted 
feature maps from both channels. 

0 0( [( ) ( ) ])L spatial L temporaly Linear LayeNorm Z Z                                          (6) 

where Linear denotes a linear function, L =1 or 2, 0( )L spatialZ and 0( )L temporalZ represent the output of 

each channel, respectively. 

Note that different from vision transformers, these bi-channels separately receive the temporal 
and spatial sequence of patches. To be specific, the position embeddings stand for the spatial and 

temporal sequence of the image patches in two channels, respectively. 

3 RESULTS 

3.1 Implementation Details 

In general, we leveraged the images from ImageNet-ISLVRC [24] to perform the initial training of 
the proposed transformer. Furthermore, the primary settings include RMSprop as the optimizer, 

the learning rate 0.001 reduced by 0.5, and a batch of 8 images. This was realized by employing 
PyTorch [21] and 2 NVIDIA Telsa V100 GPUs (HBM2 32GB).   

In the following experiments, firstly, we investigated the influence of 3 parameters, including 

layers (L), model dimension (D), and number of heads (h) on the proposed transformer by 
leveraging a fraction of the entire data samples. With the optimal parameter combination, we pre-

trained the transformer on the ImageNet-ISLVRC []24. Moreover, we used the manually collected 
image samples to fine-tune the proposed transformer. Secondly, we conducted comparing 
experiments between the deep learning models and the proposed algorithm. The results show that 

the proposed transformer is superior over the state-of-the-arts in performance, including 
sensitivity, specificity, accuracy, F1 score, and ROC. At last, we performed a ablation study 
through evaluating the performance of a variety of the proposed model.   
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3.2 Loss function 

The integration of spatial and temporal components is exploited as the loss function for the 

transformer-based pipeline.  

model Spatial TemporalLoss Loss Loss                                                        (7) 

where SpatialLoss and TemporalLoss denote the spatial and temporal cross-entropy loss, respectively. 

3.3 Evaluation Metrics   

In this work, we chose the following metrics including sensitivity, specificity, accuracy, F1 score, 
and ROC in the experiments and could be formulated as the followings: 

• Sensitivity. The ratio between true positives (TP) cases and (TP + FN), where FN denotes 

false negative. 

=
TP

Sensitivity
TP FN

                                                                           (8) 

• Specificity. The ratio between the true negatives (TN) and (TN + FP), where F P denotes 
false positives. 

p =
TN

S ecificity
TN FP

                                                                           (9) 

•  Accuracy.  

=
TP TN

Accuracy
TP FN TN FP

                                                          (10) 

• F1 score.  

1=2
Precision Recall

F
Precision Recall

                                                                 (11) 

=
TP

Precision
TP FP

                                                                       (12) 

=
TP

Recall
TP FN

                                                                         (13) 

 

To evaluate the presented algorithm robustly, a 10-fold cross-validation strategy was exploited 
for the experiments. To note that the average of these metrics over ten folds were taken as the 

experimental outcome derived from every round.   

3.4 Influence of the Hyper-parameters on the Proposed Transformer 

To obtain an optimal combination of the 3 parameters of the proposed model, we carried out the 

comparison experiments on a subset of the collected images with different combination of the 
parameters. And it is supposed to yield a better outcome of classification for the entire dataset.  

Consequently, we evaluated the following combinations of these 3 parameters as shown in 
Table. 1. These combinations are named after Spatial Temporal Transformer with the actual values 
of the parameters.  

 

Combination Layer(L) Dimension(D) Number of 
heads(h) 

STT_1_64_4 1 64 4 

STT_1_64_8 1 64 8 

STT_1_128_4 1 128 4 

STT_1_128_8 1 128 8 

STT_2_64_4 2 64 4 
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STT_2_64_8 2 64 8 

STT_2_128_4 2 128 4 

STT_2_128_8 2 128 8 

 
Table 1: The combinations of the 3 parameters in the proposed transformer. 

 

To note that only 3 parameters were chosen in this stage and more variants would be too many to 
follow up. With the comparison outcome shown in Fig. 5, we obtained transformer model with the 

combination of STT_2_64_4. 
 
 

 
 

Figure 5: The influence of 3 parameters on the proposed transformer. 

 

In addition, we conducted comparison experiments between the mean square error (MSE) loss, 

cross entropy (CE) loss, and the proposed loss function (as shown in Table. 2). 
 

Loss 

function 

Sensitivity 

(%) 

Specificity 

(%) 

Accuracy 

(%) 

F1 

score(%) 

MSE 89.4  88.2  89.3  88.7 

CE 90.5 92.3 91.7 91.5 

Ours 91.2 92.5 92.2 93.7 

 
Table 2: Influence of various loss functions on the proposed approach. 

 

3.5 Comparison Between the State-of-the-art and the Proposed Transformer 

As shown in Table. 3, the proposed method is superior in terms of sensitivity, specificity, accuracy, 

F1 score, and ROC which indicates that our approach can be more useful for anomaly detection 
than the state-of-the-arts. 

Furthermore, we evaluated different initial weights of random initialization and trained on 

ImageNet- ISLVRC for the proposed transformer. After less than 15 epochs, the manner of non-
random enters the state of convergence while the random set requires more than 30 epochs. 

Meanwhile, the transformer trained on Image-ISLVRC has a higher starting point and the loss 
differences share a uniform trend. 
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Methods Sensitivity (%) Specificity 
(%) 

Accuracy (%) F1 score(%) 

U-Net [23] 81.2 82.4  83.7  81.9 

Mask R-CNN [12] 81.9  82.5 82.9 80.6 

ExtremeNet [34] 81.7 82.3 83.6 82.3 

TensorMask [7] 82.2 82.9 84.3 81.8 

Visual  
Transformer [31] 

89.5 85.6 87.3 86.2 

ViT [9] 88.5 86.4 87.1 87.1 

MViT [10] 87.9 87.5 88.1 87.9 

PiT [14] 87.6 88.2 89.4 88.3 

PVT [29] 89.3 89.2 90.1 89.5 

UViT [6] 88.6 89.7 91.5 90.3 

Swin Transformer 
[18] 

89.1 87.2 88.0 87.4 

Ours 91.2 92.5 92.2 93.7 

 

Table 3: Performance comparison between state-of-the-art techniques and ours in terms of 
sensitivity, specificity, accuracy, and F1 score. 

 
 

Figure 6: The ROCs of the competing algorithms. 

3.6 Ablation Study 

Since the proposed model can be considered as a hybrid architecture, we continued to measure the 
difference between the individual channels and the integrated model. Accordingly, we also 

computed the accuracy of discrimination leveraging the spatial channel and temporal channel, 
respectively. As shown in Fig. 7, we can observe that the hybrid model is superior to the individual 
ones. 
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Figure 7: The comparison between the spatial, temporal, and combined architectures. 
 

To fully exploit the intra-frame and inter-frame information, we proposed a spatial-temporal dual 

channel transformer. Meanwhile, to yield an accurate classification outcome, we leveraged the new 
loss function. From the results from both the comparison experiments and ablation study, we have 
proved the advantage of the two-channel structure. 

4 DISCUSSION AND CONCLUSION 

During the training of a deep learning model, a large number of samples are needed to implement 

the training of the model. Moreover, a certain number of samples could ensure that the deep 
learning model can solve the specific task. On one hand, too much data will lead to a waste of 
resources and may cause the problem of over-fitting. On the other hand, insufficient data might 

not produce a satisfactory performance and will directly affect the availability of the presented deep 
learning model. Accordingly, we proposed that the best solution to this type of task is to build a 

data-driven deep learning model with an appropriate size of data samples through regularized 
output.  

In this work, a dual-channel model is presented for anomaly detection in low-altitude 

scenarios. This is also an application of vision transformer-based algorithm in low-altitude 
scenarios. According to the experimental results, the proposed transformer can yield accurate 
detection outcome by leveraging the hybrid architecture.    

Notably, the proposed anomaly detection framework is built upon the model of the vision 
transformer. Unlike most of the anomaly detection techniques in the literature, our method can 

leverage both temporal and spatial information in the input image samples. Although the 
presented algorithm adopted an end-to-end learning strategy, it still needs to adapt to the needs 
of anomaly detection. By taking the attention mechanism commonly used by the transformer-

based techniques, the associations between global pixels in a collected image using UAVs can be 
unveiled. Experimental results demonstrate that the presented approach could guarantee the 
performance of anomaly detection. Therefore, it is a valuable instrument for orchard monitoring in 

LASC.  

In addition, this study also has several limitations. First of all, a publicly available database 

should be used rather than the leveraged private samples in the research. Secondly, the 
mechanism of transfer learning needs to be introduced. 
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