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Abstract. The main goal of this study is to combine computer-aided design (CAD) and 
reinforcement learning (RL) technologies to develop an adaptive water environment 
optimization strategy to cope with the increasingly severe water resource challenges. 

In this article, an intelligent decision-making system is constructed according to the 
actual water environment. The system can automatically adjust management 

strategies to maximize water quality improvement and ecosystem protection while 
minimizing management costs. To assess the strategy's efficacy, a range of 
simulation experiments have been devised to mimic its performance across varied 

water environmental conditions. The results show that the adaptive water 
environment optimization strategy is superior to the traditional management method 
in many key indicators, which significantly improves the efficiency and effect of water 

environment management. In addition, the strategy shows good adaptability and 
robustness and can maintain stable performance under complex and changeable 

water environment conditions. This study not only provides new theoretical and 
methodological support for the field of water environment optimization, but also 
points out the direction for future related research. It is expected that this strategy 

will play a greater role in practical application and contribute to the sustainable 
utilization and management of water resources. 
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1 INTRODUCTION 

As industrialization and urbanization have progressed rapidly, water environmental issues have 
gained increasing prominence, posing a pressing global challenge. As an important water resource 

area in China, the rational allocation and management of water resources in the Han River Basin are 
crucial for ensuring sustainable ecological, economic, and social development within the basin. With 
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the continuous progress of technology, advanced technologies such as computer-aided design and 
reinforcement learning have provided new solutions for water resources and environmental 

allocation. Deng et al. [1] explored the combination of computer-aided design and reinforcement 
learning to achieve multi-objective optimization of water resources and environmental allocation in 

the Han River Basin and analyzed its potential and challenges in practical applications. Reinforcement 
Learning (RL) is a machine learning technique that learns the optimal decision strategy through the 
interaction between intelligent agents and the environment. In the allocation of water resources and 

environment, RL can use historical data and simulation results to autonomously learn and adjust 
water resource allocation strategies in order to achieve comprehensive optimization of multiple goals 
(such as water supply security, ecological environment protection, economic benefits, etc.). The 

optimization of the water environment not only pertains to ecological balance and the conservation of 
biodiversity but also has a direct bearing on the economic growth and standard of living of human 

society.  

With the growth of global trade and increasingly busy port activities, water resource scheduling in 
port environments is facing increasing challenges. Fang et al. [2] explored how these two 

technologies can be combined to achieve more efficient and intelligent water resource scheduling. 
Through CAD technology, an accurate port water environment model can be established to simulate 
changes in factors such as water flow, tides, and water quality. These models can provide decision 

support for water resource scheduling, help managers better understand and predict water 
environment conditions, and thus develop more reasonable water resource scheduling plans. 

Reinforcement learning is an adaptive machine-learning technique that interacts with the 
environment to learn how to make the best decisions. In water resource scheduling, reinforcement 
learning algorithms can dynamically adjust scheduling strategies based on real-time water 

environment data to cope with various uncertainties and changes. This adaptive feature gives 
reinforcement learning unique advantages in optimizing water resource scheduling. Reinforcement 
learning is a machine learning technique that learns the optimal decision strategy through the 

interaction between intelligent agents and the environment. In water supply management, 
reinforcement learning can be applied to predict water supply demand, optimize water resource 

allocation, and develop emergency response strategies. Through continuous trial and error and 
adjustment, reinforcement learning can help decision-makers quickly adapt to the dynamic changes 
of the water supply system and effectively respond to emergencies such as water supply 

interruptions. In order to more effectively address the impact of water supply interruption on the 
water economy, we will combine reinforcement learning with multiregional input-output optimization 

models. Specifically, we will apply reinforcement learning algorithms to the optimization process of 
the model, learning the optimal resource allocation plan through the interaction between the agent 
and the environment. In each simulation, the model will make decisions based on the current water 

supply and economic situation, adjust the allocation and use strategies of water resources, and 
maximize the economic benefits of each region [3]. Nevertheless, conventional methods of water 
environment management often hinge on empirical assessments and manual interventions, 

rendering them ill-suited to handle the intricate and dynamic nature of real-world scenarios. 
Consequently, the quest for a water environment management approach that can adapt flexibly and 

optimize efficiently holds paramount significance. 

With the acceleration of urbanization, the complexity of water distribution systems is increasing, 
which poses higher requirements for the operational efficiency and stability of water pumps. 

Traditional water pump control methods are often based on fixed rules and thresholds, making it 
difficult to achieve real-time and dynamic optimization. In recent years, the successful application of 
Deep Reinforcement Learning (DRL) in the field of control has provided new ideas for real-time 

optimization of water pumps. Hajgató et al. [4] explored the application of DRL in real-time 
optimization of water pumps in water distribution systems. In water distribution systems, the 

real-time optimization problem of water pumps can be modelled as a Markov Decision Process (MDP). 
Through the DRL algorithm, agents can learn the optimal decision strategy to maximize cumulative 
rewards. In order to verify the effectiveness of DRL in the real-time optimization of water pumps, we 

conducted experimental verification. The experimental results show that compared with traditional 
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control methods, DRL can achieve higher pump efficiency and stability. In addition, DRL can 
adaptively handle the dynamic changes of the water distribution system and is highly robust. In 

recent years, the swift advancement of cutting-edge technologies, namely CAD and RL, has paved 
the way for novel approaches in water environment optimization. Decentralized technology is 

gradually receiving attention in the field of underwater resource control. Compared with traditional 
centralized methods, decentralized methods can better adapt to the dynamic changes of underwater 
environments and improve the robustness and scalability of the system. Meanwhile, reinforcement 

learning, as an adaptive decision-making method, has also shown great potential in underwater 
resource control. By interacting with the environment and learning the optimal decision strategy, 
reinforcement learning can make underwater resource control systems more intelligent and efficient. 

Traditional underwater resource control methods often rely on centralized decision-making systems, 
but these methods often exhibit low efficiency and poor adaptability when facing complex and 

ever-changing underwater environments and uneven resource distribution. To overcome these 
limitations, Han et al. [5] proposed a decentralized reinforcement learning-based underwater 
resource control method aimed at achieving sustainable underwater resource management through 

energy harvesting. Dynamic water resource planning, aimed at making timely decisions based on the 
constantly changing supply and demand of water resources, has become a research hotspot in the 
field of water resource management. In this process, computer-aided design (CAD) serves as a 

powerful tool that not only helps engineers and decision-makers quickly build and optimize water 
resource system models but also plays a crucial role in dealing with uncertainty. Herman et al. [6] 

reviewed the application of CAD in dynamic water resource planning and looked forward to its future 
development direction. CAD software provides a rich graphic library and modelling tools, allowing 
engineers to quickly construct three-dimensional models of water resource systems. These models 

can accurately reflect the distribution, flow, and consumption of water resources, providing support 
for subsequent decision-making. Based on the established model, CAD can conduct simulation 
analysis and predict the changes in water resources under different management strategies. 

Meanwhile, through built-in optimization algorithms, CAD can help decision-makers find the optimal 
management strategy and achieve maximum utilization of water resources.  

With the rapid development of technology, intelligent and adaptive technologies are gradually 
being applied in various fields, especially in environmental protection and resource management. As 
an indispensable part of the ecosystem, the management and optimization of the water environment 

are of great significance for maintaining ecological balance and sustainable human development. 
Hoang et al. [7] explored how to use intelligent adaptive systems to form adaptive water 

environment optimization and adjustment management in order to achieve more efficient and 
accurate water resource management. Traditional management methods often rely on manual 
monitoring and empirical judgment, which is not only inefficient but also difficult to cope with 

complex and changing water environment conditions. For example, sudden changes in water quality, 
sudden pollution incidents, etc., require quick and accurate responses and adjustments. Therefore, 
forming a water environment management system that can adapt to changes and respond quickly is 

an important challenge currently faced. As an important means of achieving real-time monitoring, 
the accuracy and stability of water quality sensors are crucial. However, due to the complexity and 

variability of water quality parameters, traditional water quality sensor models often find it difficult to 
accurately describe the relationship between water quality parameters and sensor outputs. 
Therefore, Huang and Yang [8] proposed a water quality sensor model based on the radial basis 

function (RBF) neural network optimization method to improve the accuracy and stability of water 
quality monitoring. In order to construct a water quality sensor model based on the RBF neural 
network, a large amount of water quality parameter data, including temperature, pH value, dissolved 

oxygen, etc., was first collected. Then, use these data to train an RBF neural network model and 
establish a mapping relationship between water quality parameters and sensor outputs. During the 

training process, the optimization of the model is achieved by adjusting parameters such as the 
center, width, and output weights of the RBF neural network. The experimental results show that 
compared with traditional water quality sensor models, the water quality sensor model based on the 

RBF neural network has higher accuracy and stability. At the same time, the model can also 
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adaptively handle changes in water quality parameters and has strong robustness. CAD leverages the 
robust computational power and data processing capabilities of computers to model and analyze 

water environment systems precisely and efficiently. Conversely, RL emerges as a machine learning 
technique that learns optimal decision-making strategies through environmental interaction, making 

it highly apt for addressing optimization challenges in intricate dynamic systems. Against this 
backdrop, this study aims to integrate CAD and RL technologies to forge an adaptive water 
environment optimization strategy tailored to overcome the contemporary challenges confronting 

water environment management. 

This study is of great significance for improving water environment management and promoting 
sustainable development. Firstly, by introducing CAD and RL technology, accurate modelling and 

efficient optimization of water environment systems can be realized, and the scientific and effective 
management of the water environment can be improved. Secondly, the adaptive water environment 

optimization strategy can be dynamically adjusted according to the actual situation to better adapt to 
the complex and changeable water environment, thus improving management efficiency and 
effectiveness. Finally, this study can also provide a reference for the optimal management of other 

similar complex systems and promote theoretical development and practical application in related 
fields. 

The originality of this article is primarily evident in the following areas: 

Methods Integration and Innovation: In this article, CAD technology and RL algorithm are 
combined and applied to the field of water environment optimization. This interdisciplinary 

integration provides a new perspective and tool for solving complex water environment problems. 

Adaptive strategy design: An adaptive water environment optimization strategy is designed, 
which can make intelligent decisions according to the actual water environment. This adaptive 

feature enables the strategy to respond flexibly to the changes in the water environment and improve 
the management efficiency and effect. 

Multi-index evaluation system: In the simulation experiment, a multi-index evaluation system is 

adopted to comprehensively evaluate the performance of the strategy. This comprehensive 
evaluation method can more accurately reflect the comprehensive performance of the strategy in 

terms of water quality improvement, ecosystem protection, and management cost. 

Integrating theoretical concepts with practical applications: This article not only delves into the 
theoretical design and implementation procedures of an adaptive water environment optimization 

strategy but also corroborates its efficacy through rigorous simulation experiments. This hybrid 
approach, which seamlessly blends theory and practice, serves as a formidable foundation for further 

advancements in the domain of water environment optimization. 

Initially, the article presents the research background and objectives, followed by a 
comprehensive elucidation of the design and implementation process of the adaptive water 

environment optimization strategy. This encompasses a thorough examination of the strategy's 
central tenets, technical nuances, and innovative elements. Subsequently, the strategy's 
effectiveness is substantiated through meticulous simulation experiments, accompanied by an 

in-depth analysis and discussion of the experimental outcomes. In conclusion, the study's key 
discoveries and contributions are concisely summarized, along with a forward-looking perspective on 

potential future research avenues. 

2 RELATED WORK 

With the increasing awareness of environmental protection, wastewater treatment has become a 

highly concerned research field. Dissolved air flotation (DAF), a commonly used wastewater 
treatment technology, can effectively remove suspended particles in Water and improve water 
quality. However, traditional DAF process control methods often rely on experience and practice, 

lacking intelligence and adaptability. In order to optimize the DAF process and improve particle 
removal efficiency, Jelodar et al. [9] explored how to combine reinforcement learning (RL) technology 
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to develop environmental optimization strategies. Dissolved air flotation is a water treatment 
technology based on the adhesion between bubbles and suspended particles. By injecting tiny 

bubbles into wastewater, the bubbles adhere to the particles and rise to the Water's surface, thereby 
achieving particle removal. However, the DAF process is influenced by various factors, such as bubble 

size, distribution, wastewater flow rate, etc., and changes in these factors may lead to unstable 
particle removal efficiency. By adjusting the frequency and position of bubble release, bubbles can 
more effectively adhere to suspended particles and improve particle removal efficiency. Dynamically 

adjust the wastewater flow rate based on environmental conditions and particle removal efficiency to 
balance the relationship between particle removal efficiency and energy consumption.  

Traditional methods for controlling water environment ecosystems are often based on experience 

and rules, lacking adaptability and flexibility. In recent years, researchers have begun to attempt to 
apply deep reinforcement learning to water environment ecosystem control in order to achieve 

intelligent perception and decision optimization of water environment status. Deep reinforcement 
learning combines the representation learning ability of deep learning with the decision optimization 
ability of reinforcement learning and can handle complex nonlinear problems and uncertainties, 

providing new solutions for water environment ecosystem control. Li et al. [10] explored how to use 
deep reinforcement learning technology to transform ecosystem control of the water environment to 
achieve optimization and Sustainability of the water environment. The environmental model defines 

state space and action space. The state space can include water quality indicators of the water 
environment, the number of biological populations, and so on. The action space can include adjusting 

water resource allocation, implementing ecological restoration measures, etc. Traditional water 
resource management methods mainly rely on empirical rules and static models, which are difficult to 
adapt to dynamic changes in water resource demand and supply. To overcome these limitations, Liu 

et al. [11] conducted water resource management optimization based on deep reinforcement 
learning, aiming to achieve more efficient water resource allocation through adaptive learning and 
decision-making. Deep reinforcement learning combines the representation learning ability of deep 

learning with the decision-making ability of reinforcement learning, enabling it to handle complex and 
uncertain water resource management problems. By constructing a deep neural network to 

approximate the water resource management strategy and utilizing reinforcement learning 
algorithms to optimize the strategy, DRL can learn the optimal management decisions under various 
water resource conditions. In reservoir scheduling, DRL can learn how to optimize the allocation of 

reservoir water storage under different inflow conditions in order to maximize water supply efficiency 
and reduce flood risk. In irrigation management, DRL can optimize irrigation strategies based on the 

water demand of farmland and climate prediction in order to improve crop yield and water resource 
utilization efficiency.  

The comprehensive water environment policy is a policy system that covers multiple aspects, 

such as water resource management, water ecological protection, and water pollution control. By 
formulating and implementing these policies, it is possible to effectively promote the rational 
utilization of water resources and the protection of the ecological environment. Introducing 

comprehensive water environment policies in urban water resource management can ensure the 
fairness and Sustainability of water resource allocation, providing strong guarantees for the 

sustainable development of cities. It is particularly important to introduce comprehensive water 
environment policies and combine reinforcement learning technology for dynamic simulation and 
optimized configuration in order to achieve efficient utilization of water resources and protection of 

the ecological environment. Mou et al. [12] explored how to combine comprehensive water 
environment policies with reinforcement learning to achieve a dynamic simulation of the optimal 
allocation of urban water resources. It utilizes reinforcement learning technology to establish a model 

for urban water resource management. This model can learn the optimal water resource allocation 
strategy based on historical and real-time data. Urban water resources and environmental 

management are facing unprecedented challenges. Among them, Sponge City, as a new urban 
construction concept, aims to achieve effective management and utilization of urban rainwater by 
simulating the natural water cycle process. However, in the practical application process, the 

construction and management of sponge cities still face many challenges, such as water resource 
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shortage, water environment pollution, urban flood disasters, etc. Therefore, Qi et al. [13] proposed 
addressing these challenges through natural-based solutions to achieve sustainable development of 

water resources and the environment in sponge cities. Nature-based solutions (NBS) refer to 
methods that utilize the functions and processes of natural ecosystems to address environmental 

issues. In the construction of sponge cities, natural solutions emphasize the natural accumulation, 
infiltration, and purification of rainwater by protecting and restoring natural ecosystems such as 
wetlands, green spaces, forests, etc. This solution not only helps to alleviate urban flooding disasters 

but also improves the urban ecological environment and enhances the efficiency of water resource 
utilization.  

Traditional water flow control methods often rely on fixed rules and preset thresholds, making it 

difficult to cope with complex and ever-changing network environments and user needs. In recent 
years, the rise of Deep Reinforcement Learning (DRL) has provided new solutions for Water flow 

control. By combining the representation learning ability of deep learning with the decision-making 
ability of reinforcement learning, DRL can adaptively learn and optimize water flow control strategies. 
However, the training process of DRL usually requires a large number of samples and time, which is 

a huge challenge in practical applications. In order to accelerate the DRL training process, the Multi 
Environment Method is widely used to improve training efficiency. Rabault and Kuhnle [14] explored 
how to accelerate deep reinforcement learning strategies for water flow control through multiple 

environmental methods. DRL can learn effective water flow control rules from a large number of 
samples, thereby achieving adaptive management of network traffic. However, due to the complexity 

and uncertainty of the network environment, the training process of DRL usually requires a large 
number of samples and time, which limits its promotion in practical applications. With the 
acceleration of global climate change and urbanization, water resource management and 

Sustainability have become increasingly important. Traditional water management methods are 
struggling in the face of complex and ever-changing water environments and growing water 
demands. Therefore, we need to leverage advanced technologies and methods, such as 

reinforcement learning, to build an intelligent water management system to achieve sustainable 
utilization of water resources. Ramos et al. [15] explored how reinforcement learning can be applied 

to future sustainable water networks to achieve intelligent water management. The future 
sustainable water network environment is a complex system that involves multiple aspects, such as 
water supply, drainage, sewage treatment, etc. After establishing the model, it is necessary to use 

reinforcement learning algorithms to learn and optimize water management strategies. By 
interacting with the environment, algorithms can gradually learn the best water management 

strategies to achieve sustainable utilization of water resources. Compared with traditional water 
management methods, intelligent water management systems based on reinforcement learning can 
significantly improve the efficiency of water resource utilization, reduce energy consumption, and 

reduce waste. At the same time, the system can better respond to various emergencies and changes, 
ensuring a stable supply of water resources.  

The quality of surface water is receiving increasing attention. Accurately assessing and managing 

surface water quality is crucial for protecting the ecological environment and human health. 
Traditional surface water quality assessment methods are usually based on chemical analysis and 

statistical models, but these methods are often time-consuming, costly, and difficult to handle 
complex nonlinear relationships. Therefore, developing an efficient and accurate surface water 
quality modelling method is of great significance. Shah et al. [16] proposed a method for modelling 

surface water quality using an adaptive neuro-fuzzy inference system (ANFIS) assisted by input 
optimization. Adaptive Neural Fuzzy Inference System (ANFIS) is a system that combines neural 
networks and fuzzy logic with self-learning, adaptive, and nonlinear mapping capabilities. ANFIS 

models complex systems by constructing fuzzy inference rules that map input data to output data. 
Compared with traditional fuzzy reasoning systems, ANFIS has stronger adaptability and 

generalization ability. It analyzed the correlation between various water quality indicators and 
selected the indicators that have a significant impact on surface water quality as inputs for the ANFIS 
model. Further optimize the input space through dimensionality reduction techniques such as 

principal component analysis, genetic algorithms, etc., reduce the complexity of the model, and 
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improve its generalization ability. With the continuous growth of human demand for water resources 
and the increasingly serious problem of water scarcity, the joint utilization of surface water and 

groundwater has become an important way to solve water resource problems. Multi-objective 
simulation and optimization modelling at the watershed scale are of great significance for rational 

planning and management of water resources. Song et al. [17] explored a watershed scale 
multi-objective simulation optimization modelling method for the combined utilization of surface 
water and groundwater environments and analyzed its application prospects in water resource 

management and planning. Multi-objective simulation and optimization modelling at the watershed 
scale is a method based on mathematical models, optimization algorithms, and geographic 
information systems to simulate and optimize the joint utilization of surface water and groundwater 

in the watershed. Based on the characteristics of the watershed and the demand for water resource 
utilization, select an appropriate mathematical model for construction. At the same time, combining 

geographic information system (GIS) technology simulates the spatial distribution and dynamic 
changes of surface water and groundwater in the watershed.  

Underwater wireless sensor networks (UWSN) have broad application prospects in marine 

environmental monitoring, underwater resource exploration, and military applications. However, due 
to the complexity and uncertainty of underwater environments, UWSN faces serious communication 
challenges. The problems of multipath propagation, channel attenuation, and time-varying 

characteristics make underwater wireless communication particularly difficult. To overcome these 
issues, Valerio et al. [18] proposed a multipath adaptive routing algorithm for underwater wireless 

sensor networks based on channel-aware reinforcement learning (CA-RL). It utilizes channel state 
information collected by underwater sensor nodes (such as signal strength, noise level, etc.) to 
evaluate the communication quality of each channel in real-time. The simulation experiment results 

show that the CA-RL-MR algorithm outperforms the traditional UWSN routing algorithm in terms of 
performance. Urban sewage treatment plants are playing an increasingly important role in 
maintaining water environment quality and ecological balance. However, due to the complex 

biochemical reactions and variable environmental factors involved in urban sewage treatment, its 
control and management face enormous challenges. In order to improve the efficiency and stability 

of sewage treatment, Wang et al. [19] proposed an intelligent critical control method based on Water 
environment-driven iterative adaptation. The traditional control methods for urban sewage 
treatment plants mainly rely on experience and fixed parameter adjustments, making it difficult to 

cope with complex and variable water quality conditions and operating environments. In recent 
years, with the development of intelligent control technology, some researchers have begun to 

attempt to apply intelligent algorithms, such as fuzzy control, neural networks, etc., to sewage 
treatment control. However, these methods often lack adaptive capabilities and iterative optimization 
mechanisms, making it difficult to achieve optimal control results. Based on the prediction results of 

the dynamic water quality model, use reinforcement learning algorithms to learn and adjust control 
strategies online. By interacting with the environment, the algorithm can gradually learn the optimal 
control strategy to achieve stability and optimization of the sewage treatment process. 

3 RESEARCH FRAMEWORK AND RESEARCH METHODS 

As an advanced technical tool, CAD has experienced continuous development and deepening in the 

field of water environment optimization. The early research mainly focused on the design and 
planning of water conservancy projects using CAD technology, such as reservoirs, rivers, and 
irrigation systems. These investigations significantly enhance the precision and productivity of 

engineering design by leveraging the efficient modelling and visualization capabilities of CAD 
software. As computer technology continues to advance, the utilization of CAD in optimizing the 
water environment has progressively extended to encompass a broader array of domains. Currently, 

the utilization of CAD in the optimization of the water environment has yielded impressive outcomes. 
However, there are still some challenges and problems, such as the complexity and large amount of 

calculation required for the model and the difficulty in obtaining and updating data. Therefore, future 
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research needs to explore the potential of CAD technology in water environment optimization further 
in order to better cope with these challenges and problems. 

RL is a machine learning method to learn the optimal decision strategy by interacting with the 
environment. In recent years, with the rapid development of artificial intelligence technology, the 

application of RL in water environment management has attracted more and more attention. This 
method makes use of the intelligent decision-making ability of the RL algorithm and realizes the 
automatic optimization and control of water environment parameters by learning and training the 

water environment system. The results show that this method can achieve a good control effect 
under actual water environment conditions and effectively improve the quality and stability of the 
water environment. These studies learn and optimize management strategies by constructing the RL 

model in a simulated environment or real environment so as to achieve better management effects. 

The application of RL in water environment management shows some potential advantages. First 

of all, the RL algorithm can adaptively learn and adjust management strategies to cope with the 
complex and changeable water environment. Secondly, the RL algorithm can constantly improve and 
optimize strategies through interaction with the environment and has the ability to self-learning and 

self-adaptation. Finally, the RL algorithm can also deal with the problems of high dimension and 
continuous state space, which is suitable for solving some water environment management problems 
that are difficult to deal with by traditional methods. However, the application of RL in water 

environment management also faces some challenges and limitations. For example, the training 
process of the RL algorithm needs a lot of data and computing resources, and there may be problems 

such as model mismatch and insufficient generalization ability in practical application. Therefore, 
future research needs to explore and improve the application of the RL algorithm in water 
environment management further to improve its applicability and reliability. 

Adaptive optimization strategy is an optimization method that can be dynamically adjusted 
according to the actual situation and has a wide application prospect. In the field of water 
environment optimization, research on adaptive optimization strategies has also made some 

progress. Some research is devoted to developing water environment management methods based 
on adaptive optimization strategies. These methods can achieve better management effects by 

monitoring the water environment in real time and dynamically adjusting the management strategy 
according to the preset optimization objectives. Generally speaking, research on adaptive 
optimization strategies in the field of water environment optimization has achieved certain results. 

However, there are still some challenges and problems to be solved. For example, how to design and 
implement an efficient adaptive optimization algorithm, how to deal with uncertainty and robustness, 

etc. Therefore, future research needs to explore the application potential and challenges of adaptive 
optimization strategy in water environment optimization further. The objective of this research is to 
construct a water environment model utilizing CAD technology, enabling the simulation and 

forecasting of water environment trends. Additionally, an optimization strategy model is developed 
using the RL algorithm, aimed at learning and identifying the most effective water environment 
management approach. In order to achieve this goal, this section constructs a comprehensive 

research framework, which includes several key elements, such as system architecture, algorithm 
selection, and design principles, which will be explained in detail below. 

3.1 System Architecture and Design Principles 

In terms of system architecture, this study adopts the idea of modular design and divides the whole 
water environment optimization system into several independent and interrelated modules. Each 

module is responsible for completing specific functional tasks, such as data preprocessing, model 
building, and strategy learning. Through modular design, not only can the maintainability and 
expansibility of the system be improved, but parallel computing and distributed processing can also 

be realized, thus improving computational efficiency. 

In terms of design principles, this study follows the principles of scientificity, practicality, and 

innovation. The scientific principle requires that the research process follow the basic laws and 
methodology of natural science to ensure the reliability and accuracy of the research results. Practical 
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principles require that the research results must have certain practical application value, which can 
solve practical problems or improve existing technologies. The principle of innovation requires that 

the research process must have innovative thinking and methods, which can promote the 
development and progress of related fields. 

3.2 Algorithm Selection 

In the aspect of algorithm selection, this study deeply analyzes the characteristics and requirements 
of water environment optimization and, based on these considerations, chooses the DDPG (Deep 

Deterministic Policy Gradient) algorithm. DDPG is an RL algorithm that combines deep learning and 
deterministic strategy gradient. This algorithm is particularly effective in dealing with the problem of 
continuous action space and can directly output deterministic actions without generating the 

probability of each action and then selecting the action with the highest probability like other 
algorithms. Water environment optimization usually involves multiple complex dynamic variables 

and continuous action space, which requires the algorithm to learn efficiently and make accurate 
decisions. The DDPG algorithm is designed for this kind of problem, combining the powerful 
perception ability of deep learning with the decision-making advantage of a deterministic strategy 

gradient. 

The water environment is modelled by CAD software, and its physical properties, such as 
velocity, temperature, and pollutant concentration, are described by partial differential equations. 

For example, the Navier-Stokes equation in fluid dynamics is used to describe the motion of fluid: 

21u
u u p v u f

t
                               (1) 

Where u  are the flow rate, p  pressure,  fluid density, v  and kinematic viscosity, and f  is the 

external force? 

For pollutant diffusion, convection-diffusion equation can be used to describe: 

2c
cu D c

t
                                     (2) 

Where c  is the pollutant concentration and D  is the diffusion coefficient. 

State space consists of key indicators of the water environment, such as measured values of flow 
velocity, temperature, and pollutant concentration, and external conditions (such as weather and 

season) that may affect the water environment. The state vector is expressed as: 

1 2 3, , , ,
T

ns s s s s                                        (3) 

Where is  is the i  state variable and n  is the number of state variables. The action space consists 

of adjustable water environment management strategies, such as the switch of the water pump and 
the opening of the valve. The motion vector is expressed as: 

1 2 3, , , ,
T

ma a a a a                                        (4) 

Among them ia  is the i  action variable, and m  is the number of action variables. The reward 

function is designed according to the quality of the water environment and management cost: 

arg

1 1

n m
t et

i i i j j
i j

r w s s c a                                  (5) 

Where iw and jc  are weights and argt et
is  the target value of state variables. 

In the DDPG algorithm, two distinct neural networks are employed: the actor-network and the 
Critic network. The Actor network has the task of generating a deterministic action based on the 
prevailing state, whereas the Critic network assesses the anticipated reward associated with 
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executing an action in the current state. Both networks use deep learning technology, which can 
automatically extract the characteristics of the state and deal with the high-dimensional state space. 

The model structure is shown in Figure 1. 

 

 
 

Figure 1: Model structure diagram. 

 
In addition, DDPG also draws lessons from the experience playback and target network in the DQN 
(Deep Q-Network) algorithm. Experience playback can improve the utilization rate and stability of 

data. By storing experience in the playback buffer and randomly selecting a batch of experiences for 
training, the correlation between data can be broken, and the learning process can be stabilized. The 
target network can stabilize the learning process and avoid oscillation in the training process. DDPG 

uses the target network to calculate the target Q value, which remains unchanged during the training 
process, thus stabilizing the learning process. However, the standard DDPG algorithm may face the 

problems of slow convergence and insufficient stability in some cases. In order to overcome these 
challenges, this study has made a series of improvements and optimizations to the algorithm. For 
example, by introducing an experience playback mechanism, the algorithm can make more effective 

use of historical data and improve learning efficiency and stability. In addition, the target network 
technology can further stabilize the learning process and avoid excessive oscillation in the learning 

process. These improvement measures ensure the performance and reliability of the algorithm in 
solving water environment optimization problems. 

In order to achieve the research goal and verify the effectiveness of the proposed strategy, a 

series of simulation experiments were designed to verify the performance of the proposed strategy 
according to the actual water environment and optimization requirements. The experimental design 
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will include the simulation of the water environment in different scenarios, the setting of optimization 
objectives and the configuration of experimental parameters. Through reasonable experimental 

design, the objectivity and comparability of experimental results can be ensured. The parameter 
configuration is shown in Table 1. 

 

Parameter 
dimension 

Parameter name Description of parameter Set value 

Initial condition 
 

 

Water velocity 
Initial flow velocity in the simulated 
area 

0.5 m/s 

Water quality index Initial pollutant concentration 100 mg/L 

Water temperature 
Simulation area initial water 
temperature 

20 ℃ 

Boundary 
conditions 
 

 

Influx 
Upstream water flow into the 
simulation area 

500 m³/day 

Discharge 
Water quantity flowing out of the 

simulation area downstream. 
450 m³/day 

Pollutant input 
Pollutant input from external 
pollution sources to the simulation 

area 

20 kg/day 

Management 
objective 

Water-quality 

standards 
Expected water quality standard 50 mg/L 

Ecosystem 
protection index 

Target index for maintaining 
ecosystem stability and diversity 

Ecosystem stability 
index ≥0.8 

Management cost 
limitation 

Acceptable maximum management 
cost 

10,000 
yuan/month 

 

Table 1: Parameter configuration. 

 

4 DEVELOPMENT OF ADAPTIVE WATER ENVIRONMENT OPTIMIZATION STRATEGY 

4.1 Strategy Design 

The design of an adaptive water environment optimization strategy aims to build an intelligent 
system that can adaptively adjust the management strategy according to the actual water 
environment. The core idea of this strategy is to use CAD to model and combine the RL algorithm 

accurately to realize adaptive decision-making and efficient optimization of the water environment. 
In order to evaluate the quality of the water environment, this article introduces pollutant removal 

efficiency as a key index. This index quantifies the percentage of pollutants removed by management 
strategies and provides us with a standard to measure the optimization effect. The calculation 
formula is as follows: 

100%in out

in

C C

C
                                    (6) 

Where inC  is the pollutant concentration at the water inlet, and outC  is the pollutant concentration 

at the water outlet? 

In the implementation details of strategy design, firstly, the accurate model of the water 
environment system is established by CAD technology, including the flow dynamics model, water 
quality model, and ecosystem model. These models can simulate and predict the changing trend of 

the water environment and provide data support for subsequent optimization decisions. Then, based 
on these models, the appropriate RL algorithm is designed, and the optimal management strategy is 
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found through the interactive learning between the agent and the environment. In the process of 
strategy design, attention should be paid to the dynamics, complexity and uncertainty of the water 

environment system to ensure the robustness and adaptability of the designed strategy. 

In the process of RL, the Bellman equation is used to describe the recursive relationship of the 

state-value function or action-value function. By iteratively updating these value functions, we can 
learn an optimization strategy, which can choose the optimal management action according to the 
current state of the water environment. Bellman equation is as follows: 

1 1t t tV s E R V S S s                                 (7) 

or 

1 1'
, max , ' ,t t t ta

Q s a E R A S a S s A a                         (8) 

Where V s  is a state value function, ,Q s a  is an action-value function, E  represents 

expectation, and 1tS  and 1tA  are the next state and action respectively. 

By training the RL model, an adaptive optimization strategy can be obtained, which can select the 
optimal management action according to the current state of the water environment. The 
optimization strategy can be expressed as: 

:a a                                           (9) 

Where  is a policy function that maps states to actions? 

The key technical innovations of strategy design are mainly reflected in the following aspects: 
first, the precise modelling and intelligent decision-making of the water environment system are 
realized by combining CAD technology with RL algorithm; Secondly, an adaptive RL algorithm is 

designed, which can be dynamically adjusted according to the actual water environment, thus 
improving the adaptability and effect of the management strategy. Thirdly, the effectiveness of the 

strategy is verified by simulation experiments, which provides strong support for practical 
application. 

4.2 Technical Realization 

In the development process of adaptive water environment optimization strategy, technical 
realization is a crucial link. Firstly, this article constructs a comprehensive water environment model, 
which integrates many key elements such as water flow dynamics, water quality changes, and 

ecosystem response. This model adopts advanced numerical simulation technology, which can 
accurately simulate the complex interaction and dynamic change process in a real water 

environment. Leveraging historical and real-time datasets, the model has the capability to promptly 
update its state and prognosticate forthcoming alterations in the water environment. Subsequently, 
an adaptive optimization strategy for the water environment is devised, grounded in the DDPG-RL 

algorithm. In strategizing, the article delineates well-defined state, action, and reward spaces. The 
state space encompasses pivotal parameters from the water environment model, such as water 
quality indices and flow velocities, among others. The action space aligns with potential management 

interventions like modifying water flows and adjusting pollutant discharges. The reward function, 
tailored to align with management objectives and the model's outputs, aims to optimize water quality 

enhancements and ecological preservation. 

For technical implementation, a deep learning architecture is employed to formulate and refine 
the DDPG model. Initially, the article outlines the neural network's structure, encompassing input, 

hidden, and output layers, alongside the choice of activation functions and optimization techniques. 
Subsequently, the model undergoes training using historical and simulated datasets, enabling it to 
grasp the most effective management approach through iterative adjustments of the neural 

network's weights and biases. During training, experience replay and target network techniques are 
incorporated to stabilize learning and expedite convergence. 
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5 SIMULATION EXPERIMENT AND ANALYSIS 

Simulation experiments have been devised in this segment to validate the efficacy of the water 

environment model and the adaptive optimization strategy. These experiments replicate the 
essential features of an actual water environment, encompassing water flow patterns, water quality 

fluctuations, and ecological responses. For model confirmation, a combination of cross-validation and 
comparative experiments is employed to ascertain the model's precision and usefulness. Figure 2 
illustrates the ROC curve comparison, offering a visual representation of the model's performance. 

 

 
 

Figure 2: Comparison of model ROC curves. 

 
The performance of this model's ROC curve is notably superior. Additionally, Figure 3 presents the 
MSE (Mean Square Error) associated with the model. 

 

 
 

Figure 3: Model MSE. 
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The accuracy of the model is shown in Figure 4. 

 

 
 

Figure 4: Accuracy of the model. 

 
Upon analyzing the aforementioned outcomes, it becomes evident that the model's ROC curve 

exhibits strong performance. This indicates that the model is capable of accurately distinguishing 
between positive and negative samples across varying classification thresholds. Furthermore, the low 
MSE observed in this model underscores its proficiency in predicting continuous values or executing 

regression tasks, as the disparity between the predicted results and the actual values remains 
minimal. Furthermore, the accuracy of this model is high, which means that the model has achieved 

good results in classification tasks and can accurately classify samples into the correct categories. 

In order to show the effect of the strategy more intuitively, the water environment is displayed 
visually by using CAD tools (as shown in Figure 5). 

 

 
 

Figure 5: Visual display of the water environment. 

 
On the evaluation standard, a multi-index evaluation system is adopted, including the degree of 
water quality improvement, ecosystem health, management cost and so on. These indicators can 

fully reflect the comprehensive performance of the strategy in water environment optimization. Table 
2 shows the performance of the adaptive water environment optimization strategy in multiple 

scenarios. 
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Evaluation index 
Performance of adaptive water 
environment optimization 
strategy 

Specific situation 

Water quality 
improvement 

Remarkable results 

The concentration of pollutants is reduced 

by 30%, and the diffusion range is reduced 
by 50% 

Ecosystem 

protection 
Good effect 

Ecosystem stability increased by 20%, and 

species diversity increased by 15%. 

Handling cost Significantly reduced 
Manpower input is reduced by 25%, and 
resource waste is reduced by 30%. 

 

Table 2: Effectiveness demonstration of adaptive water environment optimization strategy. 

 

 
 

(A) Flexibility 

 

 
 

(B) Adaptability 

 
Figure 6: Method comparison. 
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The results in the table show that the adaptive water environment optimization strategy has good 
performance in many scenarios. Specifically, the strategy has achieved remarkable results in 

improving water quality, effectively reducing the concentration and diffusion range of pollutants. In 
the aspect of ecosystem protection, the strategy maintains the stability and diversity of the 

ecosystem by rationally allocating water resources. In terms of management cost, the strategy 
reduces unnecessary waste and manpower input through intelligent decisions. 

In the comparative analysis, this article also compares the adaptive strategy with the traditional 

management method. The comparison results of different methods are shown in Figure 6. 
The results show that the adaptive strategy has higher flexibility and adaptability in dealing with 

complex and changeable water environments. In addition, in terms of convergence, the RL algorithm 

can quickly converge to a better solution in the training process, which shows that the strategy has 
good learning ability and robustness (Figure 7). 

 

 
 

Figure 7: Convergence of RL algorithm. 

 
Through the in-depth analysis of the experimental results, this article finds that the effectiveness of 
the adaptive water environment optimization strategy mainly benefits from the following aspects: 
first, the strategy makes full use of the accurate modelling ability of CAD tools and provides accurate 

environmental information for RL algorithm; Second, the strategy adopts adaptive RL algorithm, 
which can be dynamically adjusted and optimized according to the actual water environment; Third, 
the multi-index evaluation system can fully reflect the comprehensive performance of the strategy 

and provide a strong basis for the adjustment and improvement of the strategy. 

6 CONCLUSION AND PROSPECT 

In this study, an adaptive water environment optimization strategy was successfully developed by 
combining CAD and RL technology. This strategy can make intelligent decisions according to the 
actual water environment, effectively improve water quality, protect ecosystems, and reduce 

management costs. The results show that the strategy has good performance and adaptability in 
different scenarios. The main innovation of this study is to combine the accurate modelling ability of 
CAD with the adaptive decision-making ability of RL, which provides a new idea for solving the 

complex water environment optimization problem. 
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This article reiterates the importance and practicability of adaptive water environment 
optimization strategy, which can provide scientific and intelligent decision support for water 

environment management and help to improve the utilization efficiency and management level of 
water resources. Furthermore, this strategy has a broad application prospect and can be applied to 

other similar environmental optimization problems. 

This study has important theoretical and practical contributions to the field of water environment 
optimization. Firstly, by introducing CAD and RL technology, the method system of water 

environment optimization is enriched, and the optimization effect and decision-making level are 
improved. Secondly, this study provides a new intelligent solution for water environment 
management, which is helpful in promoting the development of water environment management in a 

more scientific and efficient direction. Finally, this study provides useful enlightenment and reference 
for future related research and promotes the further development of this field. 

Although some achievements have been made in this study, some problems and shortcomings 
have also been exposed during the experiment. For example, in some extreme cases, the policy may 
have performance degradation or failure. In addition, the RL algorithm consumes a lot of training 

time and computing resources, which may limit the promotion of the strategy in practical application. 
Aiming at these problems, this article puts forward the following suggestions: First, further optimize 
the performance and stability of the RL algorithm; The second is to explore more efficient data 

processing and model simplification methods to reduce the calculation cost; The third is to strengthen 
the docking with the actual water environment management needs to improve the practicability and 

pertinence of the strategy. 
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