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Abstract. Design innovation is the core power that promotes the sustainable 
development of modern industry, architecture, science, technology, and many other 

fields. Computer-aided design (CAD) technology has developed from initial 2D 
drawings to powerful tools such as 2D modelling and simulation analysis, which 
provide designers with convenient design means. This article will discuss how to 

combine reinforcement learning (RL) algorithms with CAD technology to realize 
automatic image enhancement and Optimization. The experiment uses a large 

number of product modelling data to train the model and analyzes the convergence of 
the algorithm in the iterative process in detail. The results show that the new method 
has a high error in the initial iteration, but after about 20 iterations, the error 

gradually decreases and tends to be stable. In addition, through comparative 
experiments, it is found that this method has achieved a higher score in design 
performance, and its comprehensive performance is better than the traditional 

method. It is worth mentioning that this method has also achieved a significant 
improvement in user satisfaction, thanks to its Optimization in user experience, 

accuracy and reliability, and personalized and customized services. These advantages 
together reflect the practical application value and potential of the new method in the 
design field and provide strong support for future research and application. 
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1 INTRODUCTION 

Design innovation plays a pivotal role in propelling the sustainable advancement of various sectors, 
such as modern industry, architecture, and science and technology. Amidst the swift evolution of 
science and technology, CAD technology has emerged as an essential design tool, significantly 

enhancing both the efficiency and precision of the design process. As a key step in additive 
manufacturing, the design of grid filling mode directly affects the efficiency of material use and the 

performance of the final product. In recent years, machine learning technology has shown great 
potential in optimizing grid-filling patterns. Alejandrino et al. [1] explored how to use machine 
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learning methods to improve material efficiency in additive manufacturing processes through 
grid-filling patterns. Additive manufacturing is a technology that uses layer by layer stacking of 

materials to create three-dimensional solids, widely used in aviation, automotive, medical and other 
fields. In additive manufacturing, the grid-filling mode determines how materials are distributed in 

three-dimensional space. The traditional grid-filling mode is often based on fixed algorithms and is 
difficult to adapt to changes in different materials and manufacturing requirements. Machine learning 
technology can provide new ideas and methods for optimizing grid-filling patterns by learning 

patterns and patterns from a large amount of data. CAD technology has developed from 2D drawing 
to 2D modelling, simulation analysis and other powerful tools, providing designers with convenient 
design means. However, CAD technology still needs designers to have rich professional knowledge 

and creativity in order to reach its greatest potential. In order to improve the positioning accuracy 
and operational efficiency of industrial robots, vision-based directional guidance technology has 

become a hot research topic. Ben and Cengz [2] discussed the method and technology research of 
implementing industrial robot visual directional guidance using CAD models under binocular vision. 
Binocular vision technology can obtain three-dimensional spatial information of objects by simulating 

the principle of stereo vision of the human eye, providing the possibility for directional guidance of 
industrial robots. As an accurate digital representation of objects, CAD models provide a benchmark 
for robot visual recognition. By combining binocular vision technology and CAD models, 

high-precision visual directional guidance for industrial robots can be achieved. Binocular vision 
technology captures two-dimensional images of objects from different angles using two cameras. By 

calculating the relative position relationship between two cameras and the matching points between 
images, the three-dimensional spatial information of objects, including their position, posture, and 
size, can be restored. As an accurate digital representation of an object, CAD models contain 

information such as the geometric shape, size, and position of the object. In visual directional 
guidance, CAD models can serve as benchmarks to match the actual object images obtained by the 
binocular vision system, thereby determining the precise position and posture of the object.  

In addition, when dealing with complex design problems, CAD technology often needs to spend a 
lot of time and computing resources, which limits the efficiency of design innovation. Traditional 

automation systems often lack sufficient adaptability and flexibility to cope with uncertainty and 
changes in the production process. In order to solve this problem, researchers have begun to attempt 
to introduce reinforcement learning technology into the field of industrial automation. Through 

interactive learning between intelligent agents and the environment, automation systems can make 
optimal decisions based on real-time production data and environmental information. Chen et al. [3] 

explored how to utilize task modularity in reinforcement learning to achieve adaptive Industry 4.0 
automation. Task modularization is a method of decomposing complex tasks into multiple simple 
subtasks, each of which can be independently learned and optimized. By combining reinforcement 

learning with task modularization, we can decompose complex industrial production processes into 
multiple simple sub-tasks, and then use reinforcement learning algorithms to independently optimize 
each sub-task. In this way, the entire production system can flexibly adjust the execution strategies 

of each sub-task according to actual needs and environmental changes, thereby achieving stronger 
adaptability and flexibility.  

Against this background, how to combine advanced artificial intelligence technology, especially 
RL, to promote the automation of the design innovation process has become the focus of current 
research. Croce et al. [4] explored how to utilize reinforcement learning techniques to achieve 

semiautomatic transformation from semantic point clouds to BIM models. The traditional method of 
converting point clouds to BIM often relies on manual operations, which is inefficient and prone to 
errors. Reinforcement learning technology can complete this task automatically or 

semi-automatically through interactive learning between intelligent agents and the environment. By 
defining appropriate states, actions, and reward functions, reinforcement learning algorithms can 

learn the optimal transition strategy from semantic point clouds to BIM models. In the process of 
converting point clouds to BIM, reinforcement learning algorithms can be seen as agents that 
continuously optimize their conversion strategies through interactive learning with the environment 

(i.e. semantic point clouds). Design an appropriate reward function based on factors such as the 

http://www.cad-journal.net/


 

 

Computer-Aided Design & Applications, 21(S23), 2024, 84-99 

© 2024 U-turn Press LLC, http://www.cad-journal.net 
 

86 

accuracy and completeness of the BIM model to guide agents in learning the optimal transformation 
strategy. Train reinforcement learning models using historical data to learn the optimal 

transformation strategy from semantic point clouds to BIM models. As an important branch of 
machine learning, RL's unique trial-and-error learning mechanism enables agents to continuously 

optimize decision-making strategies in the interaction with the environment, thus realizing the 
automation of complex tasks. As an important component of injection moulding products, their 
quality and production efficiency are crucial to the competitiveness of enterprises. In recent years, 

the application of reinforcement learning technology in predicting the quality of injection moulded 
products has gradually received attention. It can not only improve product quality but also help 
promote the development of a sustainable manufacturing industry. Jung et al. [5] explored the 

application of reinforcement learning technology in the quality prediction of injection moulded 
products and its impact on sustainable manufacturing. The traditional quality control methods for 

injection moulded products often rely on manual inspection and post-processing, which have not only 
low efficiency but also make it difficult to ensure the stability of product quality. Reinforcement 
learning technology simulates the production process of injection moulded products by constructing 

models and training models using historical data to predict product quality. Specifically, 
reinforcement learning algorithms continuously adjust model parameters through interaction with 
the environment (injection moulding machines, raw materials, etc.) to optimize the accuracy of 

product quality prediction. This method can obtain a large amount of data in a short period of time 
and automatically adjust production parameters, thereby improving product quality and production 

efficiency. In image processing, RL-based image enhancement algorithms can adaptively adjust 
image parameters and improve image quality, which provides new ideas and methods for design 
innovation. 

Traditional methods for identifying graphic defects mainly rely on manual visual inspection, but 
due to the complexity of wafer diagrams and the diversity of defects, manual visual inspection is not 
only inefficient but also prone to missed or false detections. Kim and Behdinan [6] use machine 

learning techniques to train models to learn the features and patterns of defects from a large amount 
of data, thereby achieving automatic defect recognition and classification. Using machine learning 

algorithms to extract effective features from wafer images, such as texture, shape, size, etc., for 
subsequent defect classification. Based on the extracted features, design appropriate classifiers, such 
as Support Vector Machine (SVM), Random Forest, etc., to automatically classify defects. Deep 

learning, as a branch of machine learning, can automatically learn hierarchical feature 
representations of data by constructing deep neural networks, thereby achieving better performance. 

The training and inference of deep learning models require a large amount of computing resources, 
such as high-performance computers and GPUs. How to achieve efficient training and inference under 
limited computing resources is also a challenge. RL (Reinforcement Learning) acquires the best 

decision-making approach through dynamic interactions between an agent and its environment, 
showcasing self-learning and adaptive adjustment abilities. In image processing, RL has proven 
effective in tasks like image classification, object detection, and image generation. The traditional 

industrial product design process often relies on the experience and intuition of designers, with a long 
design cycle and high optimization difficulty. In recent years, with the development of artificial 

intelligence and machine learning technology, reinforcement learning algorithms have achieved 
significant results in the fields of decision-making and control. Combining 3D CAD technology, Liu [7] 
has developed a fast design method based on reinforcement learning to achieve automation and 

intelligence in the design process. It uses 3D CAD software to establish a digital model of the product. 
These models not only contain the geometric shape of the product but also information such as 
materials and assembly relationships. On the basis of 3D CAD models, we introduce reinforcement 

learning algorithms to guide the design process. Reinforcement learning algorithms learn the optimal 
design strategy through trial and error, gradually approaching the ideal state of the design results. By 

continuously iterating and optimizing design strategies, achieve rapid product design. The 
optimization process can include multiple aspects, such as shape optimization, material selection, 
assembly sequence, etc.  
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Notably, RL-based image enhancement techniques can tailor enhancement strategies to image 
specifics, elevating visual appeal and quality. Digital twin technology, as a bridge connecting the 

physical world and the digital world, is gradually becoming an important tool in the field of industrial 
manufacturing. Digital twin technology can simulate and predict various behaviours in the production 

process without interfering with actual production by creating virtual replicas of the actual production 
environment. By combining reinforcement learning algorithms, digital twin technology can further 
optimize production control and improve production efficiency and product quality. Park et al. [8] 

explored the application of digital twins with horizontal coordination ability and how to use 
reinforcement learning to achieve intelligent control of workshop production. By using reinforcement 
learning algorithms, the control strategy of the device can be optimized, and the operational 

efficiency and stability of the device can be improved. For example, using deep learning algorithms to 
train the historical operational data of devices and learn the optimal control parameters and 

strategies. This article delves into the uses and constraints of CAD technology in design innovation 
and explores the strengths of RL in image processing. It proposes a novel integration of CAD and RL 
to automate the design innovation workflow. This approach aims to overcome CAD's traditional 

limitations and foster fresh design concepts, enhancing both efficiency and quality. We examine how 
RL algorithms can be paired with CAD technology to automatically refine and enhance images during 
the design process. Specifically, we investigate utilizing RL to adjust CAD model image parameters 

(e.g., brightness, contrast, colour) for more visually stunning designs. Additionally, we discuss 
optimizing CAD model structure and layout using RL for more rational and innovative designs. 

This study focuses on the integration of CAD and RL to advance the automation and intelligence 
of the design innovation process. This integration promises to boost design efficiency, elevate quality, 
foster creativity, and breathe new life into fields like modern industry, architecture, and science and 

technology. Our contributions include: 

(a) Introducing a CAD-RL integration method that pushes beyond traditional CAD limitations and 
offers fresh perspectives for design innovation. 

(b) Automating the design innovation process through CAD-RL integration, minimizing manual 
intervention, and fostering design creativity. 

(c) Utilizing RL algorithms for image enhancement and Optimization during the design process, 
adapting strategies to image specifics and meeting design quality demands. 

(d) Addressing traditional CAD limitations in adaptability and complex design handling through 

our proposed CAD-RL fusion method, offering stronger support for design innovation. 

In conclusion, this article outlines the uses and constraints of CAD in design innovation and RL's 

strengths in image processing. It presents a novel CAD-RL integration approach to automate design 
innovation, detailing image enhancement and optimization techniques. Finally, it summarizes the 
proposed method and offers future directions for this exciting field of study. 

2 RELATED WORK 

Digital twin technology achieves comprehensive monitoring and prediction of physical entities by 
constructing virtual models of physical entities. Reinforcement learning algorithms continuously 

optimize decision-making strategies to adapt to complex and ever-changing environments through 
interactive learning between intelligent agents and the environment. Combining digital twin 

technology with reinforcement learning algorithms can provide strong support for the flexible 
production control of micro-intelligent factories. Park et al. [9] analyzed the development of digital 
twin technology and reinforcement learning algorithms, providing new solutions for flexible 

production control in microintelligent factories. Reinforcement learning algorithms continuously 
optimize production control strategies through interactive learning between intelligent agents and 
the environment. In a micro intelligent factory, production control tasks can be viewed as a Markov 

decision process (MDP), where the intelligent agent is the production control system and the 
environment is the micro intelligent factory and its operating environment. By setting appropriate 
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reward functions, reinforcement learning algorithms can learn the optimal production control 
strategy, enabling factories to maintain efficient and stable production in the face of uncertain factors 

such as market demand changes and equipment failures.  

As one of the core tools of CAPD, 3D factory simulation software is increasingly widely used in 

industrial workplaces and process design. Pellicia et al. [10] explored the applicability of 3D factory 
simulation software in industrial workplaces and process CAPD. Using 3D factory simulation software, 
designers can simulate and optimize the factory layout in a virtual environment. This includes 

considerations such as equipment placement, material flow, and personnel access to ensure the 
operational efficiency and safety of the factory. 3D factory simulation software can provide detailed 
simulation of the process flow, including the operating status of equipment, material processing, and 

so on. This helps to identify problems and bottlenecks in the process flow, providing designers with a 
basis for improvement and Optimization. CAPD emphasizes multi-party participation and 

collaboration. 3D factory simulation software can provide a common virtual platform for all parties to 
communicate and exchange ideas. Through real-time updates and displays of simulation software, all 
parties can intuitively understand the latest progress and existing problems in the design and make 

timely adjustments and improvements. With the rapid development of artificial intelligence 
technology, the automation and intelligence of analog circuit design have become a research hotspot. 
The combination of CAD (computer-aided design) technology and reinforcement learning algorithms 

provides a new solution for the automation design of analog circuits. Settaluri et al. [11] explored 
how to use CAD reinforcement learning to achieve automated design of analog circuits and 

introduced its advantages and application prospects. The traditional analog circuit design process 
relies on the designer's professional knowledge and experience, with a long design cycle and a 
tendency to make mistakes. With the development of artificial intelligence technology, especially the 

successful application of reinforcement learning algorithms in decision-making and control fields, the 
automation and intelligence of analog circuit design have become possible. CAD technology, as an 
important tool for circuit design, combined with reinforcement learning algorithms, can achieve 

automated design of analog circuits and improve design efficiency and quality. CAD reinforcement 
learning methods can automatically complete the design process of analog circuits, reduce manual 

intervention, and improve design efficiency. By optimizing reinforcement learning algorithms, better 
circuit performance can be achieved, such as higher speed and lower power consumption.  

The process parameters during 3D printing have a significant impact on product quality, 

production efficiency, and cost. Therefore, how to effectively monitor and optimize 3D printing 
process parameters has become a research hotspot. In recent years, the application of reinforcement 

learning technology in process parameter optimization has gradually received attention. Tamir et al. 
[12] explored a method for monitoring and optimizing process parameters of 3D printing products 
based on reinforcement learning. Reinforcement learning is a method of optimizing decision-making 

strategies through interactive learning between agents and the environment. In the Optimization of 
3D printing process parameters, the printing process can be viewed as a Markov decision process 
(MDP), where the intelligent agent is the printing control system and the environment is the 3D 

printer and its working environment. By defining appropriate states, actions, and reward functions, 
reinforcement learning algorithms can learn the optimal combination of process parameters to 

achieve a balance between print quality and production efficiency. With the advent of Industry 4.0, 
the application of industrial robots on production lines is becoming increasingly widespread. To 
ensure the efficient, accurate, and safe operation of industrial robots, trajectory planning has become 

a key research field. CAD technology, as an important support for modern manufacturing, provides 
strong technical support for the trajectory planning of industrial robots. Wang and Arora [13] 
discussed the research status and development trends of continuous trajectory planning for industrial 

robots based on CAD technology. Industrial robot trajectory planning refers to planning the motion 
trajectory of the robot from the starting point to the target point according to task requirements. 

Continuous trajectory planning requires the robot to maintain continuity and smoothness of its 
trajectory throughout the entire motion process, avoiding sudden changes and shaking, thereby 
improving the robot's motion accuracy and stability. As a computer-aided design technology, CAD 
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technology can provide accurate models, efficient data processing, and visual simulation 
environments for the trajectory planning of industrial robots.  

Green design has become an important trend in product packaging design. The combination of 
CAD technology and reinforcement learning algorithms provides new possibilities for green design. 

Yu and Sinigh [14] discussed the application and advantages of CAD reinforcement learning based on 
green concepts in product packaging design. Traditional product packaging design often focuses on 
appearance and function while neglecting environmental impact. With the increasingly prominent 

environmental issues, green design has gradually become an important consideration factor in 
packaging design. CAD technology, as an important tool in modern design, combined with 
reinforcement learning algorithms, can provide more efficient and green solutions for product 

packaging design. By using reinforcement learning algorithms, we continuously optimize the design 
scheme to achieve the best green evaluation while meeting functional requirements. With the 

continuous progress of technology, the field of product design is undergoing a revolutionary change. 
Modular product design and computer intelligence design have become the core forces of this 
transformation, changing the way we design, manufacture, and use products. Zhao et al. [15] 

explored the strategies and methods of modular product design and computer-intelligent design, as 
well as how they jointly promote the future development of product design. Modular product design 
is a design method that breaks down a product into a series of independent and interchangeable 

modules. This design strategy helps to improve the flexibility, maintainability, and scalability of the 
product. Develop unified module standards and interface specifications to ensure compatibility and 

interchangeability between modules. This helps to reduce production costs and improve product 
maintainability and scalability. Design independent modules with clear functions and interfaces for 
replacement or upgrading when needed. This helps to improve the flexibility and maintainability of 

the product. Utilize big data and machine learning techniques to analyze user needs and product 
usage data to guide product design. This helps to design products that better meet user needs. 

3 THE ADVANTAGES AND PRACTICES OF RL IN IMAGE PROCESSING 

CAD technology allows designers to perform precise 2D and 3D modelling in computer environments. 
This ability greatly improves the accuracy and reliability of design, reducing the need for physical 

prototyping. Using CAD software, designers are able to effortlessly create intricate models, virtually 
assemble them, and conduct tests. Furthermore, CAD technology offers a range of simulation 
capabilities, including structural analysis and fluid dynamics simulation, enabling designers to foresee 

product performance during the initial design phases and consequently enhance design outcomes. 
CAD technology makes design optimization more efficient. Designers can quickly iterate and optimize 

design solutions through methods such as parametric modelling and variable design. In addition, CAD 
software also provides various automation tools, such as feature recognition, intelligent dimension 
annotation, etc. These tools can greatly reduce the time designers spend on tedious tasks, allowing 

them to focus more on innovative design. The combination of CAD technology and computer-aided 
manufacturing (CAM) technology has achieved a close integration of design and manufacturing. 
Designers can directly convert CAD models into G codes for CNC machining, thereby shortening the 

time from design to manufacturing of products. 

Although CAD technology has brought many conveniences to design innovation, it also has 

certain technical barriers and learning costs. Mastering CAD software requires a certain amount of 
professional knowledge and practical experience, which may be a challenge for beginners. Although 
CAD technology provides powerful modelling and simulation capabilities, it also limits designers' 

creativity to a certain extent. Due to the fact that CAD software is usually based on parameterized 
and rule-based design ideas, designers may be limited by the software itself when pursuing 
innovative design. In large-scale design projects, data management and version control of CAD files 

may become a challenge. As multiple designers may be involved in a project at the same time, 
ensuring the consistency and freshness of CAD files has become an important issue. Although many 

CAD software supports standard data exchange formats (such as STEP, IGES, etc.), data loss or 
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format conversion errors may still be encountered in practical operations. This may affect the 
collaboration efficiency of designers between different software platforms.  

(1) the advantages of RL in image processing. 

RL algorithm can adaptively adjust the processing strategy according to the actual situation of 

the image without setting fixed rules or parameters in advance. This adaptability gives RL great 
advantages in dealing with complex and changeable image problems. RL learns the optimal 
decision-making strategy through the interaction between agent and environment, which makes it 

have strong decision-making ability. In image processing, this decision-making ability can help the 
algorithm choose the optimal processing steps and operations so as to achieve better processing 
results. In addition, RL also considers long-term planning, which can take into account the future 

influence in the process of processing, thus avoiding falling into the local optimal solution. RL 
algorithm is robust to noise and interference and can resist the influence of these factors to some 

extent. This makes RL achieve better results when processing poor-quality images. At the same time, 
RL also has strong generalization ability, which can transfer the knowledge learned in one task to 
other related tasks. 

(2) Practice of RL in image processing. 

By instructing the agent to seek out and recognize the desired object within an image, the RL 
algorithm can precisely pinpoint its location and classify it within intricate settings. This approach not 

only enhances detection precision but also minimizes incorrect and overlooked detections. 
Additionally, by instructing the agent on how to modify parameters like brightness, contrast, and 

colour, the RL algorithm can flexibly tailor enhancement strategies to the specific conditions of the 
image, thereby elevating its visual appeal. This method is especially effective when dealing with 
low-quality images, which can significantly improve the clarity and recognition of images. In the 

aspect of image editing, RL can help users achieve finer and more natural editing effects, such as 
intelligent matting and automatic retouching. RL also has a broad application prospect in the field of 
video processing and understanding. For example, in the video surveillance scene, the RL algorithm 

can be used to realize functions such as automatic tracking and anomaly detection. In the aspect of 
video summary generation, we can learn how to select keyframes and clips by training agents to 

generate concise video summaries. In addition, in the video recommendation system, the RL 
algorithm can also be used to recommend appropriate video content according to the user's viewing 
history and preferences. 

4 A NEW METHOD OF INTEGRATING CAD TECHNOLOGY WITH RL 

As science and technology continue to evolve, the need for automation and intelligence in design 

innovation becomes increasingly significant. While traditional CAD technology remains a crucial 
aspect of the design landscape, its limitations become apparent when tackling intricate design 
challenges and the need for adaptive adjustments. RL, as an emerging machine learning technology, 

boasts strengths in autonomous learning and adaptive adjustment, exhibiting remarkable promise in 
image processing and beyond. Consequently, this article introduces an innovative approach that 
integrates CAD technology with RL, aiming to achieve automation and intelligence in the design 

innovation process. 

(1) Fusion methods overview 

The fusion methodology outlined in this article centers on merging CAD technology's precise 
modelling capabilities with RL's adaptive decision-making prowess. More specifically, CAD technology 
constructs an accurate model of the design challenge while the RL algorithm navigates the model 

space in search of the optimal design solution. This approach not only surpasses the limitations of 
traditional CAD methods when tackling intricate design challenges but also fosters fresh design 
concepts, ultimately enhancing both design efficiency and quality. 

(2) Implementation steps of fusion method 
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Build a CAD model: First, use CAD technology to accurately model the product or system to be 
designed. This step includes determining the geometric shape, physical characteristics and 

constraints of the design problem and constructing the corresponding CAD model. 

Defining the RL Environment: Utilize the CAD model as the RL environment, specifying the state 

space, action space, and reward function. The state space represents the current status of the design 
challenge, while the action space encompasses all conceivable design modification operations. The 
reward function assesses the quality of each action based on the predefined design objectives. 

Training RL Agent: Through a large number of simulated interactive processes, training RL Agent 
to learn how to search the optimal design scheme in CAD model space. This step can adopt various RL 
algorithms, such as deep Q network (DQN) and strategic gradient method. 

Optimization of design scheme: After the training, the RL agent is applied to practical design 
problems. The agent will search in the CAD model space according to the learned strategy, try 

different design adjustment operations continuously, evaluate the advantages and disadvantages of 
each operation according to the reward function, and finally find the optimal design scheme. 

(3) Advantages of fusion method 

Adaptability: The fusion method can deal with all kinds of complex design problems adaptively 
without manual intervention or preset rules. RL agents can make independent decisions and 
adjustments according to the actual situation of design problems, thus realizing real automatic 

design. 

Innovation: Because the RL algorithm has strong exploration ability, the fusion method can 

stimulate new ideas and ideas in the design process. This is helpful to break the shackles of traditional 
design thinking and promote the development of design innovation. 

Efficiency: The fusion method can improve the design efficiency through the autonomous 

learning and decision-making ability of agents. Compared with the traditional manual design or 
automatic design based on rules, the fusion method can find a better design scheme in a shorter 
time. 

5 AUTOMATIC IMAGE ENHANCEMENT AND OPTIMIZATION 

During the design innovation process, image quality plays a crucial role in effectively communicating 

design concepts and captivating the intended audience. Nonetheless, several factors, including 
lighting conditions and limitations of photographic equipment, often result in issues like reduced 
clarity and colour distortion in the original imagery. To address these challenges and elevate image 

quality to align with design specifications, this article introduces a method that seamlessly blends 
CAD technology with RL for automated image enhancement and Optimization. 

In design, imagery serves as a visual representation of products, conveying their essence and 
alluring potential customers. The quality of these images is, therefore, intricately linked to the overall 
impact of the design and the emotional response it elicits from the viewer. To achieve this, images 

must exhibit clear details, accurate colour reproduction, and pleasing visual aesthetics. However, in 
practice, obtaining original images that meet these standards can be challenging, necessitating 
enhancement and optimization techniques. Figure 1 illustrates the fundamental principles of image 

enhancement using an RL-based approach. 
This article proposes using the RL algorithm to achieve automatic image enhancement. We model 

the image enhancement task as a Markov decision process (MDP), where the state represents the 
current quality of the image, the action represents various enhancement operations performed on the 
image (such as adjusting brightness, contrast, etc.), and the reward is defined based on the 

enhanced image quality. Through this approach, RL agents can learn how to optimize image 
parameters to improve their quality through interaction with the environment. 

Bellman equation (Equations 1 and 2) is a recursive expression of the value function, which 

reveals the relationship between current value and future value: 
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Figure 1: Schematic diagram of image enhancement principle based on RL. 
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* ,Q s a  represents the maximum action value of the state s  performing action a  in all strategies. 

The strategy gradient (Equation 5) provides a method to optimize the strategy parameters by 
gradient rising. 

log ,J E a s Q s a                                  (5) 

Here J  is the performance of strategy , and  is the parameter of strategy. 

The dominance function (Equation 6) measures the superiority of a specific action relative to the 

average action and is often used to reduce variance in the strategic gradient method. 
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,A s a  indicates the advantage of performing the action a  in the state s  compared with the 

average. 

Deterministic strategy gradient (Equation 7) and depth deterministic strategy gradient (DDPG, 
Equations 8-10) are variants of the strategy gradient method, which are suitable for continuous 

action space. 

~
,a a ss

J E s Q s a                                (7) 

For deterministic strategy s , this is the expression of its gradient. 

2

, , , ' ~
,Q Q

s a r s D
L E y Q s a                                    (8) 

', ' Qy r Q s s                                         (9) 

Where D  is the experience playback buffer, and Q  is the parameter of the value network? 

,

1
,

i si

Q
a s s a iJ Q s a s s

N
                          (10) 

Here  is the parameter of the policy network. 

The state transition probability (Equation 11) describes the dynamic characteristics of the 
environment, that is, how the state changes after performing an action. 

1' , Pr ' ,t t tP s s a S s S s A a                                 (11) 

Describe the probability of state transition from s  to 's  after performing action a . In some cases, 

agents may need to learn environmental models to predict future state transitions and rewards. 

The strategy entropy (Equation 12) measures the exploratory nature of the strategy and 

encourages agents to try different actions to avoid falling into local optimum prematurely. 

log
a A

H s a s a s                                    (12) 

The entropy of the strategy in the state s  is used to encourage exploring different actions. 

In practical applications, a deep RL algorithm is used to train intelligent agents. By combining the 

representation learning ability of deep learning with the decision-making ability of RL, the deep RL 
algorithm can handle high-dimensional state space and action space and effectively learn the 

mapping relationship from the original image to the optimal enhancement strategy. Figure 2 shows 
the automated design interface of the product. 

 

 
 

Figure 2: Product automation design interface. 
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On the basis of image enhancement using the RL algorithm, image optimization can be further 
combined with CAD technology. Specifically, by introducing the geometric information and physical 

characteristics in the CAD model into the image enhancement process, a more accurate and natural 
enhancement effect can be achieved. 

6 EXPERIMENT AND ANALYSIS 

During the experiment, we carefully adjusted the strategy of model training, especially how to select 
and add unlabeled samples to expand the training set. In each iteration, we decided to give priority 

to those sample instances that are the most uncertain in the model prediction. The reason for this is 
clear: these samples often contain important information or complex and subtle features that the 
model has not yet mastered. By incorporating these "difficult" samples into the training set, we 

expect the model to show better generalization performance when facing more extensive and 
challenging data. 

In order to deeply understand the influence of different strategies on the model performance, this 
study designed a comparative experiment (Figure 3). In each iteration, we add 100, 200, 300 and 
400 unlabeled samples with the highest confidence to the training set and record the experimental 

results in various situations. The "highest confidence" samples mentioned here actually refer to the 
relatively certain samples when the model predicts; that is, the model thinks that the labels of these 
samples are relatively reliable. 

 

 
 

Figure 3: The correlation between the expansion of the training set utilizing active learning 
techniques and the resulting performance. 

 
The results show that when only 100 high-confidence samples are added in each iteration, the 
performance of the model is relatively slow. This may be because the number of samples increased 

is small, and the new information learned by the model is limited, so the performance improvement 
is not obvious. However, when the number of high-confidence samples per iteration is increased to 
400, the performance improvement of the model becomes more significant. This shows that 

increasing the number of samples with high confidence can improve the performance of the model 
more effectively. This may be because more samples provide more information for the model, which 

enables the model to learn in a wider feature space, thus improving its generalization ability. This 
does not mean that we can increase the number of high-confidence samples indefinitely. In practical 
application, we also need to consider the labelling cost, computing resources and model complexity. 

In the experimental stage, in order to build a model that can efficiently analyze and optimize the 
whole design process, we use a large number of product modelling data as a training set. These data 
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cover all kinds of design elements and features and provide rich learning resources for the model. 
Through continuous iterative training, the model gradually learned effective features and patterns 

from these data, thus improving its ability to predict and Optimization. Figure 4 provides a detailed 
depiction of the algorithm's convergence during the training process. Initially, the algorithm's output 

error is notably high due to the model's limited understanding of the input data's distribution and 
characteristics. Consequently, there is a substantial discrepancy between the predicted outcomes 
and the actual values. Nevertheless, as iterations progress, the model progressively acquires more 

information and patterns from the data, leading to a significant enhancement in its predictive 
capabilities. 

 

 
 

Figure 4: Convergence trend of the algorithm. 

 
After about 20 iterations, the output error of the algorithm gradually decreases and stabilizes at a 

relatively low level. This indicates that the model has gradually found the intrinsic connection 
between input data and output objectives and can effectively utilize these connections for accurate 
prediction and Optimization. In addition, the stability of the error also means that the model has 

reached a relatively stable state, and further increasing the number of iterations may not significantly 
improve the performance of the model. 

The findings presented in Figure 5 unequivocally demonstrate that our proposed approach 

attained superior ratings in terms of design performance. This accomplishment not only affirms the 
efficacy of our methodology but also underscores its preeminence in real-world implementations. 

By effectively learning the features and patterns extracted from a large amount of product styling 
data, the model may achieve a better balance in terms of design novelty, practicality, aesthetics, etc., 
thereby obtaining higher ratings in design performance evaluation. By combining techniques such as 

RL, our method may be more efficient and comprehensive in searching for the optimal design solution 
and can discover excellent design areas that are difficult to reach by traditional methods. 

Figure 6 reveals a noteworthy superiority of the proposed method over traditional ones in terms 
of comprehensive evaluation. This finding carries profound implications, as it underscores both the 
efficacy and potential benefits of the new approach in real-world scenarios. The proposed method 

may adopt a completely different algorithm design approach from traditional methods. This 
innovation may be reflected in multiple aspects, such as data preprocessing, feature extraction, 
model training, or optimization strategies. By introducing new mathematical tools, computational 

techniques, or model structures, new methods may better capture the essential characteristics of 
design problems, thereby achieving performance breakthroughs. 
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Figure 5: Design performance score. 

 

 
 

Figure 6: Comprehensive score. 

 
In the field of modern design, data-driven methods are paid more and more attention. This method 

takes advantage of big data and improves the quality and innovation of the design scheme by 
learning design rules and patterns from massive data. As can be seen from Figure 7, this method is 

also significantly superior to the traditional method in terms of user satisfaction. This result is very 
important because user satisfaction is one of the key indicators to measure the success of a method 
or system. This method provides a more intuitive and easy-to-use interface and responds to users' 

operations and needs more quickly. As can be seen from Figure 7, the proposed method is also 
significantly superior to the traditional method in terms of user satisfaction. 
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Figure 7: User satisfaction score. 

 
The new method establishes an effective feedback loop so that users can easily provide feedback 

about their experiences. This kind of feedback not only helps developers to constantly improve their 
methods but also makes users feel that their voices are heard and valued, thus improving their 

satisfaction. These advantages not only prove the effectiveness of the new method but also lay a 
foundation for its wide popularity and use in practical application. 

7 CONCLUSION 

This article aims to promote the automation and intelligence of the design innovation process through 
in-depth research on the integration and application of CAD technology and RL. Through experiments 

and comparative analysis, the new method has shown significant advantages in design process 
optimization, comprehensive performance evaluation, and user satisfaction. The new method 
demonstrates higher flexibility and adaptability in complex and ever-changing design problems with 

advanced algorithms and excellent data processing capabilities. This not only improves the 
innovation of the design scheme but also effectively reduces the uncertainty and risks in the design 
process. By providing more intuitive and personalized services and establishing effective feedback 

mechanisms, this method has successfully improved user engagement and satisfaction, further 
enhancing its attractiveness and competitiveness in practical applications. 

In summary, our proposed method has broad application prospects and enormous potential 
value in the field of design. In the future, with the continuous development and improvement of 
technology, we are confident in promoting this method to more design scenarios, providing designers 

and engineers with more powerful and intelligent design optimization tools, and jointly promoting 
innovation and development in the design industry. 
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