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Abstract. Industrial Internet of Things (IIoT) deployment in manufacturing units has 
leveraged their performance assessed by time, productivity, and supply. The 

integrated smart manufacturing features are handled and organized using 
conventional IoT for non-intervening efficiency. This article focuses on harmonized 
supply chain management for smart manufacturing units for augmenting different 

exceptional connecting and availability improvements. Therefore, this article 
introduces a Harmonized Supply Management Scheme (HSMS) based on production 

to delivery routine. The supply allocation and delivery updates are updated from 
heterogeneous locations to prevent overloaded manufacturing. Besides, the 
redundant delivery planning across distinguishable supply routes is confined based 

on demand prioritization. The demand and forecast data is observed from the IoT 
platform and is processed in the industrial environment for further supply planning. 
The entire supply and delivery management processes are distinguished using 

federated learning and IoT accumulated data. This learning paradigm extracts 
production, supply, demand, and distribution data from diverse locations and 

identifies a common supply point for optimal planning. The process is repeated before 
and after the demand satisfaction across different locations and transports. Therefore 
the learning update improvises the delivery rate and product availability with the 

cooperative IIoT. 
 

Keywords: Federated Learning, IIoT, Smart Manufacturing, Supply Chain 

Management; Revolutionizing Digital Marketing 
DOI: https://doi.org/10.14733/cadaps.2024.S4.211-228 

1 INTRODUCTION 

The Industrial Internet of Things (IIoT) is a network that interconnects wireless sensors, things, 
instruments, and other electronic devices to build an application. IIoT is most widely used for 

manufacturing and energy management systems. IIoT contains sensors, computers, machines, 
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applications, and technologies. IIoT is also used for smart manufacturing, which requires proper 
functions and operations [16, 15]. Smart manufacturing is used in industries that ease the work and 
reduce an organization's workload. Various methods are used in smart manufacturing, which reduces 

both the time and energy consumption ratio in computation [28]. Resource allocation is a 
complicated task to perform in smart manufacturing. IIoT is used in allocation that allocates 

resources based on certain functions and conditions [20]. IIoT provides feasible data which are 
required for resource allocation that reduces latency in identification and resource classification 
processes. Hierarchical trustful resource assignment (HTRA) is used in smart manufacturing [26]. 

HTRA predicts the resources required to perform tasks in industries, enhancing the systems' 
effectiveness and significance range. HTRA increases the security and feasibility level of smart 

manufacturing [24].  

Supply chain management (SCM) is a process that manages the flow of goods and services in 
an organization. Smart manufacturing uses SCM to reduce the time and energy consumption ratio 

in validation and identification processes [1]. Smart manufacturing requires feasible data which 
provides relevant information for further processes. Smart manufacturing provides various ideas 
that improve a nation's economic and financial growth. SCM provides appropriate data from the 

database, which reduce the complexity range in optimization and classification [13]. SCM in smart 
manufacturing decreases the overall computational cost of the systems. SCM predicts the exact 

content and meaning of the demands which are available in smart manufacturing. SCM produces 
final data that provide effective variables and patterns for the products manufactured in an 
organization [27]. Smart manufacturing increases an industry's production and manufacturing 

range, enhancing the organization's financial status. SCM manages the key values, partner details, 
product quality, public feedback, and quality of service (QoS). SCM also secures real-time data which 
are provided by an organization [21].Digital marketing techniques enable organizations to gather 

and analyze data from various sources, including customer behavior, market trends, and supply 
chain operations. By leveraging data analytics and visualization tools, organizations can gain 

valuable insights into SCM processes in smart manufacturing. These insights can help optimize 
operations, improve efficiency, and make data-driven decisions. 

Artificial intelligence (AI) based techniques and algorithms are used in various fields. AI 

techniques are mostly used for prediction and analysis processes. AI technique maximizes the 
prediction accuracy that enhances the systems' and applications' performance and efficiency range 

[12]. AI is also used for SCM in smart manufacturing systems. The main of AI is to classify the exact 
content based on variables and patterns. Key values are fetched from SCM that reduce the 
computation process's error and time consumption ratio [25]. AI-based SCM is used in smart 

manufacturing that provides necessary data for various functions and processes. SCM produces 
feasible data for the decision-making process, increasing manufacturing processes' accuracy and 
efficiency [17]. AI technology is mainly used in smart manufacturing to get effective information and 

advantages to production. AI techniques reduce the waste and misstate range in smart 
manufacturing, improving product quality and QoS [3]. AI solves unwanted problems and issues 

which are occurred during the optimization and computation process. AI enhances smart 
manufacturing systems' overall effectiveness and robustness [19].  

2 RELATED WORKS 

Cao et al. [5] introduced an ontology-based holonic event-driven architecture (EDA) for autonomous 
manufacturing systems. EDA enables organizations to be integrated and configured, providing 
appropriate event resources. EDA follows event access rules which produce certain rules for 

manufacturing systems. The ontology model reduces the complexity ratio in computation, improving 
the systems' performance. The introduced EDA architecture maximizes the systems' feasibility, 

flexibility, efficiency, and reliability. 
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Zhang et al. [29] designed a green closed-loop supply chain with fairness concerns for the 
manufacturing system. The main aim of the proposed method is to identify the waste products and 
resources which are presented in the manufacturing system. Fairness concerns provide optimal data, 

which increases accuracy in the waste identification process. Fairness concerns increase the accuracy 
of decision-making, enhancing the systems' effectiveness. The proposed model reduces the 

damages, improving green closed-loop supply chain efficiency. 

Al-Rakhami et al. [2] developed a provenance-aware traceability framework (ProChain) for the 
Internet of Things (IoT) based supply chain system. The proposed framework is mostly used to solve 

problems and issues which are occurred during computation and optimization processes. Wireless 
sensors are used here that provide feasible data to identify problems. Experimental results show 

that the proposed framework ensures the safety and security of the systems. 

Burgess et al. [4] proposed a blockchain-based quality management architecture for a short food 
supply chain system. The food supply chain faces various problems and quality check issues. The 

proposed architecture detects the issues and solves the issue based on certain functions and 
conditions. Blockchain architecture specifies the database's content, reducing the systems' latency 
and computational costs. The proposed architecture enhances the overall performance and quality 

of the service range of short food supply chain systems. 

Esmaeilian et al. [6] designed blockchain technology for a sustainable supply chain management 

system in industry 4.0. Internet of Things (IoT) is also used here that enable the manufacturer to 
understand the exact behaviors and scenarios of users. Development and computation costs are 
reduced, which improves the efficiency of supply chain management systems. The proposed 

blockchain technology increases the sustainability, robustness, and effectiveness ratio of industry 
4.0.  

Jamrus et al. [10] introduced a dynamic coordinated scheduling framework for a supply chain 

manufacturing system. The main aim of the proposed framework is to address the manufacturing 
problems which are presented in a system. Dynamic features and factors that produce relevant data 

for the detection process are analyzed. When compared with other frameworks, the introduced 
framework achieves high accuracy in issue prediction. The introduced framework increases the 
performance and efficiency of the systems. 

Zhou et al. [30] developed a field-programmable gate array (FPGA) and Internet of Things (IoT) 
based logistics supply chain information collaboration. FPGA is mainly used for analysis that provides 

feasible supply chain information for the collaboration process. IoT reduces the complexity range in 
identification, enhancing the systems' feasibility. The proposed method reduces the overall 
computational cost and time consumption in performing certain tasks in collaboration systems  

Gunduz et al. [8] developed a hybrid best-worst method (BWM) and quality function deployment 
(QFD) for the supply chain management. Smart and sustainable tools are used in the proposed 
method that addresses the maturity ratio of functions. The main aim of the proposed method is to 

identify the relationship among functions in supply chain systems. Experimental results show that 
the proposed method improves the efficiency, sustainability, and feasibility range of supply chain 

management systems.  

Shao et al. [23] proposed a multistage implementation framework for smart supply chain 
management in industry 4.0. Supply chain management is a complicated task to perform in every 

industry. The proposed implementation framework provides various services that reduce the 
workload and error range in industry 4.0. Multistage implementation framework enables certain 
functionalities which reduce the complexity ratio of smart supply chain systems. 

Pu et al. [18] designed an agent-based supply chain (SC) allocation model for SC management 
systems. The proposed model is a dynamic allocation planning which provides necessary plans for 
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SC management systems. The proposed model is mostly used in smart manufacturing companies 
and enterprises. Agent technology utilizes SC values which provide optimal data allocation process. 
Compared with other models, the proposed model enhances management systems' capabilities, 

sustainability, and efficiency.  

Jiang et al. [11] proposed a production and maintenance strategy for a service-oriented 

manufacturing supply chain system. The proposed strategy is mainly used to address the issues 
which are presented in the system. Channel coordinates, patterns, and factors are detected from 
the database, providing feasible data for further optimization and computation processes. The 

proposed strategy increases decision-making accuracy, improving the effectiveness and feasibility 
range of manufacturing supply chain systems.  

Sarkar et al. [22] designed a supply chain management model. The main aim of the proposed 
model is to control the random lead time demand in supply chain systems. Three types of inspections 
are conducted on every system that identifies important patterns and features. The extracted feature 

produces necessary information for the supply chain management. The proposed models reduce the 
computation cost and latency range, increasing the products' quality ratio.  

Kuo et al. [14] developed a material resource management and allocation approach for a smart 

supply chain system using hybrid industry 3.5 strategies. An information-sharing technique is used 
here that shares the relevant information which is required for the allocation process. Manufacturers 

get information from information sharing that enhances accuracy in the decision-making process. 
Information sharing reduces both time and energy consumption range in the computation process. 
The proposed approach enhances the overall performance and feasibility of the systems.  

Fierro et al. [7] proposed a colored Petri nets-based multi-agent approach for a supply chain 
management system. Colored Petri net provides optimal data, which is required for management 
systems. An analysis method is used here that analyzes the datasets which are presented in the 

database. Petri nets reduce latency and error in the computation process. Experimental results show 
that the proposed approach reduces complexity, increasing the systems' efficiency and 

sustainability.  

3  PROPOSED HARMONIZED SUPPLY MANAGEMENT SCHEME 

The proposed HSM scheme is designed to improve the product availability and delivery rate in the 

cooperative IIoT based on product production, supply, and transportation changes to integrate 
supply chain management. The important computable factors in this scheme, such as supplier 

selection process, smart manufacturing, cost-efficient supply chain management, and market vehicle 
values, are considered to augment faster logistic deliveries and parcel exchange. Multiple sensors 
are used to gather the information observed from logistic-carrying vehicles. The information's vehicle 

engine temperature, RPM, and vibration in the wheel are used to analyze abnormalities of the logistic 
vehicles. The current potential supplier for new customers is matched with the potential supplier for 
existing customers to prevent uncertainty and the possibility of human error. The gathered data is 

analyzed with the aid of IIoT to identify failures in the logistic vehicles. Based on the shipment, 
processing time and easy supply distribution differ for each product. The purchasing organization is 

analyzed and stores the production, supply, and transportation data, which can differ over time. 
Product manufacturing, logistic vehicles, and supply distribution are jointly analyzed to improve 
smart manufacturing, and its stability can be estimated. Therefore, this smart manufacturing 

stability estimation based on data accumulation and response between smart industries and IoT 
platforms is considered to increase supply chain management with less analytical complexity. In 
Figure 1, the process of the proposed scheme is illustrated. 
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Figure 1: Process of the Proposed Scheme. 

With the aid of conventional IoT and federated learning, the customer location is required to deliver 

the parcel to the individuals. This will help the customer to save time and reduce potential failure, 
transportation failure, and common supply points in the industrial process. Based on customer 
satisfaction is identified to improve HSM with a large number of logistic vehicles. An IIoT-assisted 

vehicle performs the order collection, packaging, and warehouse processing time. The cost function 
in HSM with IoT-based logistic vehicles used for product delivery. The IIoT-based proposed scheme 

offers lower but comparable costing for a small number of vehicles, whereas for a large number of 
vehicles with moderate cost increases. 

The productivity and parcel exchange is analyzed for non-intervening efficiency computation 

through federated learning. Federated learning is classified as redundant delivery and supply point 
for gaining optimal supply response. The production-to-delivery routine is monitored and analyzed 
for improving various exceptional connecting and availability improvements. The supply allocation 

and delivery updates observed from heterogeneous locations are analyzed based on customer 
demand prioritization. In particular, the exceptional connecting and availability improvements are 

computed based on applying a redundant delivery plan to prevent overloaded manufacturing. This 
federated learning improves redundant delivery and reduces failures in smart manufacturing 
scenarios.  

The function of HSMS in smart manufacturing based on production, supply allocation, and 
delivery update data is observed from all smart industries and is analyzed. The supply chain 
management is improved with optimal supply response and its accumulated data analysis through 

federated learning. The supply allocation and delivery process updates for precise product shipment, 
and the modifications in supply, production, and delivery are changed using federated learning. The 

federated learning outputs in maximum supply point and redundant delivery based on customer 
demand priority. HSMS is used to analyze the product production to delivery routine in smart 
manufacturing scenarios for reducing overloaded manufacturing. The sensed data from 

heterogeneous locations are initially processed for analyzing the logistic carrying vehicles' condition. 
The smart industries data is observed and processed for computing non-intervening efficiency is 

expressed as 

𝐸𝑓𝑖𝑛𝑡 =
1

𝑡
‖∑ 𝑃𝐷𝑖(𝑑) + 𝑆𝑃𝑗(𝑑) + 𝑇𝑅𝑘(𝑑)

𝑡
𝑛=1 ‖                                                (1) 

Such that, 
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 𝑃𝐷𝑖(𝑑) =
1

𝑎𝑡
∫

𝑃𝐷𝑖(𝑑)

𝐷𝑑𝑙
𝑛(𝑝𝑒𝑥)

𝑎𝑡
 𝑑. 𝑎𝑡

∞

−∞
                                                                                 (2) 

𝑆𝑃𝑗(𝑑) =
1

𝑎𝑡
∫

𝑆𝑃𝑗(𝑑)𝑛(𝑝
𝑒𝑥)

𝑎𝑡
 𝑑. 𝑎𝑡

∞

−∞
                                                                    (3) 

𝑇𝑅𝑘(𝑑) =
1

𝑎𝑡
∫

𝑇𝑅𝑘(𝑑)

𝑎𝑡

∞

−∞
𝑑. 𝑎𝑡                                                                                         (4) 

Above equations (1) to (4), the variables 𝑃𝐷𝑖(𝑑), 𝑆𝑃𝑗(𝑑) and 𝑇𝑅𝑘(𝑑) represents the production, supply, 

and transportation information observed from the sensors with different sensing intervals for 
improving non-intervening efficiency  𝐸𝑓𝑖𝑛𝑡 . The integrated smart manufacturing features are 

organized to analyze accumulated data 𝑖, response 𝑗, and delivery data 𝑘. The data accumulation 𝑑 
based on supply allocation and delivery updates is processed. Similarly, the total number of parcel 
exchanges or distribution 𝑛(𝑝𝑒𝑥) in the individual smart industry is assessed and estimated by any 

time interval 𝑎𝑡. The data accumulation and distribution processes are portrayed in Figure 2. 

 

  

Figure 2: Data Accumulation and Distribution. 

The supply chain management requires a proper route plan using 𝑆𝑃𝑗 , 𝑇𝑅𝑘, and 𝑘 ∀ 𝑑. This 𝑑 is updated 

post 𝑛(𝑝𝑒𝑥) over the varying route plans. Based on the 𝑗, the update (𝑗, 𝑘, 𝑑) is cumulatively performed. 

This update is performed post new 𝑇𝑅𝑘(𝑖 + 1) such that precise data is available (Figure 2). If 𝑖, 𝑗 and 

𝑘 are maximized and minimized for accumulated data analysis, therefore 𝑖 ∈ [0,∞], 𝑗 ∈ [−∞, 0] and 𝑘 ∈
[∞,−∞] is computed to measure the customer purchase lifetime value 𝐶𝑝𝐿 from the IIoT is expressed 

as  

CpL = ∑
δ(Prdtpurchase)Nt

−δ(Maxopc)Nt
−MaxmrktNt

(1+Dicr)
TR
t                                              (5) 

In equation (5), the constraints 𝛿(𝑃𝑟𝑑𝑡𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒)𝑁𝑡, 𝛿
(𝑀𝑎𝑥𝑜𝑝𝑐)𝑁𝑡 and 𝑀𝑎𝑥𝑚𝑟𝑘𝑡𝑁𝑡 illustrates the profit from 

products purchased by 𝑁 customer at different time intervals 𝑡, the maximum operating cost of 𝑁 

customer, and the maximum marketing cost for 𝑁 customer. The first customer lifetime value for 

purchasing products online is computed based on supply allocation and delivery updates in IoT. The 
exceptional connecting and availability improvement is analyzed and improved based on the 

production-to-delivery routine in all the smart industries. Here, the discount rate 𝐷𝑖𝑐𝑟 is estimated 

for all products. The forecast data and demand is observed from the IoT platform, and updates to 

the information are based on the extraction of current product production, supply, demand, and 
distribution data from different locations. Modifications in supply allocation and delivery updates due 
to demand prioritization, customer changing their location, or any problems in transportation are 

identified. The harmonized supply chain functions for improving 𝐸𝑓𝑖𝑛𝑡  in different time intervals. 
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These smart manufacturing units' processing sequence follows high data accumulation and response 
that is analyzed for planning redundant delivery at a given time interval and is estimated as 

𝐷𝐴(𝑡) =
𝑃𝐷𝑖(𝑑)

𝑡
∗ 2

𝑓

2 𝐿𝐶𝑉𝑥(𝑂𝑣 × 𝑡 − 2
𝑓)

𝑎𝑛𝑑

𝑅𝑆(𝑡) =
𝑆𝑃𝑗(𝑑)

𝑡
∗ 2

𝑓

2 𝐿𝐶𝑉𝑦(𝑂𝑣 × 𝑡 − 2
𝑓)}
 

 

                                            (6) 

Where, 

𝐿𝐶𝑉𝑥 = 𝑆𝑝𝑑(𝑡) ‖
𝑓

2
‖𝑇𝑅(𝑡)𝑂𝑣−1 

𝑎𝑛𝑑

𝐿𝐶𝑉𝑦 = 𝑆
𝑝𝑑(𝑡)−1 ‖

𝑓

2
‖𝑇𝑅(𝑡)𝑂𝑣−1

}                                                       (7) 

Where the integrated smart manufacturing features, such as accumulated data 𝐷𝐴 and response 𝑅𝑆 
from the IoT platform is analyzed continuously for improving supply chain management. Based on 

the supply allocation, small 𝐿𝐶𝑉𝑥  and large 𝐿𝐶𝑉𝑦  logistic carrying vehicles are provided for 

distribution. Similarly, the variables 𝑆𝑝𝑑(𝑡)  and 𝑆𝑝𝑑(𝑡)−1  used to denote the successful product 

delivery and failed delivery based on 𝑖 and 𝑗 is analyzed. The failure 𝑓 and overloaded manufacturing 

𝑂𝑣 are identified for controlling supply routes. The failed delivery is again delivered with an accurate 

location through federated learning for updating the customer's current location. Now, the redundant 

delivery planning for accumulated data analysis is expressed as  
 

𝐸𝑓𝑖𝑛𝑡[𝑆
𝑝𝑑(𝑡)] =

2
𝑓
2[(𝑂𝑣×𝑡)−2𝑓]

𝑡2
 [𝐿𝐶𝑉𝑥 + 𝐿𝐶𝑉𝑦]                                                (8) 

=
2
𝑓
2

𝑡
[∫

𝐿𝐶𝑉𝑥[(𝑂𝑣×𝑡)−2
𝑓]

𝑡

∞

0
𝑑. 𝑎𝑡 − ∫

𝐿𝐶𝑉𝑦[(𝑂𝑣×𝑡)−2
𝑓]

𝑡
𝑑. 𝑎𝑡 

0

−∞
]                      (9) 

As per the equation (8) and (9), the data analysis of the aforementioned failure-less supply 

distribution 𝐸𝑓𝑖𝑛𝑡[𝑆
𝑝𝑑(𝑡)] is processed through federated learning. After the supply allocation and 

delivery location is updated for identifying and reducing overloaded manufacturing at different time 

intervals. The learning process is presented in Figure 3. 

 

 

Figure 3: Learning Process.  
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The learning relies on 𝑅𝑆 and 𝑇 ∀ 𝑛(𝑝𝑒𝑥) from different 𝑃𝐷𝑖 and 𝑘 instances. Considering the learning 

across different 𝐷𝐴 (𝑡), the 𝑛(𝑝𝑒𝑥) is used for improving the supply chain. The requirements for 𝑅𝑆 
such that 𝑆𝑝𝑑(𝑡) is achieved through distinguishable 𝑅𝑆. If 𝑅𝑆 is not distinguishable, then 𝑘 data ∀ 𝑆𝑃𝑗 

and 𝑃𝐷𝑖  is required for improving additional analysis. Therefore, the learning is recurrent for 

improving the distribution (Figure 3). From this sequence, the sensed data from the smart industry 
can be classified into two segments: production and supply are analyzed for further supply planning. 
The above equations used to match the current production and supply data (𝜋𝑑) with previously 

accumulated data (𝜎𝑑) is computed as 

𝜋𝑑 =
1

2𝑁(𝑓×𝑡)
|∑ (𝑃𝐷𝑑 − 𝑆𝑃𝑑)𝑆

𝑝𝑑𝜃
 

𝑡
𝑖=1 | , ∀ 𝑘 = 𝑖 + 1, 𝑗 ∈ 𝑓

𝑎𝑛𝑑

𝜃𝑑 = −∑ 𝜋𝑑 𝑙𝑜𝑔 𝑆𝑃𝑑𝑖
ℎ𝑑
𝑖=𝐿𝑑

}                                     (10) 

In equation (10), the variable 𝜃  indicates the common supply point identification at different 

locations for optimal planning. Where ℎ𝑑 and 𝐿𝑑 are the high demand and low demand from the 

smart industry identified. The data analysis of 𝜋𝑑 identifies 𝜃𝑑 for the 𝐸𝑓𝑖𝑛𝑡[𝑆
𝑝𝑑(𝑡)] is computed as in 

equation (11) 

𝜃𝑑 [𝐸𝑓𝑖𝑛𝑡 (𝑆
𝑝𝑑(𝑡))] =

𝜋𝑑

𝑙𝑜𝑔[
𝑡

ℎ𝑑−𝐿𝑑
]
                                                             (11) 

Contrarily, the smart industries address the aforementioned failures and overloaded manufacturing 

using federated learning for redundant delivery with a common supply point based on demand 
analysis. The irrelevant data sensed from the industry caused redundant delivery (𝑅𝐷𝐷𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦) is 

expressed as in equation (11) 

𝑅𝐷𝐷𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 [𝜃, 𝑡, 𝐸𝑓𝑖𝑛𝑡 (𝑆
𝑝𝑑(𝑡))] = −∑ 𝑃𝐷𝑖 − ∑ 𝑆𝑃𝑗

𝑡
𝑗=1 − ∑ ∑ 𝑇𝑅𝑘ℎ𝑑

𝑡
𝑗=1

𝑡
𝑖=1

𝑓
𝑖=1

𝐼𝑛𝑠𝑡𝑒𝑎𝑑

𝑅𝐷𝐷𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 (𝜃 (𝐸𝑓𝑖𝑛𝑡 (𝑆
𝑝𝑑(𝑡))) , 𝜋𝑑) = {

−∑ 𝑇𝑅𝑘𝜃𝑖
1

𝐿𝐶𝑉𝑥
, 𝑖𝑓 𝑖(𝑡) ∈ [0,∞]𝑂𝑣

𝑡=1

−∑ 𝑇𝑅𝑘𝜃𝑗𝐿𝐶𝑉𝑦 , 𝑖𝑓 𝑗(𝑡) ∉ [0,∞]
𝑂𝑣
𝑡=1 }

 
 

 
 

         (12) 

This redundant delivery issue is prevented through a common supply point for optimal supply 

response based on 𝜋𝑑 [𝐸𝑓𝑖𝑛𝑡 (𝑆
𝑝𝑑(𝑡))] and 𝜃𝑑 for individual demand analysis at different time intervals. 

The learning paradigm helps to address redundant product delivery due to false supply allocation 

and delivery updates. The entire supply and delivery management process is analyzed depending 

on 𝜃𝑑 and 𝜋𝑑 [𝐸𝑓𝑖𝑛𝑡 (𝑆
𝑝𝑑(𝑡))] using federated learning and IoT accumulated data. In this sequential 

process, the integrated smart manufacturing features are independently analyzed at each for 
augmenting non-intervening efficiency. The demand satisfaction 𝐷𝑀𝑠 across various locations and 

transports is defined as per equations (13) and (14) for achieving both 𝜃𝑑 and 𝜋𝑑 [𝐸𝑓𝑖𝑛𝑡 (𝑆
𝑝𝑑(𝑡))] and 

the following sequence is expressed as 

𝐷𝑀𝑠[𝜃𝑑, 𝑡] =
𝑂𝑣

−𝑅𝐷𝐷𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦[𝜋𝑑,𝑡,𝐸𝑓𝑖𝑛𝑡(𝑆
𝑝𝑑(𝑡))]

∑ 𝑂𝑣
−𝑅𝐷𝐷𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦[𝜋𝑑,𝑡,𝐸𝑓𝑖𝑛𝑡(𝑆

𝑝𝑑(𝑡))]
𝑖

𝑓×𝑡
𝑘=1

                                (13) 

In equation (13), 𝑅𝐷𝐷𝑑𝑒𝑙𝑙𝑖𝑣𝑒𝑟𝑦[. ] represents the redundant delivery operation in both 𝜃𝑑 and 𝐷𝑀𝑠[. ] is 

the initial processing instance at  𝑡  intervals. Similarly, the learning paradigm extracts initial 

production, supply, demand, and distribution information analysis, and forecast data are expressed 
as 
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𝐷𝑀𝑠 (𝜋𝑑 (𝐸𝑓𝑖𝑛𝑡 (𝑆
𝑝𝑑(𝑡)))) =

𝑓
−𝑅𝐷𝐷𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦[𝜋𝑑,𝑡,𝐸𝑓𝑖𝑛𝑡(𝑆

𝑝𝑑(𝑡))]

∑ 𝑓
−𝑅𝐷𝐷𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦[𝜋𝑑,𝑡,𝐸𝑓𝑖𝑛𝑡(𝑆

𝑝𝑑(𝑡))]
𝑖𝑡

𝑘=1

                 (14) 

The above equation computes the learning paradigm extracted data and its supply point for 

satisfying the customer demand such that 𝑅𝐷𝐷𝑑𝑒𝑙𝑖𝑣𝑒𝑟𝑦 [𝜋𝑑 , 𝑡, 𝐸𝑓𝑖𝑛𝑡 (𝑆
𝑝𝑑(𝑡))] is computed to satisfy both 

the instance of production and supply. The industrial environment analysis helps to distinguish the 

supply routes based on industrial performance assessing time for optimal planning. The learning 
paradigm extracted data is processed through federated learning depending on availability 

improvements and exceptional connectivity. The constraints  𝑖 ∈ [0,∞] ,  𝑗 ∈ [−∞, 0],  and 𝑘 ∈ [∞,−∞] 
satisfy optimal supply response that indirectly represents redundant product delivery at a different 

time interval. The optimal planning for 𝐸𝑓𝑖𝑛𝑡 [𝐸𝑓𝑖𝑛𝑡 (𝑆
𝑝𝑑(𝑡))] is alone analyzed for achieving maximum 

demand satisfaction, whereas the different demands 𝐷𝑀𝑠[. ]
∗  from the customer is identified for 

achieving optimal supply response and controlling supply routes based on demand priority. 

Therefore, the previous smart industry data handle conventional IoT for further planning. Based on 

the condition, 𝑘 ∈ [∞,−∞] is considered. Besides, the redundant delivery planning is computed for 

minimizing overloaded manufacturing based on accumulated and extracted data from the smart 
industry and is analyzed for the condition. The efficiency improvement post the common point 

detection is presented in Figure 4. 

 

 

Figure 4: Efficiency Improvement and Common Point Detection. 

The 𝜋𝑑  ∀ 𝑇 × 𝑁 is used for classifying 𝑆𝑝𝑑 and 𝑓 ∈ 𝑡 under distinguishable 𝑗. This is identified in multiple 

𝑇 ∀ redundancy checks and hence 𝐸𝑓𝑖𝑛𝑡  (as is equation (8)] is estimated. Therefore the RDD and 𝐷𝑀𝑆 
are handled using 𝜃 identified for maximizing delivery. Further, (𝑖, 𝑗) is accumulated and analyzed for 

𝑇𝑅𝐾(𝑑) (Figure 4). The delivery rate and product availability are computed for improving supply chain 

management efficiency at the different intervals for further data analysis, and therefore, the 
accumulated data is not prolonged for failure identification. Further planning is used to forecast data 

and demand between smart industries and IoT platforms based on 𝑡. The demand satisfaction is 

maximized for optimal planning without increasing the assessing time and failures. The remaining 
data maximizes processing time based on supply and productivity to prevent overloaded 

manufacturing in smart industries. The changes in demand and supply distribution are updated using 
federated learning. Hence, the maximum delivery rate and product availability are computed to 

improve the supply chain and thereby reduce failures.  
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4 RESULTS AND DISCUSSION 

The proposed scheme is analyzed using the data provided in [30]. The data for location, production, 
demand, and distribution are used for analyzing the proposed scheme's performance. A cumulative 

set of 160 entries of the same is used for validating the scheme's efficiency. Based on the demand 

factor, the analysis for 𝑆𝑃𝑗  𝑅𝑆 are independently analyzed in Figure 5. 

 

           
Figure 5: 𝑺𝑃𝑗 and 𝑅𝑆 Analysis. 

The demand optionally increases the chances for 𝑆𝑃𝑗 and 𝑅𝑆 from the available supply plan. This 

supply plan is the combination of 𝑃𝐷𝑖 , 𝑆𝑃𝑗  and  𝑇𝑅𝑘  ∀ 𝑡. Therefore the 𝑛(𝑝𝑒𝑥) is either modified or 

increased to meet the 𝐷𝑀𝑠. Hence the learning identifies 𝐷𝐴(𝑡) or 𝜃𝑑 based on multiple factors over 

the distribution. This increases the 𝑅𝑆 from different locations along the 𝑓. This requires a changed 

route plan that is preferred using 𝜃 and 𝜋𝑑  (𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠). The change requirement process is illustrated 

in Figure 6. 
 

 

Figure 6: change Requirement Process. 
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As the 𝑓  increases as an adverse of  𝑆𝑠𝑝(𝑑), the change in  𝑛(𝑝𝑒𝑥) is required. Considering the 𝜃 
detection across multiple 𝑇, the new route plan through 𝑇𝑅𝑘(𝑑) is formulated. From the given data in 

[30], the actual delivery and succeeded delivery for the various 𝑇 are analyzed in Figure 7. 

 

           
Figure 7: Delivery and 𝜋𝑑 Analysis. 

The 𝑇 requirements are stabilized for maximizing various deliveries through multiple classifications. 

The 𝜃 detected improves the chances for 𝑛(𝑝𝑒𝑥) for better delivery and less failure. Therefore due to 

additional wait time or unavailability, the 𝑅𝑆 is less compared to the actual distribution. Therefore 

the combination of (𝑖, 𝑗, 𝑎𝑛𝑑 𝑑) are cumulatively analyzed for mitigating 𝑓 in the alternate plans. The 

𝜃 and 𝐷𝑀𝑆 for the varying 𝑡 ∈ 𝑇 is analyzed in Figure 8. 

 

      
                     Figure 8∶ 𝜃 and 𝐷𝑀𝑆 Analysis. 

The 𝜃 identification varies with the 𝑡 between consecutive 𝑇 such that the 𝐸𝑓𝑖𝑛 is retained over 𝑑. In 

the learning update, the redundant locations are precisely identified for preventing  𝑓  in the 

consecutive 𝑇. Therefore the 𝐷𝑀𝑆 satisfaction varies with the available inputs (i.e.) 𝑃𝐷𝑖 , 𝑆𝑃𝑗 and 𝑇𝑅𝑘 

across multiple 𝑅𝑆. This 𝑅𝑆 from 𝜎𝑑 is exploited in modifying 𝑇 through 𝑡. Thus 𝐷𝑀𝑆 is independently 

maximized for the varying plans by identifying 𝜃 (Figure 8). 
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4.1 Comparative Analysis Section 

Based on the above discussion, a comparative analysis is presented for the metrics of delivery rate, 
product availability, demand satisfaction, redundancy, and processing time. The variants are data 

accumulation (up to 100%) and supply plan (up to 14). The considered methods along the proposed 
scheme are MRM+AA [28], BWM+QFD [23], and ProChain [18]. 

4.2 Delivery Rate 

This proposed scheme achieves a high delivery rate in different manufacturing units based on product 
availability and supply distribution for improving supply chain management (Refer to Figure 9). The 

redundant delivery planning is made for multiple supply routes for demand prioritization is mitigated 
due to high supply allocation and delivery. The learning process identifies the overloaded 

manufacturing and redundant delivery in smart manufacturing units. Based on the augmenting 
different exceptional connecting and availability improvements are analyzed with the previous supply 
distribution data. 

 

          

                      Figure 9: Delivery Rate Analysis. 

This computation is performed for decision-making in both instances. Therefore, the identification of 
failure in smart manufacturing units improves the demand-supply point for preventing high 
processing time for accumulated data analysis, and hence optimal supply response is achieved. The 

different productivity and supply information is analyzed for further supply planning to prevent 
overloaded manufacturing. Therefore, the first production and supply are processed using the 

conditions 𝑖 ∈ [0,∞], 𝑗 ∈ [−∞,0], and 𝑘 ∈ [∞,−∞], the data accumulation from the IoT used to satisfy 

two different conditions for retaining the redundancy factor in this article. The proposed scheme 
analyzes the integrated smart manufacturing features to maximize product availability. 

4.3 Product Availability 

The product availability is high in this proposed article for improving smart manufacturing based on 

production to delivery routine is performed continuously and compared the features to other factors 
(Refer to Figure 10). In this manuscript, the data accumulation is analyzed for increasing product 
delivery rate through federated learning and reducing redundant delivery at any time interval. The 

non-intervening efficiency is improved based on a high delivery rate and product availability is 
achieved [as per equation (1)]. 
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Figure 10: Product Availability Analysis. 

The supply allocation and delivery updates are updated for identified sequence changes to augment 
product availability and exceptional connecting. In this proposed scheme, redundant delivery and 
supply point is identified for retaining that factor. Based on the data accumulation, the productivity 

and supply are computed in smart manufacturing to perform a continuous production to delivery 
routine. In this article, demand prioritization relies on accumulated data analysis; therefore, the 

harmonized supply chain management achieves less redundant delivery. 

4.4 Demand Satisfaction 

In Figure 11, the locations and vehicles' condition is verified for precise product delivery and the 

number of parcel exchange or supply distribution 𝑛(𝑝𝑒𝑥) in the individual smart industry is estimated 

at different time intervals 𝑎𝑡. The customer lifetime value for purchasing is also computed based on 

supply allocation and delivery update is observed from the IoT platform. 

            

Figure 11: Demand Satisfaction Analysis. 

http://www.cad-journal.net/


224 

 

Computer-Aided Design & Applications, 21(S4), 2024, 211-228 
© 2024 CAD Solutions, LLC, http://www.cad-journal.net 

 

 

In smart industries, overloaded manufacturing and redundant delivery are identified through 
federated learning. The forecast data and demand observed from the IoT platform are used to update 
the previous data with current product production, supply, demand, and distribution data at different 

locations. The federated learning and IoT accumulated data is processed for achieving optimal 

response from the IoT to smart industries with the condition of  𝛿(𝑃𝑟𝑑𝑡𝑝𝑢𝑟𝑐ℎ𝑎𝑠𝑒)𝑁𝑡  and 𝑀𝑎𝑥𝑚𝑟𝑘𝑡𝑁𝑡  is 

computed continuously. The manufacturing units and data utilization is identified through the 
learning process. This analysis is performed to prevent failures and redundant delivery based on the 

common supply point in smart industries.  

4.5 Redundancy 

The demand satisfaction across different locations and transportation are identified for ease of 

performing production to delivery in a routine manner for improving supply chain is illustrated in 
Figure 12. In this proposed smart manufacturing satisfies less redundancy in delivery is computed 
with available demand and forecast data through federated learning at different teaching intervals. 

In this instance, failure and overloaded manufacturing is addressed to prevent redundancy, followed 
by the common supply point based on demand prioritization. 

 

                        

Figure 12: Redundancy Analysis. 

The redundancy is mitigated due to identifying failures in parcel delivery, whereas the optimal 
planning is made for precise supply response during smart manufacturing is preceded using the 

above equation (6), (7), (8), (9), (10), and (11). The product availability and delivery rate in this 
proposed scheme are computed to enhance harmonized supply chain management. Instead, the 
accumulated data analysis for continuous manufacturing of products in smart industries prevents 

redundancy through learning. Based on the redundant delivery planning, the demand prioritization 
is confined. 

4.6 Processing Time 

In Figure 13, the learning extracts data from the IoT platform and then analyzes it for processing 
smart industries at different time intervals. Based on the manufacturing features, the production and 

supply are performed from heterogeneous locations to reduce overloaded manufacturing and 
redundant delivery in smart industries. The accumulated data from the IoT platform is analyzed 
through federated learning for improving supply chain management as it does not require a demand-

supply point for redundant delivery is identified through the learning process. 
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Figure 13: Processing Time Analysis. 

The demand and forecast data analysis is processed for all supply and delivery management. The 

aforementioned failures and overloaded manufacturing are addressed using federated learning for 
identifying redundancy and retained with a common supply point based on demand analysis. This 
overloaded manufacturing is addressed in smart industries leading to high processing time and 

demand prioritization. If accumulated data is analyzed in this model and hence high supply point is 
achieved. The successful production to delivery is performed by the proposed scheme, for which the 
proposed model satisfies less processing time. The comparative analysis results are presented in the 

following Tables 1 and 2. 

 
Metrics MRM+AA BWM+QFD ProChain HSMS 

Delivery Rate 0.705 0.775 0.891 0.9564 
Product Availability 0.652 0.746 0.826 0.9064 

Demand Satisfaction (/Plan) 0.942 0.891 0.838 0.7842 

Redundancy (/Plan) 6 5 3 2 
Processing Time (ms) 5427.18 4339.72 3013.8 1218.02 

 

Table 1: Comparative Analysis Results (Data Accumulation). 

Findings: The proposed scheme improves delivery rate by 8.3%, product availability by 8.25%, and 

demand satisfaction by 10.61%. HSMS reduces redundancy and processing time by 9.52% and 
11.9%, respectively. 

 
Metrics MRM+AA BWM+QFD ProChain HSMS 

Delivery Rate 0.726 0.781 0.886 0.9584 

Product Availability 0.628 0.737 0.837 0.9062 

Demand Satisfaction (/Plan) 0.943 0.909 0.852 0.7814 

Redundancy (/Plan) 6 4 3 1 

Processing Time (ms) 5385.0 4030.49 3054.65 1288.71 
                                  

Table 2: Comparative Analysis Results (Supply Plan). 
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Findings: The proposed scheme improves delivery rate by 8.04%, product availability by 8.71%, 
and demand satisfaction by 11.99%. HSMS reduces redundancy and processing time by 12.83% 
and 11.5%, respectively.  

5 CONCLUSION 

A harmonized supply management scheme by integrating the industrial internet of things and 

federated learning is proposed and discussed in this article. This scheme is designed to improve the 
demand satisfaction level of various distributions by accounting for the failure and redundancy in 
supply plans. To retain the routines' sustainability across multiple locations, the precise production, 

demand, and delivery data are accumulated through different responses and IoT devices. This 
information is classified for identifying common supply points for precise delivery management and 

prioritization. Therefore, consecutive deliveries are planned accordingly with fewer failures. In this 
classification and data analysis, federated learning is introduced such that the accumulated data is 
used for non-redundant deliveries and non-overloaded manufacturing. Therefore, the efficiency in 

the previous and current route plans is validated using supply and response data to prevent location 
dropouts across multiple plan intervals. The proposed scheme improves delivery rate by 8.3%, 
product availability by 8.25%, and demand satisfaction by 10.61%. HSMS reduces redundancy and 

processing time by 9.52% and 11.9%, respectively. 
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