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Abstract. In recent years, significant progress has been made in knowledge graph 
representation learning, which has shown promising results in knowledge 
computing applications such as relation extraction and knowledge reasoning. 

However, the unbalanced distribution of relations and entities in knowledge graphs 
leads to low training efficiency. To address this issue, this paper proposes a novel 

knowledge representation learning method based on entity distance classification. 
This method classifies entities based on their semantic distance on a specific 
relational plane, and employs different training strategies to increase the training 

opportunities for entities with low semantic distance differentiation. Moreover, the 
loss function is adjusted by introducing different residual weights, which allows for 
the allocation of different training opportunities to negative samples. The 

effectiveness of our approach is demonstrated by comparing it with mainstream 
knowledge representation models on various benchmark datasets. 
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1 INTRODUCTION 

In recent years, significant progress has been made in the theory and key technologies of 
knowledge computing, resulting in the construction of numerous knowledge graphs, such as YAGO 

[1], Freebase [2], DBpedia [3], Wikidata [4], NELL [5] and other general knowledge graphs of 
encyclopedias. Additionally, there are industry-specific knowledge graphs, such as the medical 
knowledge graph CEMRs [6]. Knowledge graphs offer a novel way of perceiving the real world. 

They usually organize knowledge in the form of the Semantic Web, where each node represents 
entities (countries, names, drugs, concepts, etc.), and each edge represents the relationship 

between entities (kinship, inclusion relation, etc.). This form describes the structured relationship 
fact between concrete entities and abstract concepts [7]. Therefore, most knowledge can often be 
represented as a triple (head entity, relation, tail entity), which corresponds to an edge in the 
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knowledge graph network and its two connected entities. In knowledge graph ( , , )G E R S , E  is 

the set of entities, R  is the set of relations. S E R E  is the set of fact triplets ( , , )h r t , where 

h , t , r  denote head entity, tail entity and relationship, respectively. For example, the triplet 

(diuresis, symptom of, glycuresis) indicates a "symptom of" relationship between "diuresis" and 

"glycuresis". 

Currently, knowledge graphs play an important role in many artificial intelligence tasks, such 

as entity recognition [8], semantic parsing, text classification, document summarization, subject 
indexing, intelligent recommendation [9][10], information extraction [11], and knowledge question 
answering [12]. 

The application of knowledge graphs still faces significant challenges, including data sparsity 
and computational efficiency [7]. However, the advancement of deep learning has led to the 
exploration of knowledge graph representation learning, which demonstrates a strong ability to 

represent knowledge in various applications such as relation extraction and knowledge reasoning. 
Knowledge representation learning (KRL) usually projects the semantic structure information of 

entities and relations into a low-dimensional vector space [13]. Compared with traditional 
representation methods, knowledge representation learning can represent the entities and 
relations more densely, thus reducing the computational complexity in application. In addition, the 

performance of knowledge acquisition, fusion and inference can be improved by effectively 
measuring the semantic relevance of entities and relationships in knowledge graphs. Based on the 

above advantages, knowledge representation learning develops vigorously in the application of 
knowledge graphs, and knowledge representation models keep emerging, such as TransE [14] and 
its derivative models [15][16], ComplEx [17], DistMult [18] and RotatE [19]. 

Although these models show their advantages and innovations in some aspects, they seldom 
consider the unbalanced distribution of entities under different relational semantic planes. 
Although these models demonstrate their advantages and innovations in some aspects, they often 

neglect the imbalanced distribution of entities across different semantic planes. During training, 
negative sample triples are constructed using substitution methods such as uniform random 

sampling of head and tail entities (unif) [14] or Bernoulli random sampling (bern) [15]. However, 
these methods do not consider the semantic distance between the substituted entities on a specific 
relational plane. For instance, the entities "male" and "female" have a high correlation with the 

relation "gender," and therefore, their semantic distance is close on the relation plane of "gender". 
When negative sample construction is performed on a positive triple (Diego Armando Maradona, 
gender, male), it may produce a negative triple (Diego Armando Maradona, gender, female), 

which is a high contribution rate negative sample. While the entity "Cardiopathy" and "glycuresis" 
are very relevant to the entity "Diego Armando Maradona" (they were the cause of death in Diego 

Armando Maradona), they are less relevant to the relation "gender". Therefore, the semantic 
distance in the "gender" relation plane is far away. The negative samples constructed from them, 
such as (Diego Armando Maradona, gender, Cardiona) and (Diego Armando Maradona, gender, 

glycuresis), are of low value. If these samples are extensively used for training knowledge 
representation learning models, it may reduce the training effect and learning performance of the 

model. 

To address the problem of low training efficiency caused by unbalanced distribution of entities 
in knowledge graphs, this paper proposes a knowledge representation learning method based on 

entity distance. Each relation in training samples is classified according to the affinity of semantic 
distance between entities on the relation plane. Different training strategies are adopted: entities 
with affinity (i.e., close semantic distance, with dense distribution, small differentiation) are 

trained more, while entities with sparsity (i.e., semantic distance is far away, sparse distribution 
and large differentiation) are trained less. This improves the training efficiency of the knowledge 

representation model. Additionally, the loss function of model training is optimized, and different 
residual weights are assigned to different entities to further enhance the predictive ability of the 
knowledge representation learning model. The effectiveness of this knowledge graph 

representation learning method is verified on general datasets. 
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The remainder of this paper is organized as follows. The next section introduces four scopes of 
knowledge representation learning, including vector representation space, score function 

definition, model training strategies, and negative sampling strategies; the section 3 elaborates on 
our knowledge representation learning method based on entity distance classification; the 

experimental part in section 4 compares the performance of our knowledge representation model 
with mainstream models, and verifies the validity of our method. Finally, we summarize our work. 

2 RELATED WORK 

Knowledge representation learning is a key area of research for knowledge graphs, with the goal of 
embedding knowledge into a low-dimensional continuous semantic space. Many models have been 
proposed, with a focus on vector representation space, score function definition, model training 

strategies, and negative sampling strategies. 

2.1 Vector Representation Space 

The real-valued vector space is widely used as a representation space for embedding entities and 
relationships. It allows entities and relations to be encoded as vectors or matrices and can capture 
relational interactions. TransE considers the relation r  as a transfer vector between the head 

entity vector h  and the tail entity vector t  for each triple and assumes h r t  holds. However, 

TransE has limitations in representing one-to-many and many-to-one relationships. To address 

these limitations, TransH introduces a hyperplane that projects the head and tail entities of a triple 
onto a relationship-specific hyperplane. TransR [16] further extends this idea by introducing a 
space for the separation of entities and relationships. Entities are projected into the relationship 

space using a projection matrix. Similar representation spaces are also used in other translation 
models, such as TransD [20], while semantic matching models prefer to employ pure vector 

spaces [21], and relational projection matrices [22].  

Expanding from a real-valued vector space to a complex vector space enables the 
representation of entities and relationships with richer representational capabilities. ComplEx uses 

the Hamiltonian product method to model symmetric and antisymmetric relationships. QuatE [23] 
extends the complex space to a quaternion space and combine head entities and relations by 
quaternion multiplication.  

KG2E [24] and TransG [25] use a Gaussian distribution to represent entities and a mixed 
Gaussian distribution to represent relational embedding. There are other representation spaces, 

such as the manifold represented by ManifoldE [26], and the group space represented by TorusE 
[27]. 

2.2 Score Function Definition 

The score function is used to measure the reliability of a triple, also known as the energy function, 
and is the foundation of an energy-based learning framework. The scoring function is usually 

divided into distance-based and semantic matching-based scoring function. 

The distance-based score function measures the semantic distance between two entities. The 
original SE model [28] utilized two mapping matrices and the L1 parametrization to learn the 

embedding representation of entities and relations. Then, variants and extended versions of the 
TransE model have been proposed. TransD constructs a dynamic mapping matrix. TransR projects 
the head entity and the tail entity from the entity space to the space of relations through a 

projection matrix. TransA [29] model replaces the Euclidean distance with the Mahalanobis 
distance to achieve adaptive metric learning. 

The semantic matching-based scoring function calculates the semantic similarity. DistMult [18] 
devises a simplified bilinear form by restricting the relational matrix to a diagonal matrix for multi-
relational representation learning. HolE [269] employs embedded cyclic correlation to learn the 

combined representation and capture interaction information in relational data. ANALOGY [269] 
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focuses on the inference of multiple relations, modeling the analogical structure of relational data. 
SME [30] calculates the semantic match between entity-relationship pairs. Finally, CrossE [31] 

introduces crossover interactions, using an interaction matrix to model the two-way interaction of 
entities and relationships.  

2.3 Model Training Strategies 

There are two typical training strategies in KRL, which are based on the margin-based loss [14] 
and based on the logistic loss [17]. 

The margin-based loss defines the loss function as the training criterion: 

 ( ) (0, ( , ) ( , ))r r

S S

L max f h t f h t  (2.1) 

where  denotes all parameters in the KRL model, , ,h r t  is a positive sample in positive 

sample set S , = , ,h r t  is a negative one in negative sample set S ,  is a margin 

separating them.  

The logistic loss define the loss function based on logistic regression: 

 ( ) log(1 exp( ( , ))) log(1 exp( ( , )))r r

S S

L y h t y h t  (2.2) 

where ( , )ry h t  denotes the energy of the triple , ,h r t , which can be defined as follows:  

 ( , ) ( , )r rh t fy h t c  (2.3) 

where c  is a bias constant. 

Some knowledge representation models, such as ConvE [32], RotatE [269], etc. also use other 
types of loss functions. For all these types of loss functions, specific regularizations can also be 
applied, such as L1 (or L2) on parameters or constraints. And all can be easily optimized for these 

loss functions by SGD, Adagrad, etc. 

2.4 Negative Sampling Strategies 

To use margin-based loss in knowledge representation learning, it is necessary to generate 

negative triples because only correct triples are included in it. Various methods have been 
proposed for generating negative samples. However, generating negative instance triples by 

uniform substitution may lead to invalid negative samples. TransH addresses this issue by 
assigning different weights to head and tail entity substitutions based on association features when 
generating negative instance triples. For instance, when replacing one side of relation 1 to n, it 

tends to replace one side of 1 instead of n to reduce the probability of generating an invalid 
negative instance triple. Negative samples for any triple of a specific relation can be generated by 
replacing the head entity with a certain probability and the tail entity with another probability. 

The quality of the generated negative samples is also crucial, and several adversarial learning 
techniques are introduced for negative sampling. For instance, KBGAN [33] uses a probability-

based log-loss embedding model for its generator, while RotatE proposes self-adversarial negative 
sampling based on its scoring function. 

Trouillon [17] suggest that generating more negative samples generally results in better 

predictive results, and a good compromise between accuracy and training time is to have 50 
negative samples per positive sample. 

3 OUR METHOD 

In this paper, we propose a knowledge representation learning method based on entity distance, 
which consists of five steps: (1) Initializing the vector representation of entities and relationships 
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in the training sample of the knowledge graph; (2) Classifying all entities according to their 
semantic distances for each relationship semantic plane in the training sample; (3) Generating 

negative samples using different strategies based on the entity semantic distance classification in 
step 2; (4) Optimizing the loss function of training by introducing residual weights; (5) 

Substituting triples in knowledge graph datasets into the model for training and solving the 
representation vectors of entities and relations. The algorithm flow is shown in Figure 1. 

 

Initialize the representation vector 

of each r and e in Datasets

According to semantic classification 

of e, different negative samples 

generation strategies are adopted in 

training

Optimize training loss function by 

introducing residual weight

Solve vector through model training

For each semantic plane of r, each e 

is classified by its  semantic 

distance

 

 
Figure 1: Flow chart of knowledge representation learning method based on entity semantic 

distance classification. 

 

The method improves the set used to construct negative samples by the distance difference 

between entities, which makes the construction of negative samples more efficient. More training 
opportunities are allocated to entities that are closer, and different weights are set in the loss 
function for different affinities to improve the training efficiency of knowledge representation 

learning. The proposed method is described in detail below. 

3.1 Entity and Relationship Initialization 

Firstly, it is necessary to vectorize the relationships and entities in the training sample data of the 

knowledge graph. Let the entity set be 1 2, , , nE e e e  , where 
ie  is representing an entity in the 

entity set E . Similarly, there is the set of relations 1 2, , , mR r r r  , where 
ir  represents a relation 

in the set of relations R . Thus, the knowledge graph is 
, ,
= , , , , ,

h r t
S h r t h t E r R . Depending on 

the selected representation space, each element in the entity set E  and the relationship set R  

can be vectorized. 
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3.2 Entity Classification based on Semantic Distance 

For each relationship r r R  in the training sample data, i.e., the knowledge graph 
, ,h r t

S  (which 

can be abbreviated as the set of triples S ), search the knowledge graph to find all triples that 

contain the relationship r . Put the head and tail entities that appear in these triples into set S , 

and put the entities that do not appear in these triples into set S . 

Specifically, for each relationship r r R , scan the knowledge graph to find all triples , ,h r t  

that contain the relationship r , and put the head entity h  and tail entity t  of these triples into set 

rE . Then, 
rE  can be found r rE E E . 

For example, for the triple , ,h r t  in the knowledge graph 
, ,h r t

S  (which can be abbreviated as 

the set of triples S ), the vector corresponding to the head entity h  (h E , italicized by h  ) is h  

(bolded h  denotes the vector), the vector corresponding to the relationship r  ( r R , italicized by 

r  ) is r  (bolded r  denotes the vector), and the vector corresponding to the tail entity t  ( t E , 

italicized by t  ) is t  (bolded t  denotes the vector). 

For each relation r r R , the set of entities E  is divided into rE  and rE . The entities in the 

entity set rE  appear in the triples of relations r  in knowledge graph, i.e., 

, , , , , , ,rE e e E h t E h r e S e r t S . rE  is the complementary set of rE , i.e., r rE E E . 

3.3 Negative Sample Construction Based on Semantic Distance Classification 

In the early negative sample construction methods, for the correct triple , ,h r t  in the training 

sample data, the head entity h  or tail entity t  is replaced by a random entity with a new head 

entity h  or tail entity t , where h  and t  are also belonged to the set of entities E , but it did not 

distinguish whether the replacement entity ( h  or t ) ever appeared at this location. 

The improvement idea of this method in negative sample construction is to provide more 

opportunities to select entities in set rE  for constructing negative samples in each training epoch, 

and less opportunities to select entities in set rE . This idea comes from the training of students to 

do multiple-choice questions in the real world. For example, the question "What was the cause of 
Maradona's death?", if the answer options are set to "Cardiopathy, Penicillin, Metronidazole, 
Norfloxacin", the student can easily select the correct answer "Cardiopathy". However, if the 

answer options are set to "Cardiopathy, HIV, COVID-19, Leukemia" (all of which were possible 
fatal diseases), it will obviously be more difficult for students to choose the correct answer. This is 
because the semantic distance between "Cardiopathy" and "Penicillin", "Metronidazole", and 

"Norfloxacin" will be farther, while the semantic distance between "Cardiopathy" and "HIV", 
"COVID-19", and "Leukemia" will be closer. Therefore, training on positive and negative samples 

with closer semantic distances (confusing options and easy-to-make-mistakes multiple-choice 
questions) can improve the accuracy of semantic reasoning through semantic distance calculation 
in subsequent stages. 

The steps to implement the improvement idea for negative sample construction are as follows: 

1) Given the sets rE  and rE , assign a probability  (  is a real number and ，0 1 ) to 

each of them. Take a random value 0,1pr , if 0,pr , select an entity from the set rE  to 
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construct a negative sample; otherwise, select an entity from the set 
rE  to construct a negative 

sample. 

2) After selecting an entity, replace the head or tail entity in the original triple using Bernoulli 

random sampling to construct a negative sample, and ensure that the constructed negative triple 
does not exist in the knowledge graph. 

3) For each triple in the knowledge graph S  containing the relation r , the following two 

quantities are counted: 

a) The average number of tail entities corresponding to each head entity, denoted as 

_ _tail per head ; 

b) The average number of head entities corresponding to each tail entity, denoted as 

_ _head per tail . 

Thus, the probability  of replacing the head entity can be calculated as 

 
_ _

_ _ _ _

tail per head

tail per head head per tail
 (3.1) 

4) Take a random number 1 [0,1]pr . If 1 0,pr , replace the head entity h  in the original 

triple , ,h r t  to generate a negative sample , ,h r t , and ensure that , ,h r t  is not in the knowledge 

graph S ; otherwise, replace the tail entity t  in the triple , ,h r t  to generate a negative sample 

, ,h r t  and ensure that , ,h r t  is not in the knowledge graph . 

3.4 Loss Function Optimization 

In this section, the loss function is optimized based on the difference in entity distance to improve 
training efficiency. 

The Margin Loss Function is a commonly used loss function defined based on SVM (Support 

Vector Machine). It can establish a gap to separate positive and negative samples, where  
represents the gap distance. In each training iteration, it stretches positive and negative samples 
based on the gap by computing the loss function. 

Our method improves the Margin Loss Function by introducing different stretch rate weights. 

Two residual weights,  and , are introduced to produce different stretching effects on the 

distance between positive and negative samples generated from two entity sets rE  and rE  

during model training. The aim is to assign different stretching rates to negative samples that are 

easily confused when constructed from rE , because they have more training opportunities, so the 

stretching rate is lower; while negative samples that are easily distinguished when constructed 

from rE , because they have fewer training opportunities, so the stretching rate is higher. Setting 

different stretching weights is also a way to allocate different balances to negative instance 
construction opportunities. 

The improved loss function is defined as: 

http://www.cad-journal.net/
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, , , ,

, , , ,

, , , ,

, , , ,

2 2

2 2

, ', '

, ", "

1 1

h r t h r t

h r t h r t

r r
h r t S h r t S

r r
h r t S h r t S

e E r R

L f h t f h t

f h t f h t

e r

 (3.2) 

where the operator max(0, )x x  , the operator 
2

2
x  denotes the L2 distance squared of the 

vector x , 
, ,h r t

S  denotes the set of triples existed in the knowledge graph. 
, ,h r t

S  denotes the set of 

negative sample triples generated by selecting and replacing entity in 
rE , and 

, ,h r t
S  denotes the 

set of negative sample triples generated by selecting and replacing entity in 
rE . 

( , )rf h t  indicates the value of the scoring function of the knowledge representation model (If the 

TransE is introduced into our method, 
1/2

( , )rf h t h r t ; If the RotatE is applied, 

1/2

( , )rf h t h r - t  and  is Hadmard products). ( , )rf h t  and ", "rf h t  indicate the scoring functions 

for constructing negative triples of entities from the sets rE  and rE , respectively. 
rw  is the 

standard vector of the hyper plane of a particular relation. rw  is the transpose of the vector 
rw . 

The operation symbol 
1/2

 indicates the L1 or L2 distance of the calculated vector.  and  

denote the weight of the scoring function for constructing negative triples from the set of S  and 

S , respectively.  is a constant to separate positive and negative samples. The tail term 

2 2

2 2
1 1

e E r R

e r  is used to prevent over-fitting during the training process. 

Then, the improved model can be optimized using SGD, Adagrad, Adam, etc. All the triples in 

the knowledge graph are trained according to the loss function and the loss function is optimized 
based on the difference in entity distances. Finally, representation vectors of all entities and 
relations are obtained. 

4 EXPERIMENT 

In this section, we validate the proposed knowledge representation learning method through link 
prediction task on multiple benchmark datasets. We also investigate the impact of parameter 

changes in the proposed model on the performance of the knowledge representation. First, 
commonly used knowledge graph benchmark datasets are introduced. Then, the evaluation 

protocol and implementation are described in the experimental settings. By performing a 
comparative analysis of the experimental results, we demonstrate that the proposed approach 
based on entity semantic distance classification is successful in enhancing performance. 

4.1 Datasets 

The datasets commonly used in knowledge representation learning research include Freebase [2], 
WordNet [34], YAGO [1], and others. In order to conduct objective experimental comparisons with 

a wider range of representation models, we use five widely chosen datasets, namely FB15k, 
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WN18, FB15k-237 [35], WN18RR, and YAGO3-10 [32], to evaluate our method, as detailed in 
Table 1. 

FB15k, WN18, and YAGO3 are subsets extracted from Freebase, WordNet, and YAGO, 
respectively. They are constructed as performance benchmarks for knowledge representation 

learning. WN18 and FB15k have test set leaks due to the presence of inverse relations. Knowledge 
representation learning employs a simple rule-based model, and state-of-the-art results can be 
obtained as well. As a subset of FB15k, the inverse relation of FB15k-237 is removed. Similarly, as 

a subset of WN18, the inverse relations in WN18RR [32] have also been removed. Therefore, the 
key to link prediction in FB15k and WN18 is modeling and inferring symmetric/asymmetric and 
inversion patterns, while the key to link prediction in FB15k-237 and WN18RR can be attributed to 

modeling and inferring their symmetry/asymmetry and composition patterns. 

 

Dataset #Ent #Rel #Train #Valid #Test 

FB15k 14,951 1,345 483,142 50,000 59,071 

WN18 40,493 18 141,442 5,000 5,000 

FB15K-237 14,541 237 272,115 17,535 20,466 

WN18RR 40,493 11 86,835 3,034 3,134 

YAGO3-10 123,182 37 1,079,040 5,000 5,000 

 
Table 1: Datasets used in the experiment. 

4.2 Experiment Settings 

We traverse all the triples in the test set and replace the head entity of each triple with all other 

entities in the entity set one by one. These constructed triples are then scored by the score 
function defined by the model and sorted in ascending order. So we obtain the rank of the correct 
entity. The process is then repeated by replacing the tail entity. We calculate the proportion of 

correct entities ranked in the top N based on this procedure. Considering that the invalid negative 
triples constructed by the above method may be in the training and validation sets, they may rank 

above the test triples and affect the experimental results. These triples should not be considered 
as errors, because they are correct along with the original triples. Therefore, we delete those 
constructed invalid negative triples that appear in the training, validation, or test sets to ensure 

that they do not affect the final experimental results. In this setup, we calculate the proportion of 
correct entities ranked in the top 10/1 (Hits@10, Hits@1). We also calculate the mean rank (MR) 
and mean reciprocal rank (MRR) of the test triples in this setup. 

The parameters that need to be set in the experiment include: the dimension of the vector m , 

the batch size, the training epochs and the margin hyperparameter . 

Additionally, for our method, we need to experimentally determine the assignment probability 

 of sets rE  and rE , where  are real numbers, and ，0 1 . When calculating the loss 

function,  and  denote the weight of the scoring function when selecting triples from S  and 

S  sets to construct negative samples, respectively. 

The dimensions m  are in the range {100, 200, 512, 1024}. The training rounds are in the 

range {1000, 3000, 6000}. The batch size is in the range {100, 200, 400}. The assignment 
probability  is in the range {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The interval parameter  

is in the range {1.0, 2.0, 4.0, 8.0}. The parameter pair ,  is in the range {(1, 1), (1, 3), (3, 1), 

(1, 5), (5, 1), (1, 7), (7, 1), (1, 10), (1, 1)}. 
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4.3 Results 

In this paper, TransE and RotatE models are introduced into our method, and the improved models 

are DC-TransE and DC-RotatE models. 

(1) Study the impact of the model parameters  and ,  on prediction performance. 

As shown in Figure 2, we explore the performance changes (Hits@10) of the DC-TransE and 

DC-RotatE models with varying values of the parameter  within the range of [0, 1.0]. When  is 

between [0, 0.1], the predictive ability of the model shows an upward trend, while performance 
gradually declines for  in the range (0.1, 1]. Although 0.1 is the smallest value of  , it should 

be considered in real-world datasets because they are often sparse and have a long-tail 
distribution, such as FB15k. The proportion of the number of entities associated with relationships 

(i.e., the number of entities in rE ) to the total number of entities is less than 1%. For example, in 

FB15k, among 1345 relationships, only 279 relationships have a proportion of the number of 
entities associated with them and the total number of entities greater than 1%, which accounts for 
only 21% of the total number of relationships. Therefore, 0.1 substantially increases the training 

opportunities for entities in rE . The experimental results validate our viewpoint: by increasing the 

training opportunities for entities with low discriminability of semantic distance, the link prediction 
accuracy of the knowledge representation learning model can be effectively improved. However, 

excessive increases may also reduce the link prediction performance. For example, when 
increasing ω to 0.7 and 0.9, the prediction performance decreases significantly. This indicates that 
although improving the model's discriminative ability for entities with similar semantic distances, it 

may lose its discriminative ability for entities with distant semantic distances. For example, when 
predicting the tail entity of the triple (Diego Armando Maradona, cause of death, ?), the model's 

discriminative ability is enhanced for entities such as "Cardiopathy", "glycuresis" and "diuresis" due 
to increased training opportunities. However, its discriminative ability is weakened for entities that 
have not appeared or been trained, like "male". Moreover, such entities with distant semantic 

distances may exist in large numbers, which is also due to the sparsity of knowledge graphs and 

the fact that the number of entities in rE  is often greater than rE . 

 

 

Figure 2: The link prediction performance changes (Hits@10) of the DC-TransE and DC-RotatE 
models within the range of [0,1.0] for the parameter . 
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Furthermore, through experiments, we find that when , good results can be achieved, 

particularly with , = 1,5 . This validates our previous viewpoint: for negative samples that are 

easily confused and constructed from rE , lower stretching rates can achieve better performance 

because they have more training opportunities; for negative samples that are easy to identify, 
higher stretching rates are more appropriate because they have fewer training opportunities. The 
tuning optimization of the parameters  and  essentially balances the training opportunities for 

different entities adjusted by . 

(2) In Table 2, the performance of DC-TransE and TransE are compared on WN18 and FB15K. 

In Table 3, the performance of DC-RotatE and mainstream models are compared on WN18RR, 
FB15K237 and YAGO3-10. The experimental results demonstrate that our improved approach, 
which is based on entity distance, can effectively enhance the link prediction ability of the 

knowledge representation model by increasing the training opportunities of easily confused 
entities. 

 

Model 

WN18 FB15K 

MR Hit@10 MR Hit@10 

TransE 251 .892 125 .471 

DC-TransE 265 .947 68 .853 

 

Table 2: Entity Prediction Experiment Results compared DC-TransE with TransE. 

 

Model 
WN18RR FB15K237 YAGO3-10 

Hit@1 Hit@10 Hit@1 Hit@10 Hit@1 Hit@10 

DistMult .397 .502 .224 .490 .413 .661 

ComplEx .425 .521 .257 .530 .505 .704 

ConvE .390 .508 .219 .476 .400 .658 

RotatE .426 .574 .238 .533 .405 .670 

DC- 

RotatE 
.425 .582 .246 .535 .419 .681 

 
Table 3: Entity Prediction Experiment Results compared DC-RotatE with mainstream KRL 

 

 (3) Our method can effectively improve the modeling ability of RMP. Similarly, Table 4 reports 

the detailed RMP results of DC-TransE and TransE on FB15K. In all types of RMP, DC-TransE 
improves over TransE, especially in the challenging tasks of tail prediction for 1-n and head 

prediction for n-1.  

 

Task RMPs TransE DC-TransE 

Predicting Head/Tail 1-to-1 .437/.437 .894/.879 
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(Hits@10) 1-to-N .657/.197 .972/.671 

N-to-1 .182/.667 .567/.964 

N-to-N .472/.500 .880/.910 

 
Table 4: Comparing the RMP performance of DC-TransE and TransE on FB15k. 

 

Similarly, in Table 5, we observe the same trend in the comparison of detailed RMP results of DC-

RotatE and RotatE on FB15K237. This further validates that more distinctive training between 
entities with close semantic distances can effectively improve the prediction accuracy of 1-n and n-
1, thus leading to better modeling ability of RMP.  

 

Task RMPs RotatE DC-RotatE 

Predicting 

Head/Tail 
(MRR) 

1-to-1 .498/.490 .516/.505 

1-to-N .475/.071 .483/.089 

N-to-1 .088/.747 .107/.779 

N-to-N .260/.367 .295/.386 

 

Table 5: Comparing the RMP performance of RotatE and DC-RotatE on FB15k-237. 

5 CONCLUSION 

 At present, knowledge representation learning techniques are improving in knowledge completion 

and semantic reasoning. However, they do not consider that the distribution of entities on the 
semantic plane of a particular relationship is unbalanced, and the semantic distance between 
entities has different effects on the training process. For example, when constructing a negative 

sample for a triple (Diego Armando Maradona, gender, male), it may produce a negative fact 
(Diego Armando Maradona, gender, female). But if we heavily choose low-value negative samples, 

such as (Diego Armando Maradona, gender, Cardiopathy) and (Diego Armando Maradona, gender, 
glycuresis), it is not conducive to the improvement of training effect and prediction performance of 
knowledge representation model. 

In order to solve the problem of low training efficiency caused by the imbalance of relationship 
and entity distribution in knowledge graph, this paper proposes a knowledge representation 

learning method based on the idea of training students to do multiple choice questions in daily life. 
The proposed approach involves conducting entity classification based on the "affinity and sparse" 
semantic distance of entities on a specific relation plane and adopting different training strategies. 

More training is given to entities that exhibit "affinity" (close semantic distance, dense distribution, 
and low differentiation), while less training is provided to those with "sparse" (far semantic 
distance, sparse distribution, and high differentiation). The loss function introduces different 

residual weights, adjusting the tensile rates of negative and positive samples with varying values 
by setting the weights. This approach aims to provide more training opportunities and lower tensile 

rates to the easily confused negative samples (high-value negative samples). Conversely, for 
easily recognized negative samples (low-value negative samples), fewer training opportunities are 
provided, and the tensile rate is improved. The use of different stretch weights serves as a balance 

to allocate different training opportunities to negative samples. Finally, the effectiveness of the 
proposed method is verified by comparing it with mainstream knowledge representation models. 
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