
265

Computer-Aided Design & Applications, 21(S9), 2024, 265-276
© 2024 U-turn Press LLC, http://www.cad-journal.net

Enhancing Load Balancing in Computer-Aided Medical Systems

Using Deep Reinforcement Learning

Yi-Xiao Wang1* , Wen-Jian Tao2 , Shao-Peng Zhao3 and Yan-Ping Zhang4

1,2,3Purification equipment research institute of CSIC, Handan 056027, China

shawn_wang123@163.com, 2489455090@qq.com,3915069571@qq.com
4Harbin Engineering University, Harbin 150000 China

4zhangyanping19@hrbeu.edu.cn

Corresponding author: Yi-Xiao Wang, shawn_wang123@163.com

Abstract, The service mesh is the most well-known framework for developing
network applications because it separates governance and business logic in

microservices and achieves unified governance of heterogeneous systems. The
Service Mesh has a more complicated topology structure than the typical
microservice design, which makes it harder to keep the load balance. The present

Service Mesh load balancing technique is rather straightforward, merely taking into
account the current load status of each individual node and disregarding the mutual

load impact across nodes. This paper proposes a load balancing method based on
multi-agent reinforcement learning to address the aforementioned issues. This
method turns the Service Mesh load balancing problem into a random game process,

builds an Actor-Critic network to simulate the service mesh multi-resource scheduling
strategy, and uses the Multi-Agent Deep Deterministic Policy Gradient (MADDPG)

algorithm to determine the best multi-resource scheduling strategy. The Istio
framework is utilized in this study to create a service mesh environment, and the
test results demonstrate that the suggested approach can produce faster response

times.

Keywords: Service Mesh; Loading Balance; Multi-Agent Reinforcement Learning;

MADDPG; Computer-Aided Medical Systems
DOI: https://doi.org/10.14733/cadaps.2024.S9.265-276

1 INTRODUCTION

With the development of Internet application technology, more and more developers abandon the

single service architecture and use the micro-service architecture, but the microservice architecture
combines business logic and service discovery, service registration, service meltdown and other
services governance logic, resulting in the whole framework not easy to manage, increasing the

burden of developers, while bringing difficulties to the platform upgrade.

http://www.cad-journal.net/
mailto:shawn_wang123@163.com
mailto:shawn_wang123@163.com
https://orcid.org/0009-0005-7318-9363
https://orcid.org/0009-0003-2756-6944
https://orcid.org/0009-0003-9018-7277
https://orcid.org/0009-0008-8048-4290

266

Computer-Aided Design & Applications, 21(S9), 2024, 265-276
© 2024 U-turn Press LLC, http://www.cad-journal.net

Service mesh[10] is an independently run application service, providing a secure and efficient
communication infrastructure layer between application services, able to use complex service
topology structure, to reliably transmit various needs. The Service Mesh helps to develop and

operate bugs, and developers no longer need to write and maintain policies and network codes in
their applications, which are transferred to service agents and Service Meshs control planes,

provided and dynamically managed by them. Service Mesh agents constitute a complex network
topology structure, and in order to avoid traffic congestion and traffic abnormalities caused by
complex networks, Service Mesh needs a reliable load balance strategy.

Load forecasting improves the system load balance capability by predicting the load of the
application system[15], and has therefore been a research hotspot in the field of micro-services.

Yoon[19] argues that the number and type of requests received by the application service system
varies continuously over time, i.e. the load of the working system is about the function of time, and
there is a specific connection with time, so it can be predicted by collecting information about the

characteristics of the load in time. computer-aided medical systems, such as fluctuating workloads,
resource heterogeneity, and the need for low-latency processing.

Current load prediction methods are mainly based on probability statistics and two main

categories based on neural network models [11] [4].In traditional statistics, there is a predictive
load based on index smoothing[8], a prediction load of the self-regression linear (AR) model based

on particle filtration[12], a predicted load of a self-regression moving average based on a smooth
load[16], a differential-integrated self-reflexive moving average model predicting load[2], and a
forecasting load of an index-based smooth and self-recursive fusion prediction model[3].

With the development of neural networks and the widespread application of big data, a large
number of scholars have begun to study predictive models based on neuronal networks. For
example, using the CNN network for load prediction[9] [18], using the RNN network prediction

model[14], learning dynamic time characteristics using memory units, and load predictions through
the LSTM/GRU network[20] [21].

This article will strengthen the introduction of learning into load balance algorithms, and
proposes a load prediction algorithm based on multi-agent reinforcement learning[7], which can
make decisions through independent learning network environment, comprehensive consideration

of time delay and bandwidth and other factors, so as to avoid excessive traffic of a certain link
leading to load imbalance, thereby improving the quality of the network service.

2 RELATED WORK

2.1. Service Mesh

Service Mesh is an infrastructure layer used to handle communications between microservices. The
application has a complex micro-service topology, and the Service Mesh is responsible for the reliable

delivery of requests in the topology. In actual development, a Service Mesh is a set of lightweight
network agents deployed together with application services, and is transparent to application

services.

The structure of the Service Mesh, as shown in Figure 1, adopts the edge car mode, providing
an agent for each microservice, responsible for communication, deployment policy and configuration

in the control plane.

http://www.cad-journal.net/

267

Computer-Aided Design & Applications, 21(S9), 2024, 265-276
© 2024 U-turn Press LLC, http://www.cad-journal.net

The request only needs to be sent to the local service mesh agent by the application acting as
the microservices' initiator; subsequent actions will then be taken by the grid agency, such as
forwarding the request to the intended microservice after determining the load balance.

Figure 1: Microservice workflow diagram.

The network structure of the nodes in the Service Mesh forms a complex topological network, so
that the difficulty of service governance is increased, so the load balancing technology becomes the
key, and the load balance technology can effectively reduce the delay of requests, improve the

reliability of the micro-service architecture and resource utilization rate.

2.2. Reinforcement Learning

Reinforcement learning is a class of algorithms in the field of machine learning, which mainly focuses
on how intelligences take different actions in the environment to maximize the cumulative rewards

in enhanced learning, intelligence by continuously trying to randomly operate, interact with the
environment, and get feedback from the environment and then based on feedback decide the next
operation, and ultimately through constant iteration of learning, to get the best solution.

Q learning is a model-free algorithm[17] that assumes that in the set of states S and set of
actions A, Q is the expected return that action a(a ∈ A) can obtain under the state s(s ∈ S) at a given

moment, Q(s, a).The main idea of the Q-learning algorithm is to build states and actions into a table

to store Q values, and then select the actions that will get the most outcomes based on Q-values.

In the service mesh, the process of calling the service is a limited Markov process. When the
nodes in the service mesh are called, the status of the services grid will change, at which time the
call can obtain a feedback value for the current real-time load state, which can be considered a

reward function value. The higher the feedback value, the greater the likelihood that the strategy
will be implemented the next time.

At time t, the service mesh chooses the node to be called, which changing the service mesh

status from St to St+1, and the system feedback value is represented as:

r(t) = r(St, 𝑆𝑡+1) (1)

http://www.cad-journal.net/

268

Computer-Aided Design & Applications, 21(S9), 2024, 265-276
© 2024 U-turn Press LLC, http://www.cad-journal.net

St is the Service Mesh state before the call, and 𝑆𝑡+1 is the services mesh status after the call. r(.) is
used as reword function.

In the Service Mesh, the Q learning algorithm can obtain the optimal value function by numerical
iteration, and the inferential formula for the Q matrix is as follows:

Qk+1
∗ (𝑆, 𝑆′) ←∑𝑃(𝑆′|𝑆)[𝑟(𝑆, 𝑆′) + 𝛾max𝑄𝑘

∗(𝑆, 𝑆′)]

𝑆′

(2)

𝑆,𝑆′ represents the state of the environment after a service call, γ is the discount factor, 𝑄∗ is the

maximum expected return that the Service Mesh can get after the service call; 𝑟(𝑆, 𝑆′) is the

immediate gain, and 𝛾max 𝑄𝑘
∗(𝑆, 𝑆′) is the future discount gain.When the discount factor tends to 0

indicates that the reward value of the current behavior is considered more in decision-making, and

the proportion of the rewards of the next behaviour is greater when approaching 1.

3 LOADING BALANCE METHOD BASED ON MULTI-AGENT REINFORCEMENT LEARNING

3.1. Multi-Agent Model on Service Mesh

The process of random play can be viewed as a Markov process, in which multiple intelligences make
action decisions many times in multiple states. Each intelligence makes the best action decisions to

enhance its value function based on its state, by observing the environment and forecasting the
movements of other intelligence bodies.

Based on deep intensive learning techniques, the definition problem is modeled for ℬ = {1,2,… , B}
，using the Malkov decision-making process G = {ℬ, Ŝ, Â, P̂, Û}.

The state space Ŝ refers to any microservice b having a state Ŝb,t at time t, including the CPU

usage share, memory use share, IO read-write rate, network bandwidth, end-to-end latency of

microservices applications, and request load changes of microservice b.

The action space Â represents that the independent action space for any micro-service b is Âb,
representing the resource quota used by any micro service; the joint action space of G is Â =
Â1 × Â2 ×…× ÂB, where Âi represents the activity space for microservices i, and ÂB represents activity

space of microservice B; the independent actions of any microserve b include changing the use share
of the CPU, memory usage share, IO rate, and network bandwidth.

The reward function Û is the moment when t, any micro-service b is targeted by the state S, (b,

t), the action A, (b, t) is taken to evaluate any microservice b is generated by action A. (b), (t) the
rewards function is set to:

reward =

{

𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝑆𝐿𝑂
+ 𝜃1 ∗∑ ∑

𝑅𝑒𝑠𝑢𝑖𝑗
𝑅𝑒𝑠lim𝑖𝑗

 𝑖𝑓(𝑙𝑎𝑡𝑒𝑛𝑐𝑦 < 𝑆𝐿𝑂)
𝑟

𝑗

𝑚

𝑖

−𝜃2 ∗
𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝑆𝐿𝑂
 𝑒𝑙𝑠𝑒

(3)

𝑅𝑒𝑠𝑢𝑖𝑗 represents the use share of microservices i and j resources, 𝑅𝑒𝑠lim𝑖𝑗
 indicates the share limit of

resources in microservice i and j, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 indicates current microserve application end-to-end delay,

http://www.cad-journal.net/

269

Computer-Aided Design & Applications, 21(S9), 2024, 265-276
© 2024 U-turn Press LLC, http://www.cad-journal.net

𝑆𝐿𝑂 is a service level target, 𝜃1、𝜃2represents a set overweight parameter, m is the number of micro-

services, and r is the amount of resources used by micro-service i.

State transfer probability 𝑃̂ refers to the selection of algorithms based on determination

strategies, which are unique to state s, the resulting action a, which the presence of uθ(𝑠) = 𝑎.

3.2. Actor-Critic Algorithm Based on Multi-Agent Deep Deterministic Policy Gradient

This article uses The Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to determine the
allocation of resources for microservices. The algorithm can give the best action in a competitive

environment, using only local information. In order to find the best load balancing strategy under
the service mesh, this article combines the advantages of the deep Q-network(DQN)[5] and the

Actor-Critic framework[6] to build an actor-critic network, as shown in Figure 2, 3 to implement
service resource allocation decisions.

DQN is a value-based algorithm rather than a policy-based algorithm. It is not a strategy, but a

critical one. Critical does not take actions directly, but evaluates the quality of actions

Practical methods for reinforcement learning frequently employ the Actor-Critic algorithm
architecture. This framework combines the most often used framework for practical issue solving,

the policy search method, and the value function estimation algorithm.

The three following traits apply to the MADDPG algorithm: (1) By learning the best approach,

the best action can be applied using only local knowledge. (2) It is not necessary to be familiar with
the dynamic environment model and particular communication requirements. (3) The method is
applicable not only in a collaborative setting but also in a hostile one.

Figure 2: The actor network.

In training process, the actor network outputs actions at based on pre-processed information

collected as state st. The critic network evaluates the actions of the actor network based on the

overall state and action network output Q value at moment t.

At the next moment t+1, The actor network outputs action at+1, and critic network assesses at+1
and outputs Q'. The actor network updates its parameters based on Q and the critic network updates

its parameters based on Q' using the minimized loss function.

http://www.cad-journal.net/

270

Computer-Aided Design & Applications, 21(S9), 2024, 265-276
© 2024 U-turn Press LLC, http://www.cad-journal.net

Figure 3: The critic network.

When making decisions, only using the Actor network to interact with the environment, and each

microservice's own information is entered as a state after data pre-processing into the actor network,
generating action. Aggregate the actions of all microservices to get the necessary joint actions

executed. After the implementation of the joint action, continue to complete the resource allocation
decision for the next time interval.

3.3. Model Training

The MADDPG algorithm employs a distributed execution and centralized training strategy. The Actor

network simply has to be aware of its own local state during execution by observing the performance
of resource utilization and runtime information to produce action. During training, the Critic network
helps the Actor network learning allocation strategy through global status and action.

The actor network updates parameters by maximize the Q-value, which evaluated by the critic
network; θ represents the microservice policy parameter, that include the use share of the CPU,

memory usage share, IO rate, and network bandwidth; μ represents microservice strategy; s

represents state, and here is s = [x1, x2, … , xn], where xi represents the state of the first microservice.

The microservice i get the status-value function Qi
𝜇
(𝑠, a1a2,, … an) by using the strategy μ, the state

s and the joint action [a1a2,, … an].

The actor network get the strategy grade by formula shown as:

∇𝜃𝑗𝐽(𝜇𝑖) =

∇𝜃𝑗𝜇𝑖(𝑎𝑖|𝑥𝑖)∇aj𝑄𝑗
𝜇
(𝑠, a1a2,, … an)|𝑎𝑖=𝑢𝑖(𝑥𝑖) (4)

θi represents the policy parameter for micro-service i, 𝜇𝑖 is the policy for micro service i, s is the

model state, ai represents the action of microservice i, xi is the state of the first micro-serve i, J is

the cost function.

For each microservice, the actor network has a critic network that obtains global information to
evaluate the future total earnings of action at under state St.

In order to bring the Q value of the critical network output more in line with the long-term
benefits of the action at, the critic network is updated using the minimize loss function as follows:

http://www.cad-journal.net/

271

Computer-Aided Design & Applications, 21(S9), 2024, 265-276
© 2024 U-turn Press LLC, http://www.cad-journal.net

L(θi) = (𝑦 − 𝑄𝑖
𝜇(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑛))

2
(5)

y = rewi + 𝛾𝑄𝑖
𝜇′(𝑠′, 𝑎1

′ , 𝑎2
′ , … , 𝑎𝑛

′)|𝑎𝑘′=𝜇𝑘′ (𝑥𝑘)
(6)

Where θirepresents the policy parameter for microservices i, μ represents microservice strategy, s

represents state, 𝑎𝑖 indicates the action of microserve i, rewi means action at receives rewards under

state st , L represents loss function, 𝛾 represents discount quote, μ′ represents target network

strategy, 𝑎𝑘
′ represents action generated by target network sub-microservice k.

The training procedure is displayed in Figure 4.

First algorithm initializes the model;

At moment t, for each microservice b, algorithm input b's own information, which is pre-

processing as state data sb,t, then b outputs action ab,t; aggregating The action of all microservices

leads to the the joint action 𝐴𝑡̂; executes 𝐴𝑡̂ then obtain rewards rt and the next state sb,t+1.

At next moment t+1, algorithm puts (st, 𝐴𝑡̂ , rt, st+1) into experience buffer, and set sb,t+1 to sb,t;

iterates each micro service, and randomly extracts mini-batch samples, which are used as input of
the critic network, to get the future reward y; updates the critic network by minimizing the loss

function; updates the actor network with the output of the critic network; updates every
microservice’s actor-critic network one by one. Algorithm repeats the above steps until the model
converges.

Initialize model

model

converges

?

Input microservice-b

state s into a model

Actor Network produce

action a based on current

policy

Aggregate actions, get

joint action A

Execute A, get reward

 r and next state s’

Put (s, A, r, s’) into
experience buffer

s=s’, i=0

Agent i take mini-batch

examples at random

in buffer

Critic network calculate

the future benefits y

of actions

Update Critic network

with

Minimum loss function

Update Actor network
with the output of

Critic network

Update every agent

end

i<=n?

no

yes

yes

no

Figure 4: Model training process.

http://www.cad-journal.net/

272

Computer-Aided Design & Applications, 21(S9), 2024, 265-276
© 2024 U-turn Press LLC, http://www.cad-journal.net

3.4. Multi-Resource Schedue System

The system based on the load balancing algorithm described in this article, as illustrated in the
figure, is designed in this study. The available resources of the service mesh nodes are dynamically
assigned through the resource scheduling module, therefore informing each node's load balance.

Figure 5: Multi-resource scheduling system.

After initialized the Multi-Resource Schedule System, at the moment t, each agent in the service

mesh, parallel collects each microservice b’s operation information, which is the necessary data for
algorithm.

The system combines the information gathered in accordance with the same time stamp.
Calculate the mean and standard deviation of all the information after it has been integrated, then
standardize it so that all the data are in the same order of magnitude and each agent has its own

state sbt, which is the input of the actor-critic network at the moment t.

The trained multi-resource decision model creates a multi-resource cooperative allocation

strategy for the microservice for the present observation state sbt. The objective is to ensure the tail

delay SLO of the micro-service application as much as feasible while maximizing overall resource

utilization. The multi-resource decision model's action strategy output results in a joint action 𝐴̂,

that Ai(𝐴𝑖𝜖𝐴̂) is employed to allocate resources for microservice i.

Following scheduling, the algorithm gathers the microservice resource data once again and
completes the aforementioned processes to guarantee the load balancing of each service node.

4 EXPERIMENT

Load forecasting can predict the system load value in the future in advance. If the load threshold is

exceeded, the scheduling module will be notified to reallocate resources. Finally the resource
allocation of the whole system will be more uniform, and the overall response speed of the system
will be faster.

http://www.cad-journal.net/

273

Computer-Aided Design & Applications, 21(S9), 2024, 265-276
© 2024 U-turn Press LLC, http://www.cad-journal.net

We create a Service Mesh for testing using the Isito[1] framework, use Jmeter[13] to simulate
user requests in the Service Meshes, and record the response time to evaluate the performance of
the system load balancing strategy.

Figure 6: Comparison of system response time.

We compare the MADDPG method proposed in this paper with ARIMA[2] method and LSTM
method[20]. As shown in figure 6, In the first 50 requests, our method has the shortest system

response times.

This study also uses the average response time to measure the load balancing of the system
after 2500 requests in order to comprehend the stability of the load balancing system. The formula

for calculating the average response time is shown:

ART =
∑ 𝑅𝑇𝑛
𝑖=1

𝑛
(1.)

Where 𝑅𝑇 means response time of a single service call, and n is the total number of service

invocations.

System
ARIMA

LSTM MADDPG

Average

Response Time

285ms 271ms 211ms

Table 1: Average response time.

The average response time is shown in table 1. The table shows that our method performs best and
has the shortest average response time, which was decreased by around 22% and 26%,

respectively, when compared to the LSTM and ARIMA methods.

http://www.cad-journal.net/

274

Computer-Aided Design & Applications, 21(S9), 2024, 265-276
© 2024 U-turn Press LLC, http://www.cad-journal.net

Figure 7: Overall comparison of system response time.

We provide a trend chart of the system response time to better understand the load state of the
loading balance system after prolonged operation.

The overall trend of system response time is shown in figure 7, which proves that our method is
better than other methods in general.

5 CONCLUSIONS

The load balancing issue in the service mesh is examined in this research, which also proposed a

multi-resource optimization scheduling technique based on multi-agent reinforcement learning as a
fresh approach to the problem.

By the use of the Istio framework, this paper creates a Service Mesh environment for testing. It
then conducts experiments using the proposed algorithms in this environment and analyzes the
outcomes. The findings indicate that when compared to previous methodologies, this article suggests

faster response times in both general and partial cases.The results demonstrate that the cognitive
intelligence-based approach outperforms previous methodologies in terms of response times, both
in general scenarios and partial cases. This suggests that the utilization of cognitive intelligence

techniques in load balancing and resource scheduling can significantly enhance the overall
performance of service mesh systems.

How to further optimize the algorithm proposed in this paper to better load balancing in a Service
Mesh with a more complex topological structure, so that it can be put into use more stably, will be
our next research goal.

Yi-Xiao Wang, https://orcid.org/0009-0005-7318-9363
Wen-Jian Tao, https://orcid.org/0009-0003-2756-6944

Shao-Peng Zhao, https://orcid.org/0009-0003-9018-7277
Yan-Ping Zhang, https://orcid.org/0009-0008-8048-4290

http://www.cad-journal.net/
https://orcid.org/0009-0005-7318-9363
https://orcid.org/0009-0003-2756-6944
https://orcid.org/0009-0003-9018-7277
https://orcid.org/0009-0008-8048-4290

275

Computer-Aided Design & Applications, 21(S9), 2024, 265-276
© 2024 U-turn Press LLC, http://www.cad-journal.net

ACKNOWLEDGEMENT

This work was supported by National Key R&D Program of China under Grant No. 2020YFB1710200.

REFERENCES
[1] Calcote, L.; Butcher, Z.: Istio: Up and running: Using a Service Mesh to Connect, Secure,

Control, and Observe, O'Reilly Media, 2019.

[2] Calheiros, R.N.; Masoumi, E.; Ranjan, R.: et al. Workload Prediction using ARIMA Model and

its Impact on Cloud Applications' QoS, IEEE Transactions on Cloud Computing, 3(4), 2014,

449-458. https://doi.org/10.1109/TCC.2014.2350475

[3] Chen, R.: Index Smoothing and Autoregressive Fusion Forecasting Model and its Empirical

Study, Liaoning Technical University, 2021.

[4] Dama, F.; Sinoquet, C.: Time Series Analysis and Modeling to Forecast: a Survey, Arxiv

preprint arXiv, 2104.00164, 2021.

[5] Fan, J; Wang, Z.; Xie, Y. et al.: A Theoretical Analysis of Deep Q-Learning, Learning for

Dynamics and Control, PMLR, 2020, 486-489.

[6] Frémaux N, Sprekeler H, Gerstner W. Reinforcement Learning Using a Continuous Time Actor-

Critic Framework with Spiking Neurons, PLoS Computational Biology, 2013, 9(4), e1003024.

https://doi.org/10.1371/journal.pcbi.1003024

[7] Gronauer, S.; Diepold, K.: Multi-Agent Deep Reinforcement Learning: a Survey, Artificial

Intelligence Review, 2022, 1-49.

[8] Khatua, S.; Manna, M.M.; Mukherjee, N.: Prediction-Based Instant Resource Provisioning for

Cloud Applications,2014 IEEE/ACM 7th International Conference on Utility and Cloud

Computing, IEEE, 2014, 597-602. https://doi.org/10.1109/UCC.2014.92

[9] Kuo, P.H.; Huang, C.J.: A High Precision Artificial Neural Networks Model for Short-Term Energy

Load Forecasting, Energies, 11(1), 2018, 213. https://doi.org/10.3390/en11010213

[10] Li, W.; Lemieux, Y.; Gao, J.: et al. Service Mesh: Challenges, State of the Art, and Future

Research Opportunities, IEEE International Conference on Service-Oriented System

Engineering, IEEE, 2019, 122-1225. https://doi.org/10.1109/SOSE.2019.00026

[11] Liu, Z.; Zhu, Z.; Gao, J.: et al. Forecast Methods for Time Series Data: a Survey, IEEE Access,

9, 2021, 91896-91912. https://doi.org/10.1109/ACCESS.2021.3091162

[12] Long Feng.; Xue Dong-lin.; Chen Gui-ming.; Yang Qing.: Fault Prediction Algorithm Based on

Particle Filter and Linear Autoregressive Models, Computer Technology and Development,

21(11), 2011, 133-136.

[13] Nevedrov, D.: Using Jmeter to Performance Test Web Services, Published on dev2dev, 2006,

1-11.

[14] Nguyen, H.M.; Woo, S.; Im, J.: et al. A workload Prediction Approach Using Models Stacking

Based on Recurrent Neural Network And Autoen-Coder,2016 IEEE 18th International

Conference on High Performance Computing and Communications; IEEE 14th International

Con-Ference on Smart City; IEEE 2nd International Conference on Data Science and Systems

(HPCC/SmartCity/DSS), IEEE, 2016, 929-936. https://doi.org/10.1109/HPCC-SmartCity-

DSS.2016.0133

[15] Peng, H.; Wen, W.S.; Tseng, M.L. et al.: A Cloud Load Forecasting Model with Nonlinear

Changes Using Whale Optimization Algorithm Hybrid Strategy, Soft Computing, 25(15), 2021,

10205-10220. https://doi.org/10.1007/s00500-021-05961-5

[16] Roy, N.; Dubey. A.; Gokhale, A.: Efficient Autoscaling in the Cloud Using Predictive Models for

Workload Forecasting,2011 IEEE 4th In-Ternational Conference on Cloud Computing, IEEE,

2011, 500-507. https://doi.org/10.1109/CLOUD.2011.42

http://www.cad-journal.net/
https://doi.org/10.1109/TCC.2014.2350475
https://doi.org/10.1371/journal.pcbi.1003024
https://doi.org/10.1109/UCC.2014.92
https://doi.org/10.3390/en11010213
https://doi.org/10.1109/SOSE.2019.00026
https://doi.org/10.1109/ACCESS.2021.3091162
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0133
https://doi.org/10.1109/HPCC-SmartCity-DSS.2016.0133
https://doi.org/10.1007/s00500-021-05961-5
https://doi.org/10.1109/CLOUD.2011.42

276

Computer-Aided Design & Applications, 21(S9), 2024, 265-276
© 2024 U-turn Press LLC, http://www.cad-journal.net

[17] Watkins, C.J.C.H.; Dayan, P.: Q-learning, Machine learning, 8, 1992, 279-292.

https://doi.org/10.1023/A:1022676722315

[18] Xu, W.; LeBeau, J.M.: A Deep Convolutional Neural Network to Analyze Position Averaged

Convergent Beam Electron Diffraction Patterns, Ultramicroscopy, 188, 2018, 59-69.

https://doi.org/10.1016/j.ultramic.2018.03.004

[19] Yoon, M.S.; Kamal, A.E. Zhu, Z.: Requests prediction in cloud with a cyclic window learning

algorithm,2016 IEEE Globecom Work-shops (GC Wkshps), IEEE, 2016, 1-6.

https://doi.org/10.1109/GLOCOMW.2016.7849022

[20] Zheng, H.; Lin, F.; Feng, X.: et al.: A Hybrid Deep Learning Model with Attention-Based Conv-

LSTM Networks for Short-Term Traffic Flow Predic-tion, IEEE Transactions on Intelligent

Transportation Systems, 22(11), 2020, 6910-6920.

https://doi.org/10.1109/TITS.2020.2997352

[21] Zheng, J.; Xu, C.; Zhang, Z. et al.: Electric Load Forecasting in Smart Grids Using Long-Short-

Term-Memory Based Recurrent Neural Net-Work, 2017 51st Annual conference on Information

Sciences and systems IEEE, 2017, 1-6.

http://www.cad-journal.net/
https://doi.org/10.1023/A:1022676722315
https://doi.org/10.1016/j.ultramic.2018.03.004
https://doi.org/10.1109/GLOCOMW.2016.7849022
https://doi.org/10.1109/TITS.2020.2997352

