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Abstract, The service mesh is the most well-known framework for developing 
network applications because it separates governance and business logic in 

microservices and achieves unified governance of heterogeneous systems. The 
Service Mesh has a more complicated topology structure than the typical 
microservice design, which makes it harder to keep the load balance. The present 

Service Mesh load balancing technique is rather straightforward, merely taking into 
account the current load status of each individual node and disregarding the mutual 

load impact across nodes. This paper proposes a load balancing method based on 
multi-agent reinforcement learning to address the aforementioned issues. This 
method turns the Service Mesh load balancing problem into a random game process, 

builds an Actor-Critic network to simulate the service mesh multi-resource scheduling 
strategy, and uses the Multi-Agent Deep Deterministic Policy Gradient (MADDPG) 

algorithm to determine the best multi-resource scheduling strategy. The Istio 
framework is utilized in this study to create a service mesh environment, and the 
test results demonstrate that the suggested approach can produce faster response 

times. 
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1 INTRODUCTION 

With the development of Internet application technology, more and more developers abandon the 

single service architecture and use the micro-service architecture, but the microservice architecture 
combines business logic and service discovery, service registration, service meltdown and other 
services governance logic, resulting in the whole framework not easy to manage, increasing the 

burden of developers, while bringing difficulties to the platform upgrade. 
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Service mesh[10] is an independently run application service, providing a secure and efficient 
communication infrastructure layer between application services, able to use complex service 
topology structure, to reliably transmit various needs. The Service Mesh helps to develop and 

operate bugs, and developers no longer need to write and maintain policies and network codes in 
their applications, which are transferred to service agents and Service Meshs control planes, 

provided and dynamically managed by them. Service Mesh agents constitute a complex network 
topology structure, and in order to avoid traffic congestion and traffic abnormalities caused by 
complex networks, Service Mesh needs a reliable load balance strategy. 

Load forecasting improves the system load balance capability by predicting the load of the 
application system[15], and has therefore been a research hotspot in the field of micro-services. 

Yoon[19] argues that the number and type of requests received by the application service system 
varies continuously over time, i.e. the load of the working system is about the function of time, and 
there is a specific connection with time, so it can be predicted by collecting information about the 

characteristics of the load in time. computer-aided medical systems, such as fluctuating workloads, 
resource heterogeneity, and the need for low-latency processing. 

Current load prediction methods are mainly based on probability statistics and two main 

categories based on neural network models [11] [4].In traditional statistics, there is a predictive 
load based on index smoothing[8], a prediction load of the self-regression linear (AR) model based 

on particle filtration[12], a predicted load of a self-regression moving average based on a smooth 
load[16], a differential-integrated self-reflexive moving average model predicting load[2], and a 
forecasting load of an index-based smooth and self-recursive fusion prediction model[3]. 

With the development of neural networks and the widespread application of big data, a large 
number of scholars have begun to study predictive models based on neuronal networks. For 
example, using the CNN network for load prediction[9] [18], using the RNN network prediction 

model[14], learning dynamic time characteristics using memory units, and load predictions through 
the LSTM/GRU network[20] [21]. 

This article will strengthen the introduction of learning into load balance algorithms, and 
proposes a load prediction algorithm based on multi-agent reinforcement learning[7], which can 
make decisions through independent learning network environment, comprehensive consideration 

of time delay and bandwidth and other factors, so as to avoid excessive traffic of a certain link 
leading to load imbalance, thereby improving the quality of the network service.  

 

2 RELATED WORK 

 

2.1.  Service Mesh 

Service Mesh is an infrastructure layer used to handle communications between microservices. The 
application has a complex micro-service topology, and the Service Mesh is responsible for the reliable 

delivery of requests in the topology. In actual development, a Service Mesh is a set of lightweight 
network agents deployed together with application services, and is transparent to application 

services. 

The structure of the Service Mesh, as shown in Figure 1, adopts the edge car mode, providing 
an agent for each microservice, responsible for communication, deployment policy and configuration 

in the control plane. 
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The request only needs to be sent to the local service mesh agent by the application acting as 
the microservices' initiator; subsequent actions will then be taken by the grid agency, such as 
forwarding the request to the intended microservice after determining the load balance. 

 
 

Figure 1: Microservice workflow diagram. 

The network structure of the nodes in the Service Mesh forms a complex topological network, so 
that the difficulty of service governance is increased, so the load balancing technology becomes the 
key, and the load balance technology can effectively reduce the delay of requests, improve the 

reliability of the micro-service architecture and resource utilization rate. 

 

2.2. Reinforcement Learning  

Reinforcement learning is a class of algorithms in the field of machine learning, which mainly focuses 
on how intelligences take different actions in the environment to maximize the cumulative rewards 

in enhanced learning, intelligence by continuously trying to randomly operate, interact with the 
environment, and get feedback from the environment and then based on feedback decide the next 
operation, and ultimately through constant iteration of learning, to get the best solution. 

Q learning is a model-free algorithm[17] that assumes that in the set of states S and set of 
actions A, Q is the expected return that action a(a ∈ A) can obtain under the state s(s ∈ S) at a given 

moment, Q(s, a).The main idea of the Q-learning algorithm is to build states and actions into a table 

to store Q values, and then select the actions that will get the most outcomes based on Q-values. 

In the service mesh, the process of calling the service is a limited Markov process. When the 
nodes in the service mesh are called, the status of the services grid will change, at which time the 
call can obtain a feedback value for the current real-time load state, which can be considered a 

reward function value. The higher the feedback value, the greater the likelihood that the strategy 
will be implemented the next time. 

At time t, the service mesh chooses the node to be called, which changing the service mesh 

status from St to St+1,  and the system feedback value is represented as: 

r(t) = r(St, 𝑆𝑡+1) (1) 
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St is the Service Mesh state before the call, and 𝑆𝑡+1 is the services mesh status after the call. r(. ) is 
used as reword function. 

In the Service Mesh, the Q learning algorithm can obtain the optimal value function by numerical 
iteration, and the inferential formula for the Q matrix is as follows: 

Qk+1
∗ (𝑆, 𝑆′) ←∑𝑃(𝑆′|𝑆)[𝑟(𝑆, 𝑆′) + 𝛾max𝑄𝑘

∗(𝑆, 𝑆′)]

𝑆′

(2) 

𝑆,𝑆′ represents the state of the environment after a service call, γ is the discount factor, 𝑄∗  is the 

maximum expected return that the Service Mesh can get after the service call; 𝑟(𝑆, 𝑆′) is the 

immediate gain, and 𝛾max 𝑄𝑘
∗(𝑆, 𝑆′) is the future discount gain.When the discount factor tends to 0 

indicates that the reward value of the current behavior is considered more in decision-making, and 

the proportion of the rewards of the next behaviour is greater when approaching 1. 

 

3 LOADING BALANCE METHOD BASED ON MULTI-AGENT REINFORCEMENT LEARNING 

 
3.1. Multi-Agent Model on Service Mesh 

The process of random play can be viewed as a Markov process, in which multiple intelligences make 
action decisions many times in multiple states. Each intelligence makes the best action decisions to 

enhance its value function based on its state, by observing the environment and forecasting the 
movements of other intelligence bodies. 

Based on deep intensive learning techniques, the definition problem is modeled for ℬ = {1,2,… , B}
，using the Malkov decision-making process G = {ℬ, Ŝ, Â, P̂, Û}. 

The state space Ŝ refers to any microservice b having a state Ŝb,t at time t, including the CPU 

usage share, memory use share, IO read-write rate, network bandwidth, end-to-end latency of 

microservices applications, and request load changes of microservice b. 

The action space Â represents that the independent action space for any micro-service b is Âb, 
representing the resource quota used by any micro service; the joint action space of G is Â =
Â1 × Â2 ×…× ÂB, where Âi represents the activity space for microservices i, and ÂB represents activity 

space of microservice B; the independent actions of any microserve b include changing the use share 
of the CPU, memory usage share, IO rate, and network bandwidth. 

The reward function Û is the moment when t, any micro-service b is targeted by the state S, (b, 

t), the action A, ( b, t) is taken to evaluate any microservice b is generated by action A. (b), (t) the 
rewards function is set to: 

reward = 

{
 
 

 
 
𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝑆𝐿𝑂
+ 𝜃1 ∗∑ ∑

𝑅𝑒𝑠𝑢𝑖𝑗
𝑅𝑒𝑠lim𝑖𝑗

  𝑖𝑓(𝑙𝑎𝑡𝑒𝑛𝑐𝑦 < 𝑆𝐿𝑂)
𝑟

𝑗

𝑚

𝑖

−𝜃2 ∗
𝑙𝑎𝑡𝑒𝑛𝑐𝑦

𝑆𝐿𝑂
       𝑒𝑙𝑠𝑒

(3)

 

 

𝑅𝑒𝑠𝑢𝑖𝑗 represents the use share of microservices i and j resources, 𝑅𝑒𝑠lim𝑖𝑗
 indicates the share limit of 

resources in microservice i and j, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 indicates current microserve application end-to-end delay, 
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𝑆𝐿𝑂 is a service level target, 𝜃1、𝜃2represents a set overweight parameter, m is the number of micro-

services, and r is the amount of resources used by micro-service i. 

State transfer probability 𝑃̂  refers to the selection of algorithms based on determination 

strategies, which are unique to state s, the resulting action a,  which the presence of uθ(𝑠) = 𝑎. 

 

3.2. Actor-Critic Algorithm Based on Multi-Agent Deep Deterministic Policy Gradient 

This article uses The Multi-Agent Deep Deterministic Policy Gradient (MADDPG) to determine the 
allocation of resources for microservices. The algorithm can give the best action in a competitive 

environment, using only local information. In order to find the best load balancing strategy under 
the service mesh, this article combines the advantages of the deep Q-network(DQN)[5] and the 

Actor-Critic framework[6] to build an actor-critic network, as shown in Figure 2, 3 to implement 
service resource allocation decisions. 

DQN is a value-based algorithm rather than a policy-based algorithm. It is not a strategy, but a 

critical one. Critical does not take actions directly, but evaluates the quality of actions 

Practical methods for reinforcement learning frequently employ the Actor-Critic algorithm 
architecture. This framework combines the most often used framework for practical issue solving, 

the policy search method, and the value function estimation algorithm. 

The three following traits apply to the MADDPG algorithm: (1) By learning the best approach, 

the best action can be applied using only local knowledge. (2) It is not necessary to be familiar with 
the dynamic environment model and particular communication requirements. (3) The method is 
applicable not only in a collaborative setting but also in a hostile one. 

 
 

Figure 2: The actor network. 

In training process, the actor network outputs actions at  based on pre-processed information 

collected as state st. The critic network evaluates the actions of the actor network based on the 

overall state and action network output Q value at moment t.  

At the next moment t+1, The actor network outputs action at+1, and critic network assesses at+1 
and outputs Q'. The actor network updates its parameters based on Q and the critic network updates 

its parameters based on Q' using the minimized loss function. 
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Figure 3: The critic network. 

When making decisions, only using the Actor network to interact with the environment, and each 

microservice's own information is entered as a state after data pre-processing into the actor network, 
generating action. Aggregate the actions of all microservices to get the necessary joint actions 

executed. After the implementation of the joint action, continue to complete the resource allocation 
decision for the next time interval. 

 

3.3. Model Training 

The MADDPG algorithm employs a distributed execution and centralized training strategy. The Actor 

network simply has to be aware of its own local state during execution by observing the performance 
of resource utilization and runtime information to produce action. During training, the Critic network 
helps the Actor network learning allocation strategy through global status and action. 

The actor network updates parameters by maximize the Q-value, which evaluated by the critic 
network; θ represents the microservice policy parameter, that include the use share of the CPU, 

memory usage share, IO rate, and network bandwidth; μ  represents microservice strategy; s 

represents state, and here is s = [x1, x2, … , xn], where xi represents the state of the first microservice.  

The microservice i get the status-value function Qi
𝜇
(𝑠, a1a2,, … an) by using the strategy μ, the state 

s and the joint action [a1a2,, … an]. 

The actor network get the strategy grade by formula shown as: 

∇𝜃𝑗𝐽(𝜇𝑖) =

∇𝜃𝑗𝜇𝑖(𝑎𝑖|𝑥𝑖)∇aj𝑄𝑗
𝜇
(𝑠, a1a2,, … an)|𝑎𝑖=𝑢𝑖(𝑥𝑖) (4)

 

θi represents the policy parameter for micro-service i,  𝜇𝑖 is the policy for micro service i, s is the 

model state, ai represents the action of microservice i, xi is the state of the first micro-serve i, J is 

the cost function. 

For each microservice, the actor network has a critic network that obtains global information to 
evaluate the future total earnings of action at under state St. 

In order to bring the Q value of the critical network output more in line with the long-term 
benefits of the action at, the critic network is updated using the minimize loss function as follows: 
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L(θi) = (𝑦 − 𝑄𝑖
𝜇(𝑠, 𝑎1, 𝑎2, … , 𝑎𝑛))

2
(5) 

y = rewi + 𝛾𝑄𝑖
𝜇′(𝑠′, 𝑎1

′ , 𝑎2
′ , … , 𝑎𝑛

′ )|𝑎𝑘′=𝜇𝑘′ (𝑥𝑘)
(6) 

Where θirepresents the policy parameter for microservices i, μ represents microservice strategy, s 

represents state, 𝑎𝑖 indicates the action of microserve i, rewi means action at receives rewards under 

state st , L represents loss function,  𝛾  represents discount quote, μ′  represents target network 

strategy, 𝑎𝑘
′  represents action generated by target network sub-microservice k.  

The training procedure is displayed in Figure 4.  

First algorithm initializes the model;  

At moment t, for each microservice b, algorithm input b's own information, which is pre-

processing as state data sb,t, then b outputs action ab,t; aggregating The action of all microservices 

leads to the the joint action 𝐴𝑡̂; executes 𝐴𝑡̂ then obtain rewards rt and the next state sb,t+1. 

At next moment t+1, algorithm puts (st, 𝐴𝑡̂ , rt, st+1) into experience buffer, and set sb,t+1 to sb,t; 

iterates each micro service, and randomly extracts mini-batch samples, which are used as input of 
the critic network, to get the future reward y; updates the critic network by minimizing the loss 

function; updates the actor network with the output of the critic network; updates every 
microservice’s actor-critic network one by one. Algorithm repeats the above steps until the model 
converges. 

Initialize model

model 

converges

?

Input microservice-b 

state s into a model

Actor Network produce 

action a based on current 

policy 

Aggregate actions, get 

joint action A

Execute A, get reward 

  r and next state s’

Put (s, A, r, s’) into
experience buffer 

s=s’, i=0

Agent i take mini-batch 

examples at random 

in buffer

Critic network calculate 

the future benefits y

of actions  

Update Critic network 

with 

Minimum loss function

Update Actor network 
with the output  of  

Critic network

Update every agent

end

i<=n?

no

yes

yes

no

 
 

Figure 4: Model training process. 
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3.4. Multi-Resource Schedue System 

The system based on the load balancing algorithm described in this article, as illustrated in the 
figure, is designed in this study. The available resources of the service mesh nodes are dynamically 
assigned through the resource scheduling module, therefore informing each node's load balance. 

 

 
 

Figure 5: Multi-resource scheduling system. 

After initialized the Multi-Resource Schedule System, at the moment t, each agent in the service 

mesh, parallel collects each microservice b’s operation information, which is the necessary data for 
algorithm.  

The system combines the information gathered in accordance with the same time stamp. 
Calculate the mean and standard deviation of all the information after it has been integrated, then 
standardize it so that all the data are in the same order of magnitude and each agent has its own 

state sbt, which is the input of the actor-critic network at the moment t. 

The trained multi-resource decision model creates a multi-resource cooperative allocation 

strategy for the microservice for the present observation state sbt. The objective is to ensure the tail 

delay SLO of the micro-service application as much as feasible while maximizing overall resource 

utilization. The multi-resource decision model's action strategy output results in a joint action  𝐴̂, 

that Ai(𝐴𝑖𝜖𝐴̂) is employed to allocate resources for microservice i. 

Following scheduling, the algorithm gathers the microservice resource data once again and 
completes the aforementioned processes to guarantee the load balancing of each service node. 

 

4 EXPERIMENT 

Load forecasting can predict the system load value in the future in advance. If the load threshold is 

exceeded, the scheduling module will be notified to reallocate resources. Finally the resource 
allocation of the whole system will be more uniform, and the overall response speed of the system 
will be faster. 
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We create a Service Mesh for testing using the Isito[1] framework, use Jmeter[13] to simulate 
user requests in the Service Meshes, and record the response time to evaluate the performance of 
the system load balancing strategy.  

 
Figure 6: Comparison of system response time. 

We compare the MADDPG method proposed in this paper with ARIMA[2] method and LSTM 
method[20]. As shown in figure 6, In the first 50 requests, our method has the shortest system 

response times.  

This study also uses the average response time to measure the load balancing of the system 
after 2500 requests in order to comprehend the stability of the load balancing system. The formula 

for calculating the average response time is shown: 

ART =
∑ 𝑅𝑇𝑛
𝑖=1

𝑛
(1.) 

Where 𝑅𝑇  means response time of a single service call, and n is the total number of service 

invocations. 

 

System 
ARIMA 

LSTM MADDPG 

Average  

Response Time 

285ms 271ms 211ms 

  

Table 1: Average response time. 

The average response time is shown in table 1. The table shows that our method performs best and 
has the shortest average response time, which was decreased by around 22% and 26%, 

respectively, when compared to the LSTM and ARIMA methods. 
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Figure 7: Overall comparison of system response time. 

We provide a trend chart of the system response time to better understand the load state of the 
loading balance system after prolonged operation. 

The overall trend of system response time is shown in figure 7, which proves that our method is 
better than other methods in general. 

 

5 CONCLUSIONS 

The load balancing issue in the service mesh is examined in this research, which also proposed a 

multi-resource optimization scheduling technique based on multi-agent reinforcement learning as a 
fresh approach to the problem. 

By the use of the Istio framework, this paper creates a Service Mesh environment for testing. It 
then conducts experiments using the proposed algorithms in this environment and analyzes the 
outcomes. The findings indicate that when compared to previous methodologies, this article suggests 

faster response times in both general and partial cases.The results demonstrate that the cognitive 
intelligence-based approach outperforms previous methodologies in terms of response times, both 
in general scenarios and partial cases. This suggests that the utilization of cognitive intelligence 

techniques in load balancing and resource scheduling can significantly enhance the overall 
performance of service mesh systems. 

How to further optimize the algorithm proposed in this paper to better load balancing in a Service 
Mesh with a more complex topological structure, so that it can be put into use more stably, will be 
our next research goal. 
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