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ABSTRACT 

 
Accurate reduction of two-dimensional curve noises is crucial to metrology and reverse 
engineering. In this paper we propose a set of schemes for two-dimensional curve denoising. Our 
approach consists of three main steps:  1) feature-based pre-smoothing of noised polylines; 2) 
curve partitioning of polylines into different regions; 3) two hybrid denoising schemes of arbitrary 
polylines with noises. Numerical experiments indicate the effectiveness of our approach against 
existing methods.  
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1. INTRODUCTION 

In the area of metrology and reverse engineering, the problem of measurement or object reconstruction is often 
transformed to an analysis of two-dimensional closed curves, which correspond to the silhouette or cross-section of 
objects.  Due to the limitation of various sensors and edge detection algorithms, the resulting curves commonly contain 
certain amount of noises. How to eliminate these noises is an important issue with respect to improving the accuracy 
for measurement and object reconstruction.  

Although a considerable number of studies have been conducted in the past [1-4,7], the denoising accuracy of 
existing methods is still not good enough for applications in metrology and reserve engineering. The objective of this 
study is to propose a new set of denoising schemes that have a better denoising accuracy and is suited to arbitrary 
two-dimensional curves with or without sharp corners.  

The remaining of this paper is organized as follows. In Section 2, a set of new curve denoising algorithms is 
introduced. Then, numerical experiments are reported and discussed in Section 3. Finally, some concluding remarks 
are given in Section 4.  
 
2. A SET OF NEW CURVE DENOISING ALGORITHMS 

Our new approach consists of three main components: 1) a polyline denoising scheme with sharp corners preserved;  
2) a high-accuracy denoising scheme for smooth curved polylines; 3) a hybrid approach for arbitrary polylines with or 
without sharp corners. 
 
2.1 A Polyline Denoising Scheme with Sharp Corners Preserved 

Median filter is one of best classic filters in handling noises at sharp corners. When we apply it to polylines, the basic 
concept is to calculate a median normal for each line segment first, and then to calculate smoothing perturbation for 
each vertex on the basis of the following Equation (1), as illustrated in Figure 1. The median normal of a line segment 
is obtained by a voting among the normals of all nearby line segments with respect to the current line segment. The 
voting selects a normal that has a minimum sum of the angles with other normals, where a normal of a two-
dimensional line segment is defined by a unique direction that is perpendicular to the line segment, points to the 
outside of the area enclosed by the polyline, and lies in the two-dimensional plane in which the polyline is located.  

The median filtering procedure is as follows.   
 

Algorithm 1:  median_filter( PL ) 

Data Structures: L = set of all line segments; V = set of all vertices.  
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Precondition:  PL contains the information of a polyline, including L and V.  Note 

that the first and last line segments of the closed polyline PL, 1l  and nl , are 

adjacent to each other, i.e., nll =0 , where n is the number of line segments in PL.  

Postcondition: Smoothed polyline is stored in PL 

(1) calculate the median normal, )(ˆ ilN , for each line segment, Lli ∈  

(1.1)    initialize a real variable, anglesummin _ , to a big number 

(1.2) loop over each line segment: { | 2,..., 2}j neighbor kl S l k i i∈ = = − +  

(1.2.1) calculate the sum of angles, anglesum ,  between the normals of the 

current line segment and other line segments in neighborS   

(1.2.2) if  anglesum  is less than  anglesummin _ ,  then  angleangle sumsummin =_  

(1.3) the median normal for il ,  )(ˆ ilN , is equal to the normal of the line segment 

that corresponds to  anglesummin _  in the loop of Step (1.2) 

(2) calculate perturbation at each vertex  V∈υ  

2
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where  )(lC   and )(υP   are the centroid of line segment Ll∈   and the position of 

vertex  V∈υ , respectively. )(υleftl  and  )(υrightl   are two line segments that are 

adjacent to vertex υ   from the left and right, respectively.                                                                            
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Fig. 1. Median filter for a polyline. Fig. 2. Local coordinate of vertex P. 

 
2.2 A High-accuracy Denoising Scheme for Curved Polylines without Sharp Corners 

Mean filter is one of the commonly-used classic filters for smoothing polylines without sharp corners. Gaussian filter or 
its variants can be viewed as a weighted mean filter.  In the context of polylines, a mean normal is calculated for each 
line segment, and then a smoothing perturbation for each vertex is determined. The mean normal refers to a 
normalized vector obtained from the vector summation of normals of all the nearby line segments.  

We apply the mean filter to smooth a noised polyline by the following procedure.  
 

Algorithm 2:  mean_filter( PL ) 

Data Structures: L = set of all line segments; V = set of all vertices.  

Precondition:  PL contains the information of a polyline, including L and V.  

Postcondition: Smoothed polyline is stored in PL 

(1) calculate the mean normal, )(ˆ ilN , for each line segment, Lli ∈  

(1.1) let  ∑
+=

−=
=

2

2

)(
ij

ij
jlNΝ  

(1.2) let the normalized N be the mean normal for  il ,  )(ˆ ilN  
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(2) calculate perturbation at each vertex V∈υ   by using Equation (1)             □ 

 

Most symbols in Algorithm 2 share the same meaning as those in Algorithm 1 except for )(ˆ ilN . Essentially, the 

mean filter is a linear filter, which will cause noticeable linear approximation errors when a second-order or even 
higher-order curve with a sparse vertex density is processed.  To overcome this problem, we propose the following 
high-accuracy algorithm for smoothing curved polylines.  

First of all, the normal and tangential directions at each vertex P of a polyline is estimated by the principal 
component method [5]. The covariance matrix of the set of neighboring vertices is  

∑
∈

−⊗−=
)(

)()(
Pq

PP CqCqCV
Nbhd

                                                                                                               (2) 

where  { }2,2|)( +−== iijNbhd jυP  is the set of neighboring vertices at vertex P, and P corresponds to vertex  iυ   in 
this case. PC  is the centroid of  )(PNbhd , and ⊗  is outer product operator of vectors.  A Jacobi transformation [6] can 

be used to determine eigenvectors  ( )21,vv  and eigenvalues  ( )21 λλ ≥  of the CV. 1v  and 2v   represent the tangential 

and normal directions, respectively.  A local coordinate system ( 1v , 2v ) can be established by letting 1v   and 2v   

respectively in the local x and y directions, with the centroid of  )(PNbhd  as its origin, as in Figure 2.  
After knowing the local coordinate system at vertex P, we are ready to conduct a least-squares fitting. A second-

order local curve patch is used in Algorithm 3, and an accurate calculation of nearest point on the fitted local curve 
patch is carried out for each vertex on the polyline.  Note that a so-called “curve patch” in this paper does not refer to 
a surface area, but means a curve region instead. 
 
Algorithm 3: Robust Least-squares Fitting of a Second-order Local Curve Patch 
(1) Loop over every vertex P for a second-order fitting 

(1.1) Determine a local quadric curve patch.  

In the local coordinate system ( )21, vv , a quadric curve patch:   

32
2

1)( axaxaxfy ++==                                                    (3)                

is used to approximate the curve in the neighborhood of vertex P.  Here, 

coordinate x is measured along   1v  direction, and y coordinate is measured 

in the 2v  direction. The linear least-squares estimation of three 

coefficients  ia   is expressed as  

ZBA =                                                                                                                                        (4a)                 
in which  
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where n is the number vertices of  )(PNbhd , which refers to the two-ring 

neighborhood of vertex P. If we consider P∈ )(PNbhd  , n equals 5 in the case 

of a polyline. If we solve Equation (4a) by using  ( ) ZBBBA
TT 1−

= ,   BBT  may be 
ill-conditioned. Thus, singular value decomposition [6] is used to solve 

ZBA = .                                                                     □ 

 
Our high-accuracy denoising scheme for a smooth curved polyline is illustrated in Figure 3, in which P   is the 

current vertex and 1Q   through 4Q   are its 2-ring neighboring vertices. 0V  through 4V   are correction vectors for the 

second-order smoothing, and are determined by a vector from each vertex to its closest point on the local quadric 
curve patch.  The closest point can be located in a process for finding the distance from each vertex to the local quadric 
curve patch 
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Fig. 3. Least-squares fitting of a quadric or cubic curve patch.  

 
For the local quadric curve patch, the closest point is determined by a root finding as follows. We rewrite the local 

quadric curve patch in Equation (3) by a general quadratic equation    

0)( =++= cS TT
pbpApp                                                                                                                   (5a) 

where   [ ]yxT =p  represents points on the curve  )(pS .  A, b  and c   are  represented by 


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b    and   3ac = .                                                                                               (5b)  

For a given vertex q = [ ]Tqq yx   of a polyline, its closest point p on the line S can be determined by the following 

geometric relationship 
)2()( bApppq +=∇=− tSt                                                                                                                   (6)               

where  t  is a scalar. )(pS∇   is the gradient of the curve, which is in the direction of curve normal and should be the 

same as the direction of pq −  .  The rearrangement of Equation (6) yields 
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where I is an identity matrix.  The substitution of Equation (7) into Equation (5a) will get a polynomial equation of 

degree 3 with respect to t .  Once a suitable root of t is found, the closest point p is then determined by Equation (7).   

After the nearest points on the curve are known,  our high-accuracy denoising scheme for a smooth curved 
polyline is determined  by the following procedure. 

 
Algorithm 4: Determination of Correction at Each Vertex of a Polyline 

Precondition:  An integer counter 0)( =Qcount  for each vertex Q of a polyline 

Postcondition: a smoothing perturbation, QU , at each vertex Q has been calculated 

(1) loop over every vertex Q of a polyline, which is not in a sharp corner region 

(1.1) loop over 2-ring vertices  ∈q  )(QNbhd     (from  2iυ −   to 2+iυ ) 

(1.1.1) calculate the nearest point  p  via Equation (7) for a quadric curve 

fitting  

(1.1.2) calculate the nodal normal at vertex q, qN
~

 

(1.1.2.1) if )(qleftl   is a feature line segment, ))((ˆ qN leftl  =median normal of  

)(qleftl ; otherwise,  ))((ˆ qN leftl  =mean normal of )(qleftl . 

(1.1.2.2) Similar operation is applied on )(qrightl  to calculate ))((ˆ qN rightl   

(1.1.2.3) qN
~

= normalization of   ))((ˆ qN leftl +  ))((ˆ qN rightl  

(1.1.3) Accumulate a correction to the overall perturbation at vertex q  

  1)()(,
~
)

~
)(( +←•−+← qqNNqpUU qq countcountqq ,                               (8) 

where qU   is the overall correction at vertex q, and •   is a dot product.  
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(2)  loop over every vertex Q that is not in a sharp corner region of the polyline 

)(/ QUU QQ count← .                                    (9) 

□ 

 
Note that the averaging operation in Equation (9) is a crucial step for the stability of Algorithm 4, and   )(count  

ensures the partition of unity. QU   is used to update the position of each vertex that is not in a sharp corner region at 

the current iteration.  
 
2.3 A Hybrid Approach to Denoise Arbitrary Polylines 

Geometric continuity and discontinuity are two extreme poles, which should not be handled by a same procedure from 
a philosophical viewpoint. To smooth arbitrary polylines that contain both geometric continuity and discontinuity, we 
designed two hybrid schemes: mean-median and quadric-median.  The former is the combination of mean and 
median filters, while the latter is to blend our quadric fitting with the median filter.  
 
Algorithm 5:  mean_median( PL ) 

Data Structures: L = set of all line segments; V = set of all vertices.  
Precondition:  PL contains the information of a polyline, including L and V.   

Postcondition: Smoothed polyline is stored in PL 

(1) make a copy, 'PL , of the input polyline PL 

(2) execute median_filter( 'PL  ) 

(3) identification of sharp corners  

(3.1) loop over each  vertex 'V∈υ    on 'PL   

(3.1.1) if the angle between the normals of two line segments, which are 

incident to vertex  υ , is greater than an angular threshold  tθ , then 

mark the two neighboring line segments left to υ   and the two neighboring 
line segment right to  υ  as feature line segments.  

(4) main smoothing loop with a specified number of smoothing steps 

(4.1) loop over each line segment  Ll∈  

(4.1.1) if  l  is not a feature line segment, calculate its mean normal by 

using Step (1) of Algorithm 2 

(4.1.2) otherwise, calculate its median normal by using Step (1) of Algorithm 

1 

(4.2) loop over each vertex V∈υ  on  PL  

(4.2.1) if )(υleftl   is a feature line segment, ))((ˆ υleftlN =median normal of  )(υleftl ; 

otherwise, ))((ˆ υleftlN = mean normal of  )(υleftl . 

(4.2.2) Similar operation is applied on )(υrightl   to calculate  ))((ˆ υrightlN  

(4.2.3) calculate the smoothing perturbation  υU  by Equation (1) 

(4.2.4) update the vertex coordinate by  υυυ UPP +=                    □ 

 
Algorithm 6:  quadric_median( PL ) 
(1) through (3)  are the same as in Algorithm 5 

(4) loop through each feature line segment and mark its two end nodes as feature 

vertices 

(5) main smoothing loop with a specified number of smoothing steps 

(5.1) loop over each line segment  Ll∈  

(5.1.1) if  l  is not a feature line segment, calculate its mean normal by 

using Step (1) of Algorithm 2 

(5.1.2) otherwise, calculate its median normal by using Step (1) of Algorithm 

1 

(5.2) loop over each vertex V∈υ   on PL   

(5.2.1) if υ    is not a feature vertex,  use Algorithm 4 to determine  υU  
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(5.2.2) otherwise, use Steps (4.2.1), (4.2.2) and (4.2.3) in Algorithm 5 to 

determine  υU  

(5.2.3) update the vertex coordinate by  υυυ UPP +=                    □ 

 
Note that υP   in Algorithms 5 and 6 refers to the location vector of vertex  υ .  The number of smooth steps is usually 

specified by users. 
 
3.  NUMERICAL EXPERIMENTS 

The proposed set of algorithms was implemented in VC++ and tested on a HP Notebook PC with a 1.06 GHz 
Pentium III CPU and 504 MB of RAM.  The time complexity of  all four different smoothing algorithms (1, 2, 5 and 6) 
is O(n), where n is the number of vertices of  polylines, even though Algorithm 6 has a larger coefficient.  

In order to quantify the denoising accuracy of different algorithms, two error metrics are used in this paper. The 
first one is a vertex distance error metric, which measures the sum of distances between each vertex of a test polyline 
and a reference polyline. The second is an error metric of normal of line segments. It measures the sum of angles 
between each line segment of a test polyline and the corresponding line segment of a reference polyline.  We represent 
the angles in radian in this paper.  
In the first group of tests, we choose four different types of algebraic curves as a reference polyline, and then generate 
certain amount of random synthetic noises by using a random number generator in C++.  These two groups of 
polylines are shown in rows 1 and 2 of Figure 4, respectively. The noised polylines are processed by the proposed set 
of denoising algorithms and illustrated in rows 3 through 6 of Figure 4. The calculated error metrics and the number of 
smoothing steps are given in Table 1.  

In test case 1 of Figure 4, the polyline consists of a part of  3xy =   on the right and a quarter of circle on the left.  

Test case 2 is a curve represented by  32 xy = , while a high-order drop shape, 0
20
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π
θρ

π
θρ , is used in 

test case 3.  The equation for the curve in test case 4 is  ( ) ( )222222 yxayx −=+ .  Figure 4 provides the denoising results 

of five different algorithms in a visual format, while Table 1 gives quantitive error metrics of algorithms in each test case 
in Figure 4. Note that the anisotropic diffusion was implemented by a bilateral filter, which was not convergent and 
thus terminated at step 3 for a best possible denoising performance. It can be easily seen from Figure 4 that our two 
hybrid algorithms provided the best denoising results. This is also supported by the error metrics in Table 1. The 
smaller the error metrics, the better the denoising accuracy. The only noticable difference between Algorithms 5 and 6 
is that the latter takes much longer time to complete. 

Figure 5 is a more complex example of an airplane. To explore the effect of different noise levels on the 
performance of our two hybrid algorithms, we designed three test cases. Test case 5 of Figure 5 is an original polyline 
without any noise, while two different levels of noises were added in test cases 6 and 7. Row 1 of Figure 5 consists of 
the original polylines with or without noises added.  If you compare the denoising results of our two hybrid algorihtms 
(rows 2 and 3, respectively), you will find out that the quadric-median scheme preserved the tail and body parts better. 
In Table 1, the error metrics of the mean-median scheme were slightly worse than those of the quadric-median 
scheme, but the former had a much shorter computation time. The problem with the method in [4] is that no feature 
preserving presmoothing was used so that the chicken-and-egg problem between feature recognition and 
presmoothing is not well solved.  

To investigate the effect of vertex density of a polyline on the denoising accuracy, some tests were conducted. Due 
to the page limitation, we don’t present detailed data here.  An observed tendency is that the lower the vertex density 
is, the better denoising accuracy the quadric-median scheme has than the mean-median scheme, if the polyline is a 
high-order curve. 

 
4.  CONCLUDING REMARKS 

In this paper, we propose a set of new schemes for denoising arbitrary two-dimensional closed polylines with or 
without sharp corners. If the vertex density of a polyline is high, it is recommended to use our mean-median scheme. 
On the other hand, if the vertex density is low, our quadric-median scheme should be adopted. Numerical experiments 
were conducted for a comparison with conventional mean and median filters as well as anisotropic diffusion, and the 
results indicate the effectiveness of our hybrid schemes in handling arbitrary polylines that contain both geometric 
continuity and discontinuity.  This is particularly useful in handling real complex objects. 
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(a) test case 1 (b) test case 2 (c) test case 3 (d) test case 4 

Fig. 4. Denoising of noised polylines whose underlying shape is an algebraic curve or its combination (row 1: original polyline; row 2: 
noised polyline; row 3: denoised polyline by mean filter; row 4: denoised polyline by median filter; row 5: denoised polyline by 
anisotropic diffusion; row 6: denoised polyline by mean-median; row 7: denoised polyline by quadric-median).  
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(a) Test case 5  (b) Test case 6 (c) Test case 7 

Fig. 5.  Influence of noise levels on the smoothing results of our schemes (row 1 – input polylines with no noise in column 1, level 1 
of noise in column 2, and level 2 of noise in column 3; row 2 – smoothing result of mean-median;  row 3 – smoothing result of 
quadric-median.) 

 
Tab. I. Denoising result of different test polylines. 

Test Case # of vertices Smoothing 
Step 

Execution Time 
(sec) 

Distance 
Error Metric 

Normal Error 
Metric (rad) 

1 60 100 
100 
3 
100 
100 

0.02 (MN
*
) 

0.09 (MD) 
0.0006 (AD) 
0.09 (NM) 
0.44 (QM) 

7.12 (MN) 
3.04  (MD) 
7.69 (AD) 
1.96 (NM) 
2.49 (QM) 

13.21 (MN) 
6.28 (MD) 
7.98 (AD) 
2.77 (NM) 
3.58 (QM) 

2 39 200 
200 
3 
200 
200 

0.02 (MN) 
0.11 (MD) 
0.0006 (AD) 
0.08 (NM) 
0.38 (QM) 

3.97 (MN) 
0.82 (MD) 
1.32 (AD) 
1.10 (NM) 
0.86 (QM) 

9.78 (MN) 
1.72 (MD) 
4.43 (AD) 
1.67 (NM) 
1.56 (QM) 
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3 134 200 
200 
3 
200 
200 

0.07 (MN) 
0.39 (MD) 
0.002 (AD) 
0.18 (NM) 
1.58 (QM) 

48.92 (MN) 
52.35 (MD) 
111.43 (AD) 
43.02 (NM) 
42.24 (QM) 

7.17 (MN) 
7.08 (MD) 
6.26 (AD) 
5.11 (NM) 
5.34 (QM) 

4 36 200 
200 
3 
200 
200 

0.02 (MN) 
0.12 (MD) 
0.0006 (AD) 
0.06 (NM) 
0.45 (QM) 

2.32 (MN) 
1.67 (MD) 
8.63 (AD) 
1.56 (NM) 
1.23 (QM) 

3.56 (MN) 
1.41 (MD) 
2.95 (AD) 
1.04 (NM) 
1.03 (QM) 

5 192 50 
 

0.21 (NM) 
0.57 (QM) 

49.81 (NM) 
34.26 (QM) 

8.02 (NM) 
7.43 (QM) 

6 192 50 
 

0.22 (NM) 
0.68 (QM) 

70.44 (NM) 
58.04 (QM) 

15.63 (NM) 
15.97 (QM) 

7 192 50 0.21 (NM) 
0.54 (QM) 

79.91 (NM) 
78.18 (QM) 

17.30 (NM) 
18.12 (QM) 

*
 MN – mean;  MD – median;  AD –  anisotropic diffusion; NM – mean-median;  QM – quadric-median.   

 
  


