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ABSTRACT 

 

This paper describes several improvements to implicit surface fitting over point clouds. Noisy 

stamped part point cloud data gathered by both a laser digitizer scanning system and a stereo 

vision sensor is processed using a method based on the weighted least squares algorithm. Two 

kernel functions are proposed: one using an enhanced sphere-of-influence graph (SIG) method to 

determine nearest neighbours; and a second using an improved Gaussian kernel. Automatic 

bandwidth adjustment is implemented for both methods. A method of incorporating a scalar 

attribute at each data point, which can represent any desired quantity and relate it to the surface at 

that point, is introduced. In this case surface strain data was gathered and processed by the 

scanning system, with a resulting thickness strain measurement calculated at each point. This strain 

data was used to introduce a temperature plot style colour map over the surface, allowing for fast 

and simple analysis of the strain of the formed part.  

 

Keywords: Weighted least squares; surface reconstruction; unorganized point cloud; strain 

analysis; visualization 

 

 

1. INTRODUCTION 

To ensure part quality in sheet metal forming processes, inspection to verify adherence to both strain and geometry 

criteria is required. Laser digitizer and stereo vision systems [7],[21] have been developed to quickly analyze formed 

sheet metal parts such as those shown in Fig. 1, and produce correlated geometry and strain data in the form of 

unorganized point clouds. The past decade has seen significant development in the area of 3D scanning devices and 

therefore a corresponding development in the treatment of the point cloud data they produce. For the point cloud to 

be of use in analyzing the visualization of the part, a surface must be developed to clearly represent the boundary of 

the part. The desire is for this defined surface to be as close as possible to the actual surface, while eliminating the 

effects of noise introduced through registration of the data and with the shortest possible processing time for the 

algorithm. 

 

    
 

             (a) Laser digitizer part with circular grid   (b) Stereo vision camera part with square grid 
Fig. 1. Laser digitizer and stereo vision sensor test stamped sheet metal parts. The insets in each figure show the grid patterns. 

 

The basis for this paper is the weighted least squares (WLS) implicit surface fitting function. Weighted orthogonal least 

squares (WOLS) is an improvement on the standard WLS algorithm that uses the square sum of the orthogonal 

distance from each point Pi to the line Ci. A significant improvement on the WLS method was made by Klein [11], 

who used a proximity graph distance kernel rather than the standard Euclidean kernel, allowing for automatic 

bandwidth adjustment to account for variations in local data density. 
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In this paper, several improvements are made to both the WLS and the sphere-of-influence graph (SIG) methods. 

Changes are required because the real part data used in this paper, gathered by 3D scanning systems, is non-uniform 

and of varying density. In the case of the laser digitizer data, sweeps of the laser beam often cross each other at small 

angles. With the stereo camera system the same physical point on an object can be seen in many images and due to 

noise can appear to be a set of different, but very closely grouped, points. These factors both lead to wide variations in 

the density of points across a data set. New distance kernels are developed and tested, including a method of 

automating the size of r, the parameter which represents the rth nearest neighbour in the SIG method. In addition to 

the implicit surface development, a scalar attribute is related to each data point. In this case, the scalar is the measured 

thickness strain of the part, gathered by the scanning systems, which is used to create a 3D temperature plot display of 

strain over the part surface. 

 

The remainder of this paper is organized as follows. Section 2 deals with related work and provides background 

information. Section 3 deals in more detail with the WLS method and incorporates the SIG. The improved Gaussian 

surface model is explained in Section 4. Section 5 deals with the introduction of a scalar attribute – in this case strain 

data – to the surface model. Section 6 discusses the results to date and conclusions are presented in Section 7. 

 

2. RELATED WORK 

A point cloud is a set of points that have been collected, usually by 3D scanning apparatus, from an actual part surface. 

Surface reconstruction is the attempt to organize point cloud data for visualization. Due to the increased use of 

scanners in recent years, much research has been done in the area of surface reconstruction. We initially investigated 

radial basis functions [5-6], but they were deemed too computationally complex for the large point cloud data sets 

used in this paper. Surfels, surface element extensions of a local area of points to form a piece-wise surface [18-19], are 

another form of surface plotting, but one that is again not suited to the data used. Other approaches for reconstructing 

surfaces from unorganized point data are also available [3],[9]. 

 

The least squares method of dimensional model fitting can be traced back to Gauss in 1809 [8] and is the foundation 

for this paper. The LSM minimizes the square of the distance between a particular data point and the desired surface; 

the surface is defined as the zero set of an implicit function that is constructed from the point cloud data. The weighted 

least squares method is an improvement of the standard LSM and was developed by McLain [15-16] and then carried 

forward by Levin [13] who discusses the mathematics of WLS in detail. For a local neighbourhood of points Pi, WLS 

computes a regression line Ci at each data point Pi which best fits the points in that neighbourhood using a weighted 

regression method. The point Pi is then moved to the point Pi' and the process continues. Further research in the area 

of WLS was carried out by Lee [12] and again by Levin [14]. The WLS method is best suited to a thin cloud of points, 

where the points vary little from the best fit curve or surface, for which the results are very good. However, point sets of 

varying thickness and density and with unwanted noise are not well handled by the WLS method. Lee has made 

several improvements, mainly to the distance kernel. The standard kernel used is the Euclidean distance between 

points, but improved methods better relate the distance along the surface between data points. Also, different 

weighting functions are used with the main criterion being that the weighting function must generate larger penalties for 

points further from the data point in question, P*. Lee’s weighting function is a finite kernel; it includes a condition to 

exclude points farther than some specified radial distance h from P*. Ahn improved upon the WLS model by defining 

that the lines from data points to the reconstructed surface be orthogonal to the surface, thus creating the weighted 

orthogonal least squares (WOLS) model for implicit surface fitting [1-2]. Ahn developed two WOLS algorithms, the 

distance-based algorithm and the coordinate-based algorithm. These WOLS algorithms are more versatile and efficient 

than the previous WLS surface fitting methods. 

 

With the basic WLS and WOLS implicit surface fitting methods developed, recent research has been related to 

improved distance kernels to better relate the unorganized data points. One common approach is to use proximity 

graphs rather than the Euclidean distance. Many proximity graphs have been studied, including the Delaunay and 

nearest neighbour graphs, the α-shape and the sphere-of-influence graph, or SIG [10]. The SIG has shown the most 

promise and has been studied from various points of view, often in the field of optical character recognition [4],[17] 

and also in the development of surfaces from point clouds [11]. With the SIG method, each data point is the centre of 

an open sphere of radius equal to the distance between that point and its nearest neighbour, and two points are 

adjacent if their spheres intersect. This can be expanded to the r-SIG, in which the rth nearest neighbour is used, 

thereby increasing the number of connections between data points. Klein uses the weighted least squares method as a 

basis for surface fitting and experiments with a variety of distance kernels, concluding that the SIG proximity graph, 
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and more specifically the r-SIG, produces the surface closest to that of the original part. Klein also introduced 

automatic bandwidth computation and automatic boundary detection to determine the outer edge of the surface as 

extensions to the SIG calculation. 

 

3. LEAST SQUARES WITH SIG SURFACE MODEL 

In the majority of the current work the data sets used are relatively simple. Implicit surface fitting to a large unorganized 

point cloud set gathered from a part with many complex surface changes is more difficult. Initially we used the standard 

WLS method with a point cloud gathered from a dome-shaped stamped metal part. 

 

3.1 Point Cloud Data Sets 

We used two types of data sets for this paper, both gathered by 3D scanning systems from real parts. In all cases, the 

parts were stamped sheet metal and a circular or square grid pattern was printed on the sheet prior to stamping. The 

spacing of both the circle and the square grids was initially 2.54 mm. The patterns would be deformed after stamping, 

with the squares and circles deforming based on the local strain in the material, as shown in Fig. 1. The circles become 

ellipses after stamping. The resultant point cloud data sets are shown in Fig. 2. 

 

 
 

a) Laser digitizer data from test dome 1       (b) Laser digitizer data from stamped part        (c) Stereo vision data from test dome 2 
Fig. 2. Unorganized point cloud data gathered from actual parts by 3D scanning systems. 

 

We used a scanning laser digitizer to gather some of the data used. This laser system uses internal rotating mirrors to 

guide the laser beam through a planar arc, gathering both 3D position and intensity data for many points through each 

arc. The digitizer head is moved by a coordinate measuring machine in unison with the laser plane travel, so that the 

resulting raw data is formed by many parallel lines of points. The intensity data is used to record the locations of the 

deformed ellipses, and post-processing of the data results in an unorganized cloud of four-dimensional data with each 

point including the three Cartesian coordinates and the corresponding thickness strain of one ellipse. The combination 

of the laser arc movement and the CMM movement leads to regular grids of data points, and in order to fully scan the 

part these grids must overlap. The resulting data therefore has irregular variations in point density. Where only one grid 

of data has been collected for an area of the part the grid is evenly distributed, but when two or more of these grids of 

data intersect, there are often several points in very close proximity. Many surface fitting approaches have problems 

with this type of variation in density and do not smoothly interpret the entire part surface. 

 

 
 

Fig. 3. Repeated data points due to multiple stereo vision images used to capture data set. 

 

We also used data from a 3D stereo vision sensor, which uses two digital cameras to simultaneously capture an image 

of a part. The two cameras give depth to the data and allow for the same four-dimensional data to be gathered. The 

stereo vision sensor must take many images of a part, and these images are combined by the process of registration to 

gather a complete, unorganized point cloud of data to represent the surface of the part. With stereo vision data the 

same point is often imaged from several different points of view, and the resulting data contains many points in very 

close proximity which are in fact the same point. Fig. 3 shows what is in reality only two data points, but each point is 
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repeated several times. This varies the local density of the part in much the same way as the laser grid patterns do, but 

often to an even greater extent, with some points being repeated as many as 10 to 15 times. Again, surface 

interpolation approaches generally do not produce a smooth result over data with this type of variation in density. 

 

Both laser digitizer and stereo vision sensor produced data therefore have large variations in the local density of the 

unorganized point clouds. This is a complication that greatly reduces the effectiveness of many previous surface fitting 

approaches, as a constant bandwidth parameter h does not suit this variation in density. Also, all of the data sets used 

have substantial holes, which result in holes in the surface. These holes are beyond what can be corrected accurately 

by surface fitting methods and must be addressed by improving the 3D scanning systems themselves. The fourth 

dimension of the data represents the thickness strain of the part. This is a scalar quantity that will be overlaid onto the 

surface to show strain information in terms of a colour temperature plot. 

 

3.2 WLS Surface Model 

We initially implemented the standard WLS method. An implicit function is defined to represent the surface. The point 

cloud P containing N points Pi in R3 is given.  The point P* is the point on the surface for each cloud point Pi. The 

surface is then described as the zero set ( ){ }0** == PfPS  of the implicit function, Eqn. (1), such that a(P*) is the 

weighted average of all points Pi, Eqn. (2). 

 

( ) ( ) ( )( )**** PPaPnPf −⋅= .                  (1) 
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The weighting function wi determines the relative weights of all points with respect to calculating the surface at the 

current data point Pi. This is also called the weighting kernel and there are several common kernels, such as the 

Gaussian kernel, Eqn. (3). The corresponding Euclidean distance calculation is given in Eqn. (4). 
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The real constant h, which represents the bandwidth of the kernel, must be determined based on testing and is 

sensitive to the type of data used. This constant allows for the tuning of the influence of points, and is an adjustment to 

the weighting function. The weighting function must satisfy the criteria that those points farther from P* have less 

influence on the surface at point P*. To this end, the weighting function can also be limited such that points outside the 

range of h can be neglected if deemed to be of little influence on the surface. This can be done with a cubic weighting 

function, shown in Eqn. (5). The choice of either of these functions, or of other functions such as the tricube weight 

function, has been shown to have little effect on the resulting surface definition [11].  
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The normal n(P*) is defined as the direction of smallest weighted covariance, and is determined by the weighted least 

squares method. In other words, for a fixed P* it minimizes Eqn. (6) under the constraint of a unit normal, ( ) 1* =Pn . 
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The normal ( )
*
Pn  is the smallest eigenvector of the centred covariance matrix B, whose entries are bij, 
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The solution method implemented to solve the WLS problem is based on that of Ahn [1]. The method is an iterative 

routine to solve a non-linear equation to find a point on a surface. An initial guess at a point near the surface, P*, is 

projected onto the surface and then this projected point is used as the new estimate of the point on the surface, and 

projected again. When the change in distance between successive projections is suitably small, the system has 

converged to find the point P* on the surface, which relates to the data point Pi. Generally, the solution converges very 

quickly, often within three to four iterations depending on the local noise in the data. 

 

3.3 SIG Model 

The weighted least squares surface fitting method as described to this point uses a Euclidean distance kernel, Eqn. (4), 

that does not necessarily follow the topology of the surface but rather determines the three dimensional distance 

between two points. The path along the surface between the two points, called the geodesic distance, is commonly 

longer than the Euclidean distance but we do not have a defined surface to follow. Instead proximity graphs are used. 

Klein [11] found the sphere-of-influence graph (SIG), although less used than others, to be the best performing 

proximity graph for implicit surface fitting. The SIG method [4],[17] is used to determine if a sphere of influence 

centred at each data point intersects with the sphere of other data points, and if so the two points are connected by an 

edge. Mathematically, for each point Pi, the distance di to the nearest neighbour is determined by calculating the 

distance between that point and all other points Pj, and then an edge is connected between any two points Pi and Pj if 

 

jiji ddPP +≤−                    (8) 

 

The standard SIG model connects points only if their distance apart is less than the sum of the distances to their 

respective nearest neighbours. Thus, the SIG is heavily dependant on the local density of the data. If a small region has 

a very high density of points, there will not be many connections between this region and points outside of this region. 

To improve the performance in this type of situation, Klein used the r-SIG method [11]. Instead of calculating the 

distance to the nearest neighbour, this version uses the distance to the rth nearest neighbour, where r is a constant 

determined to suit the data set. The distance di from the original point to the rth nearest neighbour will increase with 

increasing r, so that as r increases more points are connected to form edges based on Eqn. (8). Klein’s intention was for 

the r-SIG method to fill holes in the data and produce a more evenly connected structure than would be possible with 

the simple SIG method. Common choices for r are in the range of r = 3 to r = 7. Selecting a value of r which is too 

small eliminates the effectives of the r-SIG method and effectively reduces it to the SIG method, while too high an r 

value connects data points which are in fact quite far from each other and should not be connected. Klein also used 

stochastic pruning of the connections to eliminate any overly long outlier connections between data points. Fig. 4 

shows the results of Klein’s r-SIG method applied to a subset of the stereo vision data set shown in Fig. 2(c). When r = 

1, no connections are made due to the repeated data points, as shown in Fig. 3. As r progresses through the values of 

3, 5 and 7, the results steadily improve as fewer and fewer points are duplicated more than 3 or 5 times. When r = 7, 

nearly all possible connections are made, as the remaining holes were present in the raw data as well. The last case 

exhibits no overly long connections even though the holes are filled, showing the effectiveness of the pruning routine. 

 

                               
 

a) r = 1      (b) r = 3             (c) r = 5     (d) r = 7 
Fig. 4. The r-SIG method applied to stereo vision sensor data for various values of r. 

 

An extension of the SIG method is the automatic calculation of the bandwidth h from Eqns. (3) and (5). The local 

value of the bandwidth is critical to local surface smoothness. A small h value means that relatively few points influence 
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the surface at any one point, and the surface is therefore rough, as it would oscillate in an attempt to pass as nearly as 

possible through each point. Noise in the original data has a large impact on the resulting surface when a small 

bandwidth is used. An overly large bandwidth value results in the calculated surface being overly smooth relative to the 

actual part surface, and missing features all together. Klein’s automatic bandwidth calculation adapts the value 

depending on the local point density of the data. However, we found that Klein’s method actually decreases the 

smoothness of the resulting surface because the bandwidth value changes from point to point rather than progressing 

smoothly. Our new automatic bandwidth adjustment is done with a method based on Shepard’s Interpolant [20], in 

which h is calculated as a continuous function of P*, the estimated point on the surface, as seen in Eqn. (9). In this case 

di represents the distance to the rth nearest neighbour of the point Pi, as it does with the r-SIG method. 
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The SIG method is feature size independent and works well for data sets with roughly uniform density, but its 

effectiveness depends heavily on the variation of the density of the data. Our automatic bandwidth calculation 

improves the SIG and r-SIG methods, but with the data sets gathered from actual parts the SIG fails. The importance 

of the parameter r in the rth order SIG is shown in Fig. 4. Large holes are seen in the data in the case where r = 3; 

some of these holes are filled when r = 5 and the connectivity plot is much improved when r = 7. The increase in r is 

necessary due to the overlapping data gathered from the stereo vision sensor, as shown in Fig. 3. Eqn. (8), the SIG 

equation, is the criteria for when edge connections between points are made. If for example there are five points 

essentially overlapping, then the 5th nearest neighbour distance is very small. Therefore connections are only made 

between points which are very close together; the connections are between the same physical point on the part, which 

has been repeated and slightly offset due to the noise in each camera image. The automatic bandwidth calculation is 

based on the largest connecting edge within a local region, so detects only the short connections between very close 

points, which are too small a distance to be significant. Increasing the parameter r beyond the number of overlapping 

points causes the nearest neighbour distance to increase dramatically, to roughly the 2.54 mm grid distance between 

points on the undeformed sheet steel, and hence significantly improves the connectivity plot, as can be seen for the 

case when r = 7. The disadvantage of the r-SIG method with this type of real point cloud data is that the variation in 

local density of the points is unpredictable, and manual tests must be performed to determine the appropriate 

parameter. Also, although r = 7 might be required for one section of the data, another local area might need only a 

smaller r, in which case many additional, overly long and undesired connections are made between data points. The 

results of our WLS method using r-SIG with our improved automatic bandwidth adjustment are shown in Fig. 5. This is 

a 2D curve fitting example to simplify the display of results, with the data points and the resulting curve shown. In this 

case, r = 2 and Fig. 5(a) has two coincident data points at each location while Fig. 5(b) has these two data points 

slightly separated by introduced noise. Where data is duplicated and with r = 2, the surface is essentially a standard 

WLS with SIG fit, and the area of higher point density at the top of the point cloud set sees the curve miss the top 

feature entirely, but the straighter sections of the curve fit very well. When noise is introduced, the points are no longer 

duplicated and the surface better follows the top curve of the data, but is subject to more unevenness elsewhere. These 

results show the disadvantage of the SIG method in that it is very difficult to properly fit a surface to a data set of 

varying density with one value of r. 

 

   
 

      a) Duplicate data point with no noise  (b) Introduced noise to separate data points 

Fig. 5. The WLS r-SIG method with automatic bandwidth adjustment applied to a 2D data set with r = 2. 
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4. GAUSSIAN IMPLICIT SURFACE MODEL 

We developed a further surface model due to the shortcomings of the proximity graph WLS implicit surface model 

when dealing with point cloud data of varying density. The Gaussian weighted least squares method is an extension of 

the standard WLS method with an improved distance kernel, replacing that of either Eqn. (3) or (5). The new Gaussian 

kernel, Eqn. (10), is a modification of that in Eqn. (3) that, rather than calculating the distance between a data point 

and the corresponding guess of the point on the surface, calculates di, the distance between two data points Pi and Pj, 

Eqn. (11). The parameter h is, as before, a feature parameter representing the nominal distance between grid points. 

 
22
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jii PPd −=                  (11) 

 

We used the Gaussian method to model the surface of the same section of data as was used for the r-SIG method in 

Fig. 4. The nominal, undeformed grid separation distance for both the circular and the square grids is 2.54 mm, so 

results for three different bandwidth choices were plotted, as seen in Fig. 6: h = 2; h = 2.54; and h = 3. When h = 2, 

some data points in the areas of higher strain are close enough to other points to form some connections, but there are 

many gaps. When the nominal value of h = 2.54 is chosen the results are excellent, with nearly all points fully 

connected to other points and few overly long connections. Continuing work is being done to eliminate the long 

connections through stochastic pruning. Increasing the bandwidth to h = 3 significantly increases the number of 

connections made, beyond what is desirable.  

 

    
 

a) h = 2    (b) h = 2.54    (c) h = 3 

Fig. 6. The Gaussian method applied to stereo vision sensor data for various values of h. 

 

The examples show that with the Gaussian method proper selection of h is very important. Automatic bandwidth 

adjustment for the Gaussian WLS is similar to that for the r-SIG WLS presented in Eqn. (9). An initial guess for the 

bandwidth parameter is used to calculate the weights of each point in Eqn. (10), and then for each point Pi the new 

bandwidth parameter is calculated as the weighted sum of the distances to local points Pj, Eqn. (12). This new set of hi 

values is used to calculate a generalized bandwidth function using the Shepard Interpolant, Eqn. (13), that is a measure 

of local density at any point in the space of the data set. For this calculation, an improved estimate of the weights is 

used, Eqn. (14). 
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The results of this Gaussian WLS with automatic bandwidth adjustment are very good with the point cloud data sets 

used. The Gaussian method does not depend on the density of the data, but does depend on the feature size of the 

local region of the part. Fig. 7 shows the results of our Gaussian WLS method with automatic bandwidth adjustment 
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applied to the same 2D data as was used with the r-SIG method in Fig. 5. Although a simplification, this data set 

produces results which are a good representation of the more complex data sets used in this paper, and as such is able 

to show the effectiveness of the Gaussian WLS method. For both the duplicate point and the noisy data sets, the 

Gaussian surface interpolation is able to follow the data very well for the length of the curve while remaining smooth. 

Some Gaussian shrinkage is evident at the peak; this problem is currently being examined. 

 

   
 

a) Duplicate data point with no noise  (b) Introduced noise to separate data points 

Fig. 7. The Gaussian WLS method with automatic bandwidth adjustment applied to a 2D data set. 

 

5. INCORPORATING A SCALAR ATTRIBUTE 

The speed of a process is becoming very important in modern manufacturing. As such, it is highly desirable to be able 

to quickly analyze some criteria of a part in addition to its geometry. One such criterion is the local strain of a stamped 

part, where it is convenient and efficient to be able to plot the thickness strain of the part directly onto its surface. For 

each point cloud data set used in this paper there is a scalar attribute, the thickness strain, in addition to the Cartesian 

coordinates at each point. This attribute adds a fourth dimension to the data, and our method plots the scalar on the 

implicit surface in a two step process. In the first step, a set of weights of the colours is developed, again using the 

Shepard Interpolant, as shown in Eqn. (15) and Eqn. (16). The scalar, in this case strain which will be represented by 

colour, is given the variable ci. The equation for the distance di is a piecewise combination of an exponentially 

decreasing, infinitely supported curve with a second curve that converges to zero to ensure that the strain calculation is 

locally supported. The variable R represents the distance to convergence at zero of the curve. 
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Once the colour weights are calculated, they are used to compute a normal to a hyperplane f(P*) at each point on the 

surface using the WLS method, then we calculate a weighted linear combination of the hyperplanes as shown in Eqn. 

(17), which represents the colour as a function of P*. 

 

( ) ( )∑= ** PfwPC i

               (17) 

To display the results of the colour algorithm, a 2D data set with the scalar attribute as one of the dimensions was 

created, and the implicit surface model and colour models were developed. Fig. 8 shows this result, with the oscillating 

line representing Shepard’s Interpolant, which is used as the weighting function, and the smoother line showing the 

resultant smoothed scalar attribute interpolant. 
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Fig. 8. 2D data set with colour attribute as one dimension. 

 

6. RESULTS 

The methods discussed serve to improve the ability of implicit surface models to properly fit the surface which 

represents an unorganized, noisy point cloud of data and to fit a scalar attribute to the resulting surface. In this case, 

measurements of the local thickness strain are used to produce 3D, colour temperature plot style representations of the 

strain over the surface of a stamped sheet metal part. The results are shown in Fig. 9, which includes both a detailed 

view of one corner of the stereo vision data set and a full view of the laser digitizer data set shown in Fig. 2. The 

methods described are useful for visualization purposes, but it is clear from the image on the left side of Fig. 9 that the 

scalar mapping is not smooth. We are currently working on smoothing both the surface reconstruction and the scalar 

mapping, which is an area of little existing work. 

 

 
 

Fig. 9. Results of 3D WLS with colour strain scalar attribute. 

 

7. CONCLUSIONS 

We have presented both improvements to existing proximity graph based implicit surface definitions and a new 

Gaussian surface definition. New developments were required to improve the results when using noisy point cloud 

data acquired from the scanning of actual parts. The laser digitizer and the stereo vision data acquisition systems each 

present their own specific difficulties with the data sets that lead to the failure of previous surface fit methods. The 

improved SIG based method is better at dealing with these problems and includes a smoother automatic bandwidth 

calculation, but the SIG method is not well suited to data with widely varying density of the type that is found with the 

point clouds used. A new Gaussian method is much better suited to data with these variations in density and also 

includes automatically adjusting bandwidth. The addition of a scalar to 3D point cloud data effectively creates a four-

dimensional problem. The scalar used in this case is thickness strain data gathered in conjunction with the Cartesian 

coordinates by the 3D scanning systems, but other scalars such as grey scale intensity, used to represent the colours of 

the part, could be used. The scalar is used to fit a temperature plot type of colour interpretation of the strain data over 

the implicitly defined surface to allow for fast and easy recognition of the strain of a stamped part. Continuing work 

includes the smoothing of both the surface fit and the colour algorithms and the implementation of the surface 

reconstruction into a complete laser scanner based dimensional inspection system. 
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