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ABSTRACT 

 

Two new approaches of 3D implicit surfaces reconstruction with radial basis functions (RBFs) are 

proposed in this paper. With the first method, a point set is organized by a balanced binary tree. 

The cells are controlled to be mildly overlapped and to contain adequate number of points for 

efficiency and stability. In each subdomain, only one off-surface point in the quasi-normal direction 

which is estimated by an eigen analysis is used in RBF interpolation. Another method is least 

square RBFs. This method can overcome the problem of numerical ill-conditioning and over-fitting 

of traditional RBF reconstruction and it offers a methodology for reconstruction with less centers. 

These method are versatile and with topological flexibility and numerical efficiency. 
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1. INTRODUCTION 

The problem of surface reconstruction from scattered point datasets has been studied extensively in computer graphics 

and engineering since the pioneer work of Boissonnat [1] and Hoppe [2]. In particular, the use of a range scanner or 

laser scanner produces large amount of unorganized point sets in industry, entertainment and archeology, etc. It is 

desirable to quickly and robustly reconstruct a continuous surface with attributes from these point datasets. Generally, 

the methods of surface reconstruction fall into two categories [3]. One is Delaunay-based methods [4-6] and another is 

volumetric and implicit based methods [7-11]. Delaunay triangulation is usually utilized in this kind of method to find 

the possible neighbors for each point in all directions from all samples. Curst and Cocone algorithm are two of the 

most known methods [4], [6], [5]. Implicit surface modeling is popular because it can describe complex shapes and its 

capabilities for surface and volume modeling. Complex editing operations are easily to be performed on such models. 

Among them, level set methods [12], moving least square methods [13], variational implicit surfaces [14] and 

adaptively sampled distance field [15] are recent development in this field. Radial basis functions (RBFs) attract more 

attentions recently in data interpolation in multi-dimensions [14]. It is identified as one of the most accurate and stable 

methods to solve scattered data interpolation problems. Using this technique, an implicit surface is constructed by 

calculating the weights of a set of radial basis functions such that they interpolate the given data points. The surface is 

represented as the zero level set of this implicit function.  

The problem of 3D reconstruction from scattered points based on radial basis functions involves two challenges. One 

is the approach of fast fitting of RBFs for the large scale datasets, and another is the method of fast evaluation. Ohtake 

and Morse’s compactly supported RBFs [9], [16], Carr’s greedy algorithm [7], Beatson’s GMRES iteration method and 

Domain Decomposition Method (DDM) [17] and Ohtake and Tobor’s Partition of Unity [9], [18] are methods of fast 

fitting to solve the coefficients of RBFs. Fast multipole method (FMM) is a efficient algorithm to evaluate FRBs with 

large number of centers [19]. But the far field expansion in the method has to be done separately for every radial basis 

function and its implementation is intricate and complicated. In RBFs interpolation, if the sampled surface points are 

used directly, it will lead to trivial solutions to the RBF linear system. In practice, some interior or exterior constraints 

along the normal direction, called off-surface points, are required to avoid trivial solution. This is a common practice, 

but it doubles or triples the number of interpolation centers. Furthermore, the RBFs are of a global support and the 

resulting coefficient matrix is dense. Therefore, it is difficult to use this technique to reconstruct implicit surfaces from 

large number of point sets consisting of more than several thousands of points. Although compactly supported RBFs 

can offer a way to deal with large scale point sets since the involved RBF coefficient matrix becomes sparse [9], [20], 

[16]. Unfortunately, the radius of support has to be chosen globally, which means the approach is not robust and 

stable against highly non-uniformly distributed point sets where the density of the samples may vary significantly.   
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In this paper we describe two contributions to the problems of surface reconstruction from large scale unorganized 

point sets. Firstly, we take a binary tree to subdivide the global domain into overlapping local subdomains. To 

reconstruct the local surfaces for each subdomain, we only add a single point as the off-surface point to the input 

points. We demonstrate that, when the off-surface point is chosen properly, the technique is not only efficient but also 

robust, which has a higher level of scalability. Secondly, we adapt the methodology of least square (LSQ) optimization 

to surface reconstruction and deduce the corresponding formulations. We show that with this LSQ RBF scheme we 

can use less centers in reconstruction, moreover, it can avoid the numerical ill-conditioning and “over-fitting” problems 

of conventional RBF interpolation scheme.  

Paper is organized as follows. The related works are summarized in section 2, and in section 3 some relevant 

theoretical backgrounds are described. The detailed reconstruction approach and some reconstructed examples are 

presented in section 4. In part 5, formulations of LSQ RBF are developed and some examples are given. The part 6 is 

conclusion section. 

 

2. RELATED WORKS 

The method of RBFs reconstruction based on Partition of Unity (POU) from scattered point datasets is proposed in the 

[8] and [18]. In [8], a point set is adaptively organized by an octree structure according to the complexity of the local 

shape. Quadric functions are used to approximate the local shape in each octant cell and the partition of unity 

functions are utilized to blend the local shapes to obtain the global surface. However, it is not practical to interpolate 

the noisy data. Tobor utilizes a binary tree to divide the global domain into overlapping subdomains, and the partition 

of unity functions are employed to blend the local solutions [18]. However, to avoid the trivial solution of RBF linear 

system, they add a off-surface point to each of the surface points. Contribution of our new scheme is to reduce the 

number of off-surface points greatly. 

 

3. THEORETICAL BACKGROUNDS 

3.1 RBF Formulations 

The problem of scattered data interpolation can be stated as:  given a set of fixed points n

N R∈xxx ,,, 21 �  sampled 

on a surface S in 
3R  and a set of function values ,,,, 21 Rfff N ∈� find an interpolant RR →3:φ  such that  

                                                                           .,,2,1    ,)( Nifii �==xφ                                                            (1) 

It is proved that the smoothest interpolation function has the simple expression 
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where )(xp  is a polynomial, jα  are coefficients corresponding to each basis and   ⋅  is the Euclidean norm on 3R . 

The basis function ( )g r , jr = −x x  , is a real valued function on [ )∞,0 , and it is usually unbounded and has 

global support. The polynomial )(xp  is appended for achieving polynomial precision. For example, if  )(xp  is a 

linear polynomial, the coefficients jα  must satisfy the following constraints:  
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The RBFs interpolation problem can be expressed as           

1

( ) ( ) ( )
N

i i i j i

j

f g pα
=

= − +∑x x x x                            (4) 

Solving the linear system (4), we can get the weight coefficients and the polynomial coefficients for the interpolation 

function ( )xφ . 

 

3.2 RBF POU Interpolations 

It is unpractical to solve the linear system (4) directly for large scale input point sets due to the complexity of )( 3NO  

surface fitting and ( )O N  evaluation. A natural solution is the so-called divide-and-conquers strategy which is the 

central idea of Partition of Unity (POU). The concept of POU is rooted in applied mathematics [22]. The main idea of 

the partition of unity method is to divide the global domain into smaller overlapping subdomains where the problem 
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can be solved locally on a small scale. The local solutions are thereafter combined together by using blending 

functions. The smoothness of the global solution in the overlap regions can be guaranteed by the blending functions. 

The POU method for RBFs surface reconstruction has been applied by Tobor et al. [18]. For completeness, the 

method is described here briefly. 

The global domain Ω  is first divided into M  overlapping subdomians { }M
ii 1=Ω  with 

i i
Ω⊆ Ω∪ . For a partition of 

unity on the set of subdomains { }M
ii 1=Ω , we then need to define a collection of non-negative blending functions 

{ }M
ii

w
1=
 with limited support and with ∑ =1iw  in the entire domain Ω . For each subdomain 

iΩ , the  points within 

the subdomain are used to compute a local reconstruction function iφ  that interpolates these data points. The global 

reconstruction function Φ  is then defined as a combination of the local functions: 

∑
=

=Φ
M

i

iw
1

)()( xxφ                                                                               (5) 

The blending functions are obtained from a set of smooth functions 
iW by a normalization procedure  
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where the condition ∑ =1iw  is satisfied. The weighting functions 
iW  must be continuous at the boundary of the 

subdomains 
iΩ . It can be defined as the composition of a distance function ]1,0[: →ni RD  and a decay function 

]1,0[]1,0[: →V , i.e., )()( xx ii DVW �=  [18]. The distance function has to satisfy 1)( =xiD  at the boundary of 

iΩ . For a 3D axis-aligned box defined from two opposite corners S and T , the distance function 
iD  is chosen as  
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The main condition in choosing the decay function V  is the continuity between the local solutions 
iφ  in the global 

reconstruction function Φ . The following functions are suggested to meet various continuity conditions [18]. 

                            0 0 1 1 3 2 2 2 5 4 3: ( ) 1 ; ;  ( ) 2 3 1; ;  ( ) 6 15 10 1C V d d C V d d d C V d d d d= − = − + = − + − +                (8) 

As for the local error estimates for radial basis function interpolation was studied by Wendland and Wu [21,22].  

 

             
 

4. RECONSTRUCTION OF RBF IMPLICIT SURFACES 

4.1 Space Subdivision with Binary Tree 

In order to answer the range query problem efficiently, a data structure has to be set up to divide the scattered point 

sets into local problems. The range query problem can be state as given a set of points dX ⊆ �  and a range 
dR ⊆ �  

Fig. 1. Process of a binary tree set up. 

  Level0           Level1          Level2 

Fig. 2. Examples of binary tree decomposition. 
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and the task is to indicate all points 
jx X∈ with d

jx ∈� [21]. Actually, there are several data structures can cope with 

this problem. Here, we also use a binary tree structure to organize the point sets as in [18]. In our algorithm, a quick 

sorting scheme is utilized to set up the data structure efficiently. There are four parameters needed to set up a binary 

tree. They are Tleafnode that controls the bound of points in a leaf node, Tmaxnum that decides the maximal number 

of points in each subdomain, Tminnum that determines the minimal number of points in each subdomain, and Tq that 

is the overlap quotient to control the number of points in the overlap area. Figure 1 shows a binary tree setup, while 

some examples of the binary tree decomposition of the real data set are illustrated in Figure 2. The root of binary tree 

is the bounding box of the whole point dataset such that an arbitrary point in the global domain could find a 

containing leaf node.  

 

4.2 Generation of Off-surface Points 

In the implicit representation of the surfaces constructed with radial basis functions from Eqn. (2), the surface samples 

satisfies 

                                                                            Nii ,,2,1    ,0)( �==xφ                                                             (9) 

Therefore, the system Eqn. (4) becomes trivial. The problem can be overcome by introducing additional constraints 

with artificially generated so called off-surface points with non-zero values 0)( ≠= cixφ . A common practice, as 

suggested in [10], is to introduce an off-surface point for each data point, usually along the normal of the surface. This 

technique is shown in Figure 3 for the traditional reconstruction scheme (left) and the scheme with the partition of unity 

(center).  

A problem of the conventional technique is that the off-surface points substantially increase the number of data points 

for interpolation. The total variables would double or triple the amount of sampled data points, which will deteriorate 

the computation for a large scale problem. In general, it is not necessary to use such a large number of off-surface 

points. Theoretically, a single off-surface point might be sufficient to avoid the trivial solution of linear system (4). 

Therefore, we propose a scheme utilizing a single off-surface point for the local reconstruction of the RBF interpolation 

in each subdomain. Our scheme is illustrated in Figure 3 (right). 

 

 

     
 

Theoretically speaking, the off-surface point can be anywhere in the subdomain. But if the off-surface point is located 

on the boundary of the subdomain, the reconstruction system (4) may become unstable. In our algorithm, an efficient 

scheme is used to generate the off-surface point in each subdomain. As shown in Figure 4, Bdbox1 and Bdbox2 are the 

subD1 subD2 

Overlap Bdbox1 Bdbox2 

Fig. 4. Generation of the one off-surface point. 

Bdbox1 

P 
ε  ε  

Fig 5. Enlarging the spherical domain for total least square 

fitting to estimate normal. Left: the center of ball locates 

outside of the model surface. Right: the ball center is 

outside.  

Fig. 3. Comparison of three RBF schemes. 

ci =)(xφ

0)( =ixφ

ci =)(xφ

0)( =ixφ

ci =)(xφ

0)( =ixφ

       Traditional RBF scheme                            Traditional POU-RBF scheme                          Our POU-RBF scheme 
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bounding boxes of two neighboring subdomains, subD1 and subD2, respectively. Taking Bdbox1 as an example, we 

firstly find the center P of the bounding box which may lie inside or outside of the object. Then, a point nearest to the 

point P is found. This data point is then offset along its normal with a small distance to yield an off-surface point. This 

off-surface point is then used for the corresponding subdomain to reconstruct the local RBF function 
iφ  using Eqn. (2).  

If the surface samples are not equipped with normal, this normal has to be estimated to generate the off-surface point. 

Here, we use the covariance analysis for the estimation. In this estimation, a best fitting plane is computed to the sub-

set, and the problem reduces to an eigen analysis. The scheme is illustrated in the figure 5. 

 

              
 

4.3 Making Consistency of the Coefficients 

However, it is difficult to distinguish the inside and outside of the off-surface point generated from the above described 

method. If these points are used directly to reconstruct surface, some unexpected results can be caused, as illustrated in 

figure 6. To overcome this drawback, we propose a method to guarantee the inside/outside consistency by using the 

hierarchy of binary tree in a bottom to up way.  

To reveal this procedure, we assume 
1( )pφ  and 

2( )pφ  are positive but they lie on different side of the zero level-set, 

shown in figure 7. From 
1p and 

1ix subD∈ , we get coefficients 
1,d iα , and from  

2p  and 
2jx subD∈ , we get 

2,d jα . 

Let 
1p subD∈  and 

2p subD∈ , so ( ) 0pφ >  in 
1subD , but ( ) 0pφ < in 

2subD . From Eqn. (2), we can see if the 

off-surface point is put in the wrong side of zero level set, it just affects the sign of coefficients not the magnitude. So if 

we fix the sign of coefficients in 
1

subD  and flip the coefficients in 
2subD , that is 

2, 2,d j d jα α= − , we can get the 

correct coefficients orientation which not being influenced by the direction of the estimated normal. 

In our reconstruction scheme, the process of coefficients consistency adaptation starts from the leaf node of the binary 

tree. Since our binary tree is perfect full, each pairs of leaf node has an overlap area. So we take the center of the 

overlap as a test point to evaluate and check the product of two function values. If the sign of product is negative, it 

shows that one of the set of coefficients should be flipped. After this step, the coefficients in each pair of leaf nodes with 

a same parent are consistent, but the coefficients in leaf node which have different parents may be inconsistent. Then 

we go to step 2. The process is the same as the step 1. Finally, it goes to the root of the binary tree; the flipping process 

can be completed.  

Fig. 6. The influence of the off-surface point position. 

outside 

inside 

inside 

inside 

outside 

outside 

outside 

outside 

subD1 subD2 

p 

p1 p2 
+ 

+ 

+ - 

Fig. 7.  A point is evaluated in different 

subdomain with different sign. 

Step 1 

Step 2 

Step 3 

Fig. 8. The process of coefficients consistency. 
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4.4 Experimental Results  
In this section we present some results of our reconstruction method. In our implementation, we solve the local linear 

system (3) with both singular value decomposition (SVD) and LU factorization in each subdomain. The LU is little bit 

faster than SVD, but it is less stable. We also employ the marching cubes algorithm for surface polygonization. The 

hardware configuration is Intel Pentium 1.5 GHz with 512 MB RAM and WinXP running on notebook. In Figure 9 

some visual examples of the reconstruction of our proposed method are shown. The quality of the reconstructions is 

highly satisfactory.  

 

Model Num. Points Ttree (s) Trec (s) Tpoly (s) Ttotal (s) 

Capsule 338 0 0.88 2.03 2.91 

Knot I 1,440 0.02 2.39 1.73 4.14 

Venus I 11,121 0.24 19.25 1.64 21.13 

Knot II 28,659 0.44 58.13 1.47 60.04 

Tab. 1. Computational cost reconstruction with our scheme. 

 
In Table 1 we list the quantitative results of the reconstruction of four different data sets with different point density, 

where Ttree stands for the time cost of binary tree set up, Trec is the reconstruction time of the local RBF system, Tpoly 

means the polygonization time of RBF implicit surface, and Ttotal is total time cost of reconstruction. The parameters of 

binary tree are Tleafnode, 100; Tmaxnum, 180; Tminnum, 40 and Tq 0.03 respectively. As reported in [18], the POU-

RBF technique exhibits a linear complexity in the reconstruction time with respect to the number of data points. It is 

clearly shown that for the total reconstruction time, the use of a single off-surface point reduces the computational 

effort substantially.  

 

5. LEAST SQUARE RBF BASED SURFACE RECONSTRUCTION 

5.1 LSQ RBF 

Though POU offers an efficient reconstruction scheme, some other significant problems still remain unsolved. Since the 

collocation method uses the whole data sets both as data and centers, numerical ill-conditioning often occurs due to 

small distance between some centers, especially for the very dense datasets, which will cause linear dependency of 

coefficient matrix. Another issue of POU scheme is the so-called “over-fitting” problem as the interplant is too flexible 

such that it not only fits the surface but also fits the noise which was introduced into the data during sampling. 

Fortunately, theories of RBF networks lend powerful tools to solve the above mentioned problems. 

We rewrite the RBF formulation into  

                                                        
0

1

( ) ( )
M

T

j j

j

x g x xφ α α
=

= − + =∑ g α                                                            (10) 

where [ ]1 2, , , ,1
T

M= ⋅⋅⋅g g g g , [ ]1 2 0, , , ,
T

Mα α α α= ⋅⋅⋅α , M is the number of points used in reconstruction (M is less 

than the total number of given point sets N ), and T is the transpose operator. Function values on the data points h  

and ĥ  indicating the function value with noisy data.  Let 
1 2, , ,

T
T T T

N N M×
 = ⋅⋅⋅ G g g g , we have  

( )x Gφ = α                                                                       (11) 

Fig. 9. Reconstructed results with one off-surface point POURBF. 
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The RBF interpolant interpolates the sample points with function values h , so the interpolation equations can be 
derived from the following optimization problem  

1 1ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) min
2 2

T TJ G Gφ φ= − − = − − →h h α h α h                                      (12) 

To deal with the noisy data, a “cost function” is augmented the Eqn. (19) to penalize the large weights. 

21 ˆ ˆ( ) ( ) min
2

TJ G G = − − + → α h α h λαλαλαλα                                           (13) 

Eqn. (13) is differentiated to get the solution 

ˆ( )TJ
G G

α
∂

= − +
∂

α h λαλαλαλα                                                                (14) 

Let Eqn. (14) equals to zero and gets 

( ) ˆT TG G G=+ α hΛΛΛΛ                                                                   (15) 

Then αααα can be obtained as 

( ) 1 ˆT TG G G
−

= +α hΛΛΛΛ                                                                 (16) 

In ordinary least square where there is no weight penalty, the solution becomes 

( ) 1 ˆT TG G G
−

=α h                                                                      (17) 

The dimension in the above formulations can be refined as :G N M× , h and ˆ : 1N ×h , :1 M×λλλλ , : 1M ×αααα  and 

:M MΛ × a identity matrix respectively, where the low degree of polynomial is not considered. It can be appended 

in accordance with specific basis functions. When coefficients αααα  are solved, the implicit surface can be reconstructed 

with fewer centers,M , than the total of samples N .  

 

 

 

 

 

 

 

 
Tab. 2. Quantitative results of LSQ RBF. 

 

5.2 Some Examples 

As to verify our LSQ RBF scheme, we test lots of scattered point datasets. Tab.2 illustrates the computational costs of 

four of them. From the table, we can see that the total time cost is more than the scheme proposed in section 4 as the 

conventional off-surface-point method is utilized to avoid the trivial solution of RBF. Figure 10 shows examples in 2D 

case, figure (a) shows the original curve and samples, say 138N = . (b), (c) and (d) are the reconstructed curves, with 

the numbers of knots decreasing gradually; say 68,46,26M = respectively, the maximal errors increase 

correspondingly. We found that using forty to fifty percent of the original samples can get satisfactory results. Figure 11 

shows the 3D cases, with knot points decreasing; the reconstructions do not exhibit great visual difference. More 

complex examples are shown in figure 12. These examples show highly satisfactory quality. 

 

 

Model Num. Points Ttree (s) Trec (s) Tpoly (s) Ttotal (s) 

Fandisk 6,745 0.12 114.76 2.65 117.53 

Knot II 28,659 0.48 324.05 3.28 327.81 

Bunny 34,834 0.61 525.82 6.44 532.87 

Venus II 72,545 1.22 1,086.45 10.45 1098.12 

Fig. 10. LSQ RBF reconstruction in 2D case. 

(a) 138 (b) 68 (c) 46 (d) 26 
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6. CONCLUSIONS 

Reconstruction algorithm with RBF is positive definite, most stable and accurate. It can offer powerful tools in reverse 

engineering, medical imagery, archeology or other fields.  We contribute two approaches to the problem of surface 

reconstruction in this paper. The first method is based on the implicit representation with radial basis functions and the 

partition of unity. We propose to estimate a normal and generate a single off-surface point for each subdomain of the 

partition of unity, in contrast to the conventional RBF reconstruction methods, where a full set of off-surface points are 

used. Accordingly, a RBF coefficients consistency scheme is proposed. It is shown that this approach reduces the local 

reconstruction time substantially. We also developed another reconstruction method based on least square 

optimization, call LSQ RBF. Although this algorithm is time consuming, it can overcome the problem of numerical ill-

conditioning and over-fitting of traditional RBF reconstruction.  Moreover, fifty to sixty percent samples can be gotten 

rid of and it can still get quantitatively satisfactory results. With the methods proposed in this paper, it will be more 

efficient to reconstruct very large scale point datasets and carry out geometry processing, such as hole filling, mesh 

repairing, model bending, etc. 
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