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ABSTRACT 

 
CAD models from conceptual design often follow the “over-the-wall” approach for downstream 
analyses such as FEA, CFD, heat transfer, and vibrations.  The CAD-centric approach consists of 
using the CAD model as a source of data for downstream applications such as mesh generation, 
and CFD setup.  The CAD model used in the CAD-centric approach contains the geometry to be 
analyzed and all non-geometric data required to mesh and solve the CFD model in the form of 
attributes.  A special class of topology change, the discrete feature problem, is encountered when 
an array of features instances change in number.  A method is proposed, developed and reported 
on that automates the CAD to CFD process, including fluid domain creation, while addressing the 
discrete feature problem that can occur during preliminary design. 
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1.  INTRODUCTION 

Engineering tools are constantly being revised, enhanced and extended to help improve the engineering and design 
artifacts, increase productivity, and reduce costs.  Today, software tools such as parametric CAD systems, finite element 
analysis (FEA), and computation fluid dynamics (CFD) have been developed to meet these objectives.  Incorporating 
these tools into product development has been a cost-effective way to increase productivity and improve designs [5]. 
 
CAD models from conceptual design often follow the “over-the-wall” approach (see Fig. 1.) for downstream analyses 
such as FEA and CFD [3].  The over-the-wall approach consists of four domain experts namely: the designer, airsolid 
designer, mesh expert, and CFD expert.  When the designer has proposed a design it is transferred to the airsolid 
designer to create the fluid domain, hereafter referred to as an airsolid, then to the mesh expert to create the mesh, and 
finally the CFD expert to run the CFD analysis.  These experts frequently use CAD neutral formats as the model moves 
from one domain to the next and even duplicate efforts.  This over-the-wall approach creates opportunity for error or 
design escapes that cost a company large amounts of time and money.  Since the CAD-to-CFD process is time 
consuming, CFD has played a limited role in conceptual design, especially where complex models are involved.   
Utilizing a CAD-centric approach (see Fig. 2.) will greatly reduce the CAD-to-CFD cycle time and facilitate for 
optimization.  CAD-centric denotes that all geometry and non-geometric parameters required to perform the CAD to 
CFD process are contained within the CAD model and created within the CAD domain. 
 
Samareh [4] states that in an ideal environment, an engineer would use a parametric model to effortlessly evaluate 
variant models.  In essence this would mean that all the inputs necessary to perform FEA would be given in the CAD 
domain.  For this ideal environment to be realized, Samareh [4] suggests that geometry modeling and mesh generation 
tools must be automated, provide consistent geometry to all disciplines, be parametric and fit within the product 
development cycle times.  Bailey [2] said it best when he stated that “the new approach is to have geometry central, or 
common, to all the processes and to use geometry as a design integrator.” The method presented in this paper 
attempts to satisfy the requirements of this ideal environment. 
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Fig. 1. The over-the-wall approach. 

 

 
 

Fig. 2. The CAD-centric approach. 

 

This paper reports on research aimed at automating the CAD-to-CFD design process from the CAD software to CFD 
setup while addressing the discrete feature problem.  Presently we are focused on the geometry of a single component 
or part and not the geometry of an assembly, however many of the principles discussed here could easily be applied to 
assemblies. The meshing presented in this paper is the result of the automeshing and tetrameshing contained within 
HyperMesh.  In addition we also used the smoothing algorithm’s within HyperMesh to improve the element quality.  
We present results to show that we have solved the discrete feature problem and have created a CAD-centric approach 
to CFD analyses.  
 
Varying the number of feature instances in an array within the CAD model, such as spokes on a wheel, vanes in a flow 
passage, or pins on a cooling surface is a special class of topology change.  This creates the problem of introducing 
new entities and having to create or delete attributes associated to the feature.  Throughout this article the 
aforementioned problem will be referred to as the discrete feature problem.  While it is a relatively minor change in 
today’s parametric CAD systems, the CAD-centric model must be reworked.  Reworking the model would include 
tagging the new entities that were created, recreating the airsolid, and generating a mesh and analysis model.  This can 
become time intensive and delay time to market.  One of our objectives was to develop a method for automatically 
reworking the model and applying attributes when a discrete feature change occurs. 
 
2.  METHOD 

To accomplish our objectives required the development and coding of the following six steps. Each of these steps will 
be discussed in more detail. 

1. Develop a method that allows for automation of the conceptual design process involving CAD parametric 
component model, parametric airsolid creation, mesh generation, and CFD setup. 

2. Solve the discrete feature problem within the CAD parametric component model. 
3. Creation of the airsolid.   
4. Semi-automatic mesh and preprocessing of the airsolid. 
5. Solving the CFD model. 
6. Iterate, by varying the parameters of the CAD component model. 
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2.1 Concept Generation: Parametric Models 

Concept generation and their 2D and 3D parametric models can either be automated (programmatic) or performed 
manually (interactively).  In this paper we discuss (use) both the automatic and manual concept generation 
approaches.  An automatic approach was used for a cylinder study.  It is recommended that a programmatic approach 
be developed if many instances of a similar concept need to be analyzed.  In the case of the cylinders the 
programmatic approach will reduce concept generation time and facilitate automatic airsolid creation.  One of the 
requirements of this method is that the component(s) involved must be parametric and a parametric CAD system must 
be used since it enables quick design changes that often occur in concept generation.  The parametric model is created 
by a skilled designer by creating key parameters and relations that allow for reuse of the model.  The parametric model 
can be time consuming since care must be taken to ensure that parameter changes result in a valid design.  Once the 
parametric model is created an attribute management system was needed to associate attributes to the model for 
downstream applications, thus making it CAD-centric. 
 
An attribute management system (AMS) simply assists the designer in applying, deleting, and editing global and 
associative attributes of the model.  An object-oriented data structure and an intuitive interface are needed to create an 
AMS.  The organization of this data structure is explained in section 3.2 
 
2.2 The Discrete Feature Problem 

This section discusses a general method that resolves the discrete feature problem.  Section 3.3 discusses how this 
general method was developed using the API of a commercial CAD system.  To solve the discrete feature problem a 
program must be built that follows these steps: 

1. Search all features of the model for a discrete feature. 
2. Find parent feature instance of the discrete feature. 
3. Copy all attributes from parent feature instance. 
4. Collect children feature instances. 
5. Apply attributes to children feature instances. 

2.3 Airsolid Creation 

This section describes some generic methods that should be used as part of creating an airsolid.  A programmatic 
approach to creating a parametric airsolid is recommended if many instances of a similar concept are used. We will 
discuss a duct containing varying cylinder configurations as a case study for this paper.  Steps for creating a valid 
airsolid include: 

1. Wave (link) component(s) resulting from concept generation. 
2. Unite all waved components if necessary. 
3. Create initial airsolid representing the limits of the fluid domain without detail from concept design. 
4. Subtract concept generation geometry from initial airsolid resulting in the final airsolid. 

Steps 1, 2, and 4 should be applied to arbitrary geometry, but creating the initial airsolid is specific to individual 
models. A method cannot be developed to create the initial airsolid for an arbitrary geometry because entities from 
concept generation are used and vary between concepts.  Fig. 3., shows an exhaust manifold and its corresponding 
airsolid.  The airsolid was created by sweeping edges from the inlets along a guide curve.  These edges may change 
dimensionally or they may undergo topological changes. Fig. 4., shows how a 2D airsolid or airsurface was created for 
a car.  First, a surface (A) large enough to enclose the profile of a car and model everything from the surface effects to 
the ambient was created. Then the profile (B) was created and subtracted resulting in airsurface (C).    
 

 
 

Fig. 3. Exhaust manifold and its airsolid. 
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Fig. 4. 2D Process for creating an airsurface for a car. 

 
Even though creating an airsolid is unique to each case, some elements of airsolid creation should be consistent 
regardless of the geometry.  Those elements include the use of WAVE technology, automation, and attribute mapping 
techniques.  The essence of WAVE is the ability to relate geometry between files by creating associative copies of 
geometry.  The key to WAVE is that the parent assembly or component serves as a reference and all changes to the 
waved geometry will have no effect on the original geometry from which it was waved.  Airsolid creation is specific to 
CFD analysis so the majority of this section is directed toward CFD analysis, with the exception of the discussion on 
waving the geometry that results from concept generation.  
 
The AMS, as discussed in Section 2.1, is initially used to create and associate attributes to each component used in 
concept generation.  A method was developed that maps all attributes from each component to the corresponding 
entities of the final airsolid.  This allows the designer to do the majority of the attribution on the component level rather 
than at the airsolid level. 
 
When a component is waved all attributes are copied from the component to the waved geometry.  After all of the 
waved geometry has been united, each entity has still retained the original attributes associated to them.  It is not until 
new entities have been created that attributes must be applied.  When the initial airsolid is created, none of the entities 
have attributes associated to them. Thus, this necessitates that attributes be mapped onto the airsolid.  Attributes are 
mapped onto the airsolid with the use of the subtraction Boolean operation.  After all the components are united, a 
final subtraction operation with the united components and the initial airsolid occurs.  This results in the final airsolid 
with attributes mapped from the united components.   
 
2.4 Semi-automatic Mesh Generation and CFD Setup 

Once the final airsolid has been created and the attribution process is complete as just described, the designer has a 
CAD-centric airsolid model.  The CAD-centric model has all of the information necessary to generate a mesh and setup 
the analysis model.  This is achieved by creating scripts, hereafter referred to as command files, within the CAD system 
for the mesh, and analysis software.  The program within the CAD system that creates the command files will be 
referred to as the Command File Generator (CFG).  Once the command files are created by interrogating the CAD-
centric model (details in section 3.5) they are executed in the respective software, either interactively or in a batch 
mode.  The command files will generate the mesh, smooth the mesh, apply boundary conditions, and set up solution 
criteria for the analysis.  If the command file is executed from the user interface, then the designer may still interactively 
interrogate the mesh or analysis model and make changes.  This allows the designer the ability to manually override 
any mesh or analysis parameters that were specified in the AMS.  Thus this method is referred to as semi-automatic. 
 
The mesh and analysis command file is created by using the CAD system’s API.  The resulting command files are a list 
of commands written for the mesh and analysis software.  The APIs of the mesh and analysis software is typically a 
macro type language.  A benefit of the macro API is that it is easy to learn and create from the CAD API.  The CAD-
centric model contains all information needed to create the command files, so the CFG interrogates the model for all 
global and associative attributes, and processes them into a command file for both the mesh and analysis software.   
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This is accomplished by creating an algorithm within the CAD API that will search all global and associative attributes 
specific to the mesh and analysis software.   
 
2.5 Solving 

When the meshing and CFD setup is complete by executing the command files for the meshing and CFD software the 
input deck is submitted to the solver. This input file can be prepared to run on a single workstation, a carpet cluster or a 
supercomputer. We have experimented with all of these scenarios and have determined that it is an easy set of 
commands that will allow the job to run on a single workstation or be farmed out to multiple processors. 
 
2.6 Iteration  

Because this is being proposed as a preliminary design tool and methodology it is necessary to allow for quick 
iterations within components or assemblies design space; the design goal is the determination of an optimal set of 
defining parameters. In our research, we have developed our own optimization loop as well using commercially 
available software like FIPER and Teamcenter Engineering. It has been our experience that developing our own or 
customizing a commercial tool leads to the most robust iteration of a CAD-centric application.  
 
3. DEVELOPMENT 

A programmatic parametric model had to be built in order to automate the conceptual design process that includes 
preliminary design, assembly, and airsolid creation.  The application for developing the concepts and resulting airsolid 
applies the development of the case study; however, the methods used have application to many other industries 
including: automotive, aerospace, and ship building.  The models and rules are part of a design tool that is being built 
as a custom application by utilizing C++ object oriented programming and the Unigraphics application program 
interface (API).  This design tool will be referred to as the Preliminary Design, Assembly, and Airsolid creator, or PDAA. 
 

3.1 Concept Generation 

A programmatic approach for concept generation was selected for the cylinder region.  PDAA is the tool resulting from 
the programmatic approach for the cylinder region.  PDAA has many capabilities, and since it is still in development, its 
functionality increases daily.  Individual components were created interactively and used by PDAA.  Components were 
defeatured by using an airsolid flag that is controlled by PDAA. 
 

3.2 Attribute Management System 

The Attribute Management System, AMS, was developed by utilizing an object-oriented data structure in C++, the 
Unigraphics UG/OPEN API toolkit, and the Unigraphics User Interface Styler (UIStyler).  The AMS is used to assign 
attributes and address the discrete feature problem at the component level.  After the airsolid is created the AMS is 
used again to apply attributes to the few newly created face entities. 

 
 

Fig. 5. Organization of AMS program. 

 
The organization of the AMS data structure consists of graphical user interface (GUI) files, a data structure class, and 
utility functions.  Fig. 5., shows how these files are organized.  The Attribute_Editor GUI file is the master GUI and is 
explained in Fig. 6.  When the master GUI opens, the constructor interrogates the currently active part file for attributes 
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and fills the data structure. If no attributes exist then they are created through the GUIs.  The only data class that exists 
in the AMS is the AttributeFamily class.  The AttributeFamily class consists of data including a name, boundary 
condition, boundary condition value (if appropriate), element size, and a color.  The AttributeFamily class also consists 
of functions that will set and retrieve the data, write the family data as attributes to the part file, and associate attributes 
to face entities. The information for all the families is contained in a global vector that can be accessed anywhere in the 
AMS program. 

 

 
Fig. 6. Attribute editor dialog. 

 
AMS consists of dialogs that contain pull downs and entry fields to gather information to be stored in the CAD file in 
the form of attributes.  The AMS dialogs contain many options, but do not contain all possible choices.  For example, 
the AMS allows the designer to select between three different element types among hundreds.  The purpose of the 
AMS is to create a proof of concept analysis tool that creates and edits CAD-centric models. 
The global attributes dialog assigns the global attributes and includes the ability to copy attributes from other part files.  
This functionality is very useful when dealing with multiple components, because global attributes only have to be 
manually defined in one component and then they can be copied to the other components.  
 
The second step for creating a CAD-centric model using the AMS is to create families.  Since the family element size is 
a multiple of the global element size, the global attributes should be assigned before creating families.  A check was 
created that ensure global attribute exists in the part that contains the element size.  If no global element size was found 
then a warning message is displayed.  The third step is to apply the family name to face entities of the model.  The 
developed AMS assigns attributes to face entities only, but the functionality could be extended to point and edge 
entities.  Assigning attributes to only the face entities made creating the mesh command file much easier with Altair 
HyperMesh, see section 3.5.  Currently, the AMS copies the element density of the face entity to its edges.  In the case 
of an edge that is shared between two faces of different densities, the smaller of the two is applied.  A function was built 
that prints all the global and associative attributes to a file.  This file is used to check all of the current attributes that 
exist in the part file.  The first section of the file lists global attributes including all family information.  The last section of 
the attribute file lists the HyperMesh face identification number and the family name associated with it. 
 
After the attribution process is complete the discrete feature problem is addressed, if necessary, and the command files 
are generated.  This AMS was developed specifically for Unigraphics, Altair HyperMesh, and Fluent; however this 
method could also be applied to any CAD and CAE software that has an API. 
 
3.3 The Discrete Feature Program 

The method to solve the discrete feature problem, described in section 2.2, was successfully implemented using C++ 
and the Unigraphics UG/OPEN API.  The discrete feature program has the ability to address discrete features that are 
User Defined Features or UDFs.  A programmatic approach that is specific to the case study was used which 
incorporates the steps to address the discrete feature problem as mentioned in section 2.2. The first step to solving the 
discrete feature problem is to search the features of the model for a discrete feature.  Pseudo code for finding a discrete 
feature is shown below. 
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loop through all features in the model 
 if feature type is a circular or rectangular array 
  then address_discrete_feature(feature) 
 else 
  Do nothing 
end loop 
 

If an array exists then the discrete feature problem must be addressed.  If one does not exist then nothing will happen.  
The discrete features will have a parent feature instance and in most cases children feature instances. Fig. 7., shows the 
case study with multiple instances of cylinders as the discrete features that are found by the AMS. 

 
 

Fig. 7. Instances of cylinder case study. 

 

Next, the parent feature instance is found.  Pseudo code for this process is shown below. 
 
parent_features_array = parent_features(discrete feature) 
loop through parent_features_array 
 feature = parent_features_array[i] 
 ask_feature_type(feature) 
 if feature type is an instance 
  exit loop 
 else  
  do nothing 
end loop 
 

Finally, all of the attributes are copied from the parent feature instance.  Copying the attributes consists of asking for all 
of the attributes associated to the edges and face entities of the parent feature instance.  All of the attributes will be 
stored to an array to be applied to the children instances. 
 
The fourth step is to collect all of the children feature instances.  The fifth step is to apply the attributes to all of the 
children feature instances.  Pseudo code for finding the children instances and applying the copied attributes is shown 
below:  
 
children_features_array = parent_features(discrete feature) 
loop through children_features_array 
 feature = children_features_array[i] 
 apply copied attributes to feature 

end loop 
 

This method works for most geometry with only a few exceptions.  One difficulty is that success of the method is not 
guaranteed if the children feature instances go through a topology change.  For example, if one of the children feature 
instances was altered in a way where the hole consisted of a different number of entities than the parent, then the 
attributes may or may not be copied to the correct face.  A test is performed in the AMS that checks the number of 
entities of the children feature instances against the number of entities of the parent feature instance. If the number of 
entities does not match then it is likely that this problem has occurred.  A warning is issued to the user, the children 
feature instance in question is highlighted, and the program continues to run.  This way the designer can still benefit 
from the program, but should manually inspect the features involved to make sure attributes have been copied 
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correctly.  Another issue with the method described for solving the discrete feature problem is that it does not work 
when the discrete features involve user-defined features.  To improve the described method to work with user-defined 
features, additional checks where added. 
 
User-defined features (UDFs) allow the designer the ability to extend the range and power of the built-in geometric 
features of the CAD system.  UDFs allow the designer to create his or her own feature that will automate commonly 
used design elements.  The UDF is a “set” of CAD features, and is represented as only one feature in the feature tree.  
This “set” of features is what makes the above discrete feature method difficult to implement.  Step two (find parent 
feature instance of the discrete feature) and step three (copy all attributes from the parent feature instance to child 
instances) of the above method had to be altered slightly.  Since the UDF is actually a “set” of features, the program 
would crash when trying to find the one parent feature instance.  To remedy the problem a check was done to see if 
the parent feature instance of the discrete feature was a UDF.  If it was a UDF then all attributes were gathered from all 
features that make up the “set.”  Pseudo code for checking if the parent feature instance is a UDF and copying all 
attributes from the parent UDF set is shown below. 
 
parent_features_array = ask_parent_features_of(discrete features) 
loop through parent_features_array 

ask_feature_type(parent_features_array[i]) 
if feature type is an instance and UDF then 

parent_udf_feature = parent_features_array[i] 
exit loop 

else  
      do nothing 
end loop 
array_of_attributes 

array_of_features = ask_all_features(parent_udf_feature) 

loop through each feature in array_of_features 
array_attributes = add attributes from current feature 

end loop 

 

3.4 Airsolid Creation 

A programmatic approach was used to create an airsolid for the cylinders region.  The ability to create the airsolid for 
the cylinders region is part of the functionality of PDAA.  Creation of airsolids in multiple regions of an assembly does 
not exist as a part of PDAA and will be developed in the future.  Again, a programmatic approach was used that is 
specific to the case study incorporating the steps that address the airsolid creation methodology as mentioned in 
section 2.3. 
 
3.5 Command File Generator 

The CAD-centric model contains all information needed to create the command files.  The CFG interrogates the model 
for all global and associative attributes, and processes them into a command file for both the mesh and analysis 
software.   This is accomplished by creating an algorithm within the CAD API that will search all global and associative 
attributes specific to the mesh and analysis software. 
 
4. RESULTS 

PDAA, AMS and the discrete feature program were created as discussed in section 2.  With these two software tools the 
objectives, as mentioned in section 2 of this paper, were successfully accomplished.  The cylinders concept contains 
discrete features in the form of the number of cylinders in the air passage.  Changing the number of cylinders is 
accomplished by simply changing the parameter within the component, running the discrete feature program, and 
updating the airsolid.  With this geometry the process consumes about one minute.  Mesh results are shown in Fig. 8., 
and Tab. 1.  Initially the mesh was not adequate and changes had to be made to the global and family element sizes, 
and some faces were re-associated to an alternate family with a different element size.  These changes were all done 
within the AMS and the mesh was recreated by re-executing the updated mesh command file.   
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Fig. 8. Cylinders concept meshes. 

 

Concept Number of Elements Max Aspect Ratio  Max Skew 

A) 89,702 4.09 60.25 

B) 370,999 4.30 64.46 

C) 231,062 4.10 64.21 

D) 32,639 3.62 62.53 

 
Tab. 1. Mesh results. 

 
As you can see in the mesh, the discrete feature program did execute successfully and map all of the attributes for each 
cylinder. The mesh command file was created and passed successfully allowing the creation of an adequate mesh. This 
whole process was accomplished in approximately four minutes for the cylinder case. With the CFD model fully 
configured, the analysis was executed with the results shown in Fig. 9. The AMS proved to be a user-friendly method 
for creating a CAD-centric model and in addressing the discrete feature problem for the proof case.   
 

 
 

Fig. 9. Contours of velocity magnitude for cylinder case study. 
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5. CONCLUSIONS 

We were able to prove with this research the following: 

• A solid model containing attributes can be used as a master model for all downstream applications,  

• That reliable automation of the conceptual design, airsolid creation, mesh generation, and CFD setup for 
complex 3D CAD models can be performed, 

• Large amounts of time can be saved by automating the CAD-to-CFD process, 

• A special class of topology change called the discrete feature problem can be easily and quickly solved, 

• The proposed method can be incorporated on commercially available CAE software through a combination 
of user interaction and API programming. 

It was found that a CAD-centric model with discrete features can be created and used for downstream applications.  
Furthermore, the time required to generate a mesh and analysis model is drastically reduced compared to the over-the-
wall method.  The method developed in this work will help industry to shorten the design cycle time where analysis is 
involved.  The method also allows for analysis to become part of concept generation and opens the door for 
optimization to be used in the conceptual design stages.   
 
Presently, we are researching how to apply these principles to the analysis of full assemblies, specifically a full gas 
turbine engine. Methods are needed to address the problem of inter-part relations and topology changes.  Because of 
the time constraint associated with creating a mesh through an entire engine, global parameters need to be adjusted so 
that optimization routines can refine the mesh parameters on individual sets of airfoils while still maintaining the 
integrity of the flow analysis. Research has been done related to storing these parameters in a database[1] and we are 
looking into using user-defined objects to facilitate automatic updating of parts when parameters are altered. With 
these tools we can greatly improve the efficiency of assembly analysis. 
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