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ABSTRACT 

 

An algorithm of 3D modeling of fibers assemblies has been developed. The method extends a concept of 
‘virtual location’ for simulation of fiber distributions in yarns cross-section from 2D to 3D modeling of yarns 
structure. The distributions function used in the model demonstrates all of the properties of the ideal and real 
yarns. A series of further cross-section at equal intervals along the yarn length is given. Each cross-section is 
rotated by a pre-determined amount relative to previous one, to allow for the yarn twist and parameters of 
fibers migration. The fiber curve in each interval between two successive cross-sections is approximated by 
NURBS. Also curve generation based on twist of each fiber is determined by centerline configurations of their 
constituent fibers and the generative model. Each fiber is created by sweeping a closed curve along a 
centerline path. The simulated yarns structure using the algorithm described can model wider variety and 
yield an improved visual representation of real yarn structure.  
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1. INTRODUCTION 

The two primary features of textile are the geometric complexity of most textile structure and the anisotropy, nonlinear 
behavior of many fibers. The response of fibers assemblies to an applied mechanical load is dominated by fiber to fiber 
interactions. Beyond this, there was, and still is the added difficulty of characterizing the physical behavior of the small, 
often irregularly shaped fibers. Characterizations of textile materials are distinct hierarchy of structure, which should be 
represented by model of textile geometry and mechanical behavior. The geometric complexity of the structure and the 
presence of a hierarchy of structure and scale levels (10-5 m-fibers, 10-3 m-yarns/tows, 10-1 m-fabrics, 100 m-composite 
parts) lead to a high complexity of the predictive models, a high level of approximation in them and to the high level of 
uncertainty of the predictions, when errors are accumulated from one hierarchical level to another [11]. Figure 1a 
shows highly magnified photographic images of twisted filament yarn structure and typical staple-spun yarn structure 
(ring-spun yarn). Figure 1b shows the cross section for several differing yarn structures spun from polyester 
fibers/filaments to similar counts and twist, and the deviations with respect to completion of the outer layers in evident 
[12]. Many researchers have developed modeling technique [4,8,9,10] to display the visual characteristics of real yarns 
as well as analytical predictive models for yarn behavior [1, 13, 14, 15, 16, 19] in field of industrial textiles. The 
underlying need was to be able to predict the behavior of the final structure based upon the physical behavior and 
mechanical properties under different applied loads of wide range of structure available. Beyond prediction, one can 
use the same computer tool to virtual experiments and can also produce quite realistic animations. Therefore, 
modeling and testing using a computer will provide great savings in terms of both manpower and time.  
 

                          
 

Fig. 1.  a) Scanning electron micrograph of yarn structure;  1b) Cross section of differing yarn structure[12]. 

a) b) 
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2. MODELING OF IDEAL FIBER ASSEMBLIES 

2.1 Fiber Packing in Yarns Cross Section 

The feature of yarn structure that can be described in a simple idealized form is the packing of fibers in yarns. Two 
basic forms can describe the packing of circular fibers. Open packing, in this form, the fibers lie in layers between 
successive concentric circles. In this assembly, the first layer is a single core fiber around with six fibers is arranged so 
that all are touching. The third layer, with has twelve fibers, is arranged so that the fibers first touch the circle that 
circumscribes the second layer. Additional layers are added between the successive circumscribing circles. Another 
idealized packing arrangement of fibers is called close packing, the packing of fibers of circular cross section around a 
single core fiber in a hexagonal configuration leads to what is call “close packing”. On this form, all fibers touch each 
other. As the number of fibers in the cross section increases (number of layers), the yarn outline tends to become 
complicated and deviates from the preferred hexagonal shape. For an idea open-packed and close-packed structure, 
the number of fiber in each layer and the total number of fibers in the cross section are given in [6]. 
 

2.2 Geometry of Twisted Yarns 

In defining the geometry of a single yarn, the model usually adopted is that of an ideal physical form. This is the 
coaxial-helix model illustrated in figure 2. The assumptions underlying the model are characterized by the following 
postulates [6, 12]:  

• The yarn is circular in cross section and is uniform along its length. 
• The axis of the circular cylinders coincides with the yarn axis. 
• A filament at the center will follow the straight line of the yarn axis, but going out from the center the 

helix angle gradually increases, since the twist per unit length in all the layers remains constant. 
• It is built up of a series of superimposed concentric layers of different radii in each of which the fibers 

follow a uniform helical path so that its distance from the center remains constant. 
• The number of filaments of the fiber crossing the unit area is constant, that is the density of packing of 

fibers in the yarn remains constant throughout the model. 

                  
The structure is assumed to be made up of a large number of filaments; this will avoid any complications arising 
because of any discrepancies in packing of fibers. 
 
3. FIBER ASSEMBLIES ALGORITHM MODEL 

3.1 Outline of the Algorithm 

The algorithm of 3D modeling of yarn structure has been developed. The general algorithm for fiber distribution in a 
yarn cross-section can now be developed by extending the algorithm D suggested by [2, 3]. The algorithm used the 
concept of virtual locations that are determined by the position of fibers by a distribution function in 2D that obtained 
the experimental results. The distributions function in the model suggested by [14] that can demonstrate all of the 
properties of the ideal and real yarns. A series of further cross-section at equal intervals along the yarn length is given. 
Each cross-section is rotated by a pre-determined amount relative to previous one, to allow for the yarn twist and 
parameters of fibers migration. The mathematical model of twist with variable radius suggested by[19] that can 
demonstrate all of the properties of the ideal and migration of fibers. The fibers curve in each interval between two 
successive cross-sections approximated by cubic NURBS. Also curve generation based on twist of each fiber is 
determined by centerline configurations of their constituent fibers and the generative model. Each fiber is created by 
sweeping a closed curve along a centerline path. 
The algorithm requires the following input data: 

Fig. 2. a) Idealized yarn geometry and; b) “opened out” 
diagram of cylinder at radius r, and; c) “opened out” at yarn 
surface [6]. 
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i.) fiber - dimension parameters, namely, max

f
d , min

f
d , av

fd
and 

fσ , these being the maximum, minimum, and 

average diameter of fibers and mean deviation of fiber diameter, respectively. 
ii.)   dy ,the yarn diameter; 

                iii.)   Nf , the number of fibers in the cross-section; 
iv.)   p(R), the distribution for the probability that a given position within the yarn contains a fiber. This  

probability is taken to depend on the radial distance from the yarn axis. The distributions function used 
in the model shown in equation 7. The meaning of the parameters function will be discussed in detail in 
section 3.2.4 

The proposed algorithm consists of the following steps: 
i.) construct the distribution of virtual locations that takes into consideration the type of symmetry and 

shape of the yarn cross-section; 
ii.) define those virtual locations that are occupied by fibers in accordance with the fiber-distribution 

probability, p(R). 
iii.) for all the fiber in cross-section, define the dimensions of each fiber and locate them randomly within the 

virtual locations determined in step ii. 
iv.) Create a series of further cross-sections at equal intervals along the yarn length. 
v.) Rotate each cross-section by a pre-determined amount relative to previous one, to allow for the yarn 

twist and parameters of fibers migration (amplitude and frequency of fiber migration). The parameters of 
fibers migration used in the model shown in equation 8-11. The meaning of the parameters function will 
be discussed in detail in section 3.3. 

vi.) Curve generation base on twist of each fiber is determined by centerline configurations of their 
constituent fibers and the generative model to create each fiber by sweeping a closed curve along a 
centerline path. 

 

3.2 Virtual Locations 

3.2.1 General Model 

This algorithm uses the concept of ‘virtual locations’ or fibers in a cross-section occupy cells. The positions of virtual 
locations are determined by distribution functions [2]. Each fiber in the cross-section can occupy a virtual location 
among the fibers surrounding it. Virtual locations can have several points of contact with their neighbors. The position 
of the fiber within a virtual location is random. Three types of model that use virtual locations can be considered that 
are ‘one fiber – one location’, ‘one fiber – several locations and ring configuration model.  

                     
           a)                            b) 

 
The ring configuration of virtual location was used in this study that is treated as possible regions of the fiber path that 
may be occupied within a given cross-section. For a fiber located at a particular point in a cross-section, the number of 
locations in the vicinity of this fiber that contain a fiber depends upon the value of the fiber-distribution function at this 
point [2]. 
The assumed shape of the fibers in cross-sections is elliptical. The maximum and minimum dimensions of the fiber 
cross-section can be defined from the average diameter av

f
d as follows: 

max

min

/

/

av

f

av

f

f

f

d d

d d

ω

ω

=

=
                           (1) 

Fig. 3. The virtual-location placement for a 
singles yarn; a) the ring configuration of 
virtual location; b) the position of a fiber 
within a particular location [2]. 
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where
max min/f fd dω = is an elliptical factor characteristic of a particular fiber sample.  

The random position of fiber within a virtual location can be characterized by means of the following three parameters 
(figure 3 a, b):  

ρf and Øf, polar co-ordinates of the centre of the fiber with respect to the center of the virtual location that 
based on the random distribution functions in yarn cross-sections. 

 Ψ,  the angle of tilt of the principal axis of the elliptical fiber cross-section to the axis Ox.  
 The parameters ρf and Ø f are in the intervals [0, ρfmax(ρf)] and, [0, 2π] respectively, where ρfmax corresponds 
to the ultimate position of the fiber within the virtual location for a given value of Ø f. The parameter Ψ is distributed 
uniformly in the interval [-Ψmax, Ψmax], where the maximum tilt Ψmax(ρf, Ø f ) depends on the ratio of the fiber 
maximum dimension max

f
d to the diameter of the virtual location. 

 
3.2.2 Virtual location Model for Singles Yarns 

In section 2, we introduced the ideal yarn structure. It can be assumed that the distribution of the fibers in the yarn 
cross-section has a rotational symmetry. It is therefore assumed that the virtual locations are ultimately densely packed 
into n+1 concentric ring zones in spite of the possible deviations of the cross-section shape from a circle. The width of 

each jth zone is av

j f f
h d σ= + . The center of this zone lies in the center of the fiber that is nearest to the center of 

gravity of all the fibers in a cross-section. The outer and inner radii of zones are, respectively, equal to [2, 3]:  

z/ 2; 0,1...,n ;j j jR h j h j =+ = +  

0 ;R 0=                          (2) 

( 1) / 2; 1,2,.... .
j j j z
R h j h j n= − + =  

The number of virtual locations within any zone does not depend upon the diameter of the virtual locations and is 
calculated as: 

0
1;M = j
M = integer[2 ], 1,2,...

z
j j nπ =                     (3) 

The fiber distribution is expressed as the ratio of the number of fibers mj in the zone j to the number of virtual locations 
Mj in this zone. 
 
3.2.3 Effects of Twist in Yarn Cross-section 

In order to define the properties of packing of filaments in a yarn, an index of packing fraction is used. This algorithm 
used the packing fraction that defined the ratio of total cross-sectional area of the yarn. In this case, it is possible to find 
all packing fraction results directly from scheme of cross sectional structure of yarn model [6]. The packing fraction 

values for each ring layer iΦ and for the whole yarn cross-sectionΦwere calculated using formulas followed: 

/i fi yiA AΦ = , 

1( ... ... ) /( ... ... )z zfi fi fn y yi ynA A A A A AΦ = + + + + + + + or 

/fi yiA AΦ = ∑ ∑  

where fiA = total sum of cross-sectional area of all filaments in the current ring layer, yiA = cross-sectional area of the 

current ring layer, i= current ring layer, nz = number of the ring layers in the yarn. 
If a twist is imparted to a yarn, an angle between axial line of each filament and yarn axis is not equal to zero. 
Therefore a crossing line of each filament in cross-section of a single twisted yarn has elliptical shape. If we assume that 

the filaments are inextensible during twisting, a thickness of each ring layer is equal to filament diameter df, that a semi-

minor axis of the ellipse. A length of semi-major axis fd ′ consists of its degree of slope. An equation for deriving the 

semi-major axis, using ‘mean’ inverse of cosine of inclination of filaments is  

0secf fd d β′ =  

where 0β = single yarn surface helix angle. 

Therefore a number of filaments, which lie into the same ring layer, is less now. Consequently the number of layers in 

twisted yarn model is increased and, moreover, a diameter of this yarn increased. The packing fractionΦ remains in 
fixed level if: 

0(sec )fj fiA Aβ=∑ ∑  and  
(6) 

(5) 

    (4) 
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0(sec )yj yiA Aβ=∑ ∑ , 

where fjA , fiA = total sum of cross-sectional area of all filaments in current layer j (for twisted yarn) and in current 

layer i (for zero twist yarn);  

yjA , yiA  = cross-sectional area of current layer j (for twisted yarn) and current layer i (for zero twist yarn). 

 
3.2.4 Distribution Model of Fiber in Yarn Cross-section 

Initially the algorithm was applied to continuous filament yarns and circular in cross-sections with the fibers arranged 
entirely with this region. It can be extended to staple fibers yarns or hairiness. While it is accepted that a real yarn does 
not have a well-defined boundary, it is useful to apply on in the model. The number of fibers is sufficiently small so that 
this does not represent a sudden change. 
It is observed in the real yarns, [2, 7] that the center of yarns is generally denser than the outer regions. The trend is 
represented in the model by introducing a distribution for the probability that a given position within the yarn contains 
a fiber. This probability is taken to depend on the radial distance from the yarn axis. The distribution used was [14]: 

maxexp(1) exp( / )
( ) (1 2 )

exp(1) 1

R R
p R

β

ε ε
 −

= − + 
− 

                        (7) 

where
maxR = yarn radius, andε , β  are distribution parameters. 

 
                             a)                                     b)                                        c)                                          d) 
Fig. 4. example of yarns cross-sections; a) Virtual locations at 30 degree twisted angle; b) packing arrangement (ε=0.05, β= 1.2); c) 
Virtual locations at 45 degree twisted angle; d) packing arrangement (ε=0.05, β= 1.2). 

 
Figure 4a, b show the example of yarns cross-sections and packing arrangement that are composed of 162 virtual 
locations at 30 degree twisted angle. The fibers diameter, yarn diameter and pitch are 40 µm, 0.6 mm and 3.28 mm, 
respectively. Also, figure 4c ,d show the example of yarns cross-sections and packing arrangement that are composed 
of 144 virtual locations at 40 degree twisted angle. The fibers diameter, yarn diameter and pitch are 40 µm, 0.6 mm 
and 1.88 mm, respectively. 
In the case of ideal yarn, the β and ε parameters are equal to zero. It means that the numbers of filaments of fibers 
crossing the unit area are constant or the density of parking of fibers in the yarn remains constant. The typical value 
used guarantees that the artificial yarn boundary does not influence the behavior too much. 
The β parameter controls the average packing density of the yarn and is determined from the other parameters. The 
packing density should be a function of the twist, while in the model these two factors are treated as independent. In 
the comparison with the experimental results, a simple linear relationship was applied between the two parameters. 
With some further investigation, a more accurate relationship may be found for a given type of fiber and spinning 
process. 
 

3.3 Fiber Path of a Migrating Helix 

Most of fibers in singles spun yarns do not follow the perfect coaxial helical path [12]. If a fiber is assumed to follow the 
path of a conical helix with maximum and minimum radii Rmax and Rmin, its projected radius on the x-y plane varies 
with the height of the helix z and the rotational angle Ø. The height of the helix is h when Ø =2π. An arbitrary point (x, 
y, z) on the helical fiber axis can be defined by the following:   

( )cosx R φ φ= , ( )siny R φ φ= , 
2

h
z φ

π
=                      (8) 
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The projected radius of the migrating helix can be defined by experimental results or by assuming certain 
characteristics of the yarn structure, such as the constant packing density by [5,6,18]. Therefore, the general 
mathematical approach developed by [19] can be applied to a wider variety of radius functions. This model assumes 
the projected radius of the helix has a sinuous form: 

max min

min
( ) cos 1 ,

2 2

R R h
R R

φ
φ

πλ
−  = + + 

 
                         (9)

  
where Rmax, Rmin = maximum and minimum radius of the migrating helix; h = equivalent height of the migrating helix; 
Ø = Rotational angles; λ = wave length of migration. The difference between Rmax and Rmin gives the amplitude and 
1/λ the frequency of fiber migration. The parameters of fiber migration can be obtained directly from measurements of 
the fiber trace in the yarn. The term h/2π is treated as a constant, h= z(2π). However, the method used in this 
algorithm is applicable to the case where this term is a function of position. The general nature of this approach permits 
an experimentally defined function of the projected radius of the helix, which is closer to the reality than the previous 
approaches [19]. 

             
           a)                                                                  b)                                                 c) 

               
             d)                                                                    e)                                                  f) 
 
Fig. 5. the fiber migration each cross-sections; a) curve generated of migrating fiber (h/2πλ=1.0, ΔR=0.3); b) solid model of fiber 
migration; c) front view of solid model; d) curve generated of the first halves of migrating fiber (h/2πλ=0.5, ΔR=0.3); e) solid model 
of fiber migration; f) front view of solid model. 

 
In order to compare modeling of cylindrical and migrating helices, the following geometric parameters for the migrating 
helix and defined to possess an equivalent relationship in both cases: 
Equivalent axis length is  

2

tan

e
R

h
π
θ

=                           (10) 

where θ = Euler’s angle. Equivalent radius Re is defined as the mean radial position, comparable to the radius of the 
cylindrical helix. The migration period is Øp, and the mean radial position of the fiber is expressed as 

max min

0

1
( )

2

p

e

p

R R
R R d

φ

φ φ
φ

+
= =∫                         (11) 

The geometry described by equation 8 and 9 has a periodicity that can be determined by the least multiplier of the 
periods for cosØ (cylindrical helix) and cos(hØ/2πλ) (fiber migration). Figure 5a-f show the fiber migration each cross-
sections. 
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3.4 Twist Curve Approximation 

3.4.1 Parametric Equation 

The parametric equation of the helix with radius R and pitch h is similar to that given by [20] following; 

P( ) [ cos2 , sin 2 ,2 ] , 0 1Tu R u R u h u uπ π π= ≤ ≤                                    (12) 

The helix equation gives, 
cos2 ,

sin 2 ,

2

x R u

y R u

z h u

π

π
π

=

=

=

                          (13) 

The first equation for u and substituting in the other two, we obtain the following nonparametric equation: 
1 1P [ , sin(cos ( / )), cos ( / )]Tx R x R h x R− −=                        (14) 

Solving the z component for u and substituting in the x and y equations gives the following implicit equation: 

cos( / ) 0

sin( / ) 0

x R z h

y R z h

− =

− =
                         (15) 

 

3.4.2 NURBS Curves Approximation 

In the case of fibers migration, the fiber curve in each between two successive cross-sections can be approximated by a 
3D rational B-spline curve (NURBS). NURBS curves are parametric splines, whose main components are the 2D or 3D 
control points or control vertices, the weights of these points, and a knot vector limiting the effect of the control vertices 
onto a given segment of the curve. If the weights of all control vertices are similar, the NURBS becomes a NUBS (Non- 

Uniform B-Spline). The basis functions of NUBS can be defined by the Cox-deBoor recursion formula: 

,1

1, ,
( )

0, ,

NUBS
i i 1

i

if t t t
B t

otherwise

+≤ <
= 


 

, 1 1, 1

,
1

( ) ( ) ( ) ( )
( )

NUBS NUBS

NUBS
i i k

i k i k

i k
i k 1 i i k i

t t B t t t B t
B t

t t t t

+− + −

+ − + +

− −
= +

− −
, if k > 1, 

where ti is an element of the knot vector and k is the level of NUBS. Note that if the number of control vertices is n, 
then the number of weights is also n, but the number of knot values is n + k −1, where k is the level of the curve. In 
the active range of the parameter domain, the NUBS basis functions sum up to 1. When we associate an additional 
scaling of these masses, called the weights and denoted by w i , we can define the NURBS curve. Using the same center 
of mass analogy, the point on the NURBS curve for a given parameter t is obtained as: 

1

1
0

1
0

0

( ).

( ) ( ) ,

( )

NUBS

NURBS

NUBS

n

i ii n
i

iin
i

j j

j

wB t r

r t B t r

w B t

−

−
=
−

=

=

= = ⋅
∑

∑
∑

�

� �  

where r i is an element of the array of control points (n is the number of elements). The weights of CVs can be less or 
greater than 1. 
Given data points{ }id , and associating parameters{ }( )r t

� , i = 0, 1, ….., m. The approximation curve ( )r t
� in the least 

squares sense is defined by [17] 

Minimize 

2

0

( )
m

i

i

d r t
=

−∑
�

                                       (18) 

The user specifies the points and wants the curve to pass this point as closely as possible. 
 
4. CAD/CAE OF FIBER ASSEMBLIES 

4.1 Computer-Aided Design of Fiber Assemblies 

The SolidWorks software package was used to model the fibers assemblies. A CAD modeling approach that provides a 
3 dimensional geometric representation of the yarn structure based on the algorithm. Procedure of constructing yarns 
structure is shown in figure 6. The figure shows the construction of four-layers fibers assemble. Each fiber diameter is 
40 µm. The yarn is composed of 33 filaments, of which the diameter and pitch is 0.28 mm and 1.524 mm, 

 (16) 

(17) 
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respectively. The graphical results of yarn structure are presented in figure 7. The ideal fibers assemblies of 20, 30 and 
40 degree twisted angle are shown in figure 7 a-c, respectively. An average fibers diameter is 40 µm. Figure 7a shows 
the S twist (right-handed twist or clockwise) that there are 36 filaments at 20 degree twisted angle. Also figure 7b shows 
the S twist of 33 filaments at 30 degree twisted angle. Figure 7c presents the Z twist (left-handed twist or anticlockwise) 
that there are total 32 filaments at 40 degree twisted angle. Figure 8d-f shows the fibers assemble of z twist of fibers 
migrations. There are 33 filaments at 30 degree twisted angle and the parameters of fibers migration are changed to 
ΔR= 0.1, 0.2 and 0.4, respectively. In this modeling, we assumed that the β and ε parameters the equal to zero and 
the fibers are circular in the cross section. It means that the numbers of filaments of fibers crossing the unit area are 
constant. 
 

                                        
 

 

                   
 
Fig. 6. a) the assemble model of each layer of yarn structure (h/2πλ=1.0, ΔR=0.4, 30 degree of twisted angle); b) front view of yarn 
structure. 

 

    
                          a)                                                     b)                                                  c) 
 

 
                         d)                                                  e)                                                      f) 
     
Fig. 7. ideal and migration of fibers assemblies (Ø=0.28 mm, length = 5 mm); a-c) Ideal structure of yarns at 20, 30, 40 degree 
twisted angle; d-f) fibers migration (h/2πλ=1.0 and 30 degree twisted angle) for ΔR=0.1, 0.2 and 0.4. 

 

4.2 Computer-Aided Engineering of Fibers Assemblies 

The yarns structure model was constructed through the proposed algorithm. The geometric information and material 
information can directly provide each distinctive constituent in the fibers assemblies. The integration of the CAD/CAE 
for prediction of the yarn behavior becomes possible. The SolidWorks and COSMOSWorks software package were 
used to model fibers assemblies and predict the behavior of final structure based upon the physical behavior and 
mechanical properties under different load applied. In this study, the finite element analysis presented the mechanical 
properties of the fiber which are assumed to be linear elastic with either isotropic or orthotropic constitutive properties. 
The material properties and finite element meshes obtained from COSMOSWorks were used. In this case, nylon 101 
and tetrahedral element mesh were used to simulate yarns behavior. Figure 8a presents one turn of yarn model 

+ + + 

a) b) 



 

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 367-376 

 

375 

(Ø=0.2 mm, pitch=1.048 mm) before extension. The match meshes at the fiber to fiber interface are basic 
requirement in order to successfully conduct finite element analysis. The interface between the fiber to fiber are 
assumed to be bonded throughout the model, with compatible mesh options. Figure 8b-d show the response of three 
ideal yarn models, extension and compression in the axial direction and yarn bending. The extension model clearly 
shows the stress distribution and necking of the yarn piece, whereas the compression model opens significantly as the 
fibers buckle to avoid compression of the fiber material. For the yarn bending model, the cross sections of the yarn do 
not remain in a plane. There is a tendency for each fiber to move along its axis in the direction of the outside of the 
curve. Figure 9 shows the three responses of fibers migration of one turn of yarn model (Ø=0.28 mm, pitch=1.524 
mm) with extension, compression and bending conditions. Also, figure 10 shows the stress distribution and 
deformation after compression and extension of yarn model (Ø=0.28 mm, length=5 mm and pitch=1.524 mm). The 
finite element analysis presented in this section is to demonstrate the stress distribution and visual images of yarn 
structure after load applied. Therefore, the numerical results were not compared with any real yarn property data. 
 

                                                   

                                       
Fig. 8. The FEA for ideal yarn of 3 layers, 18 filaments at 26.6 degree of twisted angle with following conditions; a) yarn before 
extension; b-c) axial extension and compression of yarn model; d) bending of yarn model.  

                                         

                                
 
Fig. 9. The FEA for fiber migration (h/2πλ=1.0, ΔR=0.4) of 4 layers, 33 filaments at 30 degree of twisted angle; a) yarn before 
extension; b-c) axial extension and compression of yarn model;  d) bending of yarn model. 

 
 
 
 
 
 
 
 

a) 
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d) 

b) 
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Fig. 11. The FEA of fiber migration (h/2πλ=1.0, ΔR=0.2) of 4 layers, 33 filaments at 30 degree of twisted angle; a) yarn before 
compression; b-c) stresses distribution along the axial of compression and extension of yarn model. 
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