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ABSTRACT 

 
This paper proposes a methodology to change the shape of a B-Spline curve locally. Present 
algorithm modifies the existing B-Spline curve and makes it pass through a given point P, 
constrained to lie in region R, with limited deviation from the original curve. Proposed 
methodology splits the curve into atmost three segments based on the curvature of the curve and 
then modifies only one segment using knot insertion and control point inclusion. 
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1. INTRODUCTION 

A B-Spline curve )(uC  is defined by control points (also known as de-Boor points) iP and the knot vector 
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where p is the degree of the curve, n is the number of control points and )(, uN pi are the spline basis functions [4] 

defined over a knot vector .U  

 
During the past few decades, B-spline curves have gained popularity in shape modeling and geometric design [1]. 
Beyond creating these types of curves, modification of the existing ones is also of great importance. B-spline curves 
offer a unified mathematical formulation for representing not only free-form curves, but also standard analytical 
shapes. Through the manipulation of control points, degree and knots, a user can design variety of shapes using B-
spline formulations. In a system that uses B-Spline curves as shape design tool, one can implement many algorithms 
such as position and derivative evaluations, knot insertion [2], knot deletion and degree elevation [4]. Based on these 
fundamental algorithms, one can perform geometric modeling and processing.  
 
B-Spline follows a representation based on control points and knots, and weights in case of rational B-Spline curves. A 
designer can modify a local curve segment by iteratively moving a control point, changing the knots or modifying the 
weights associated with the control points. To this end, Piegl [3] presented a method for modifying shape of a rational 
B-Spline curve by relocating points on the curve. The modification is realized by repositioning one or more control 
points. Piegl and Tiller [4] discussed in detail curve wrapping, flattening, bending and twisting using the same 
approach. In addition, Au and Yuen [5] investigated how the shape of a NURBS curve changes when the weights and 
location of the control points are modified simultaneously. A drawback that the above mentioned methods have is that 
they are not automatic. A designer should predefine the control point to be shifted or the corresponding weight to be 
changed to provide the desired shape modification.  
 
Working on the interactive scheme for curve modification, Fowler and Barter [6] had presented constrained based 
manipulation of curve of arbitrary degree. A direct modification of free form curve by displacement functions was 
proposed in [7], which comprises of degree elevation and control point repositioning. 
 
Besides the most basic tool for shape modification, control point or weight modification, one can work on knot 
alteration. Juhasz and Hoffmann [8] showed that modification of a knot of B-Spline curve of degree p generates a one 
parameter family of curves. The family has an envelop which is also a B-Spline curve with the same control polygon 
and degree p-1. The theoretical results have been applied in [8] to modify the shape of a cubic B-Spline curve. The 
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approach used determines three consecutive knots by fitting a curve of a parabolic family based on the desired 
constraints. The procedure enables a local shape modification but is, however, restricted to cubic B-Spline curves only. 
 
Some other aspects of knot modification have also been studied by Lyche and Morken [9], where the effect of knot 
variation is examined from numerical point of view. The choice of knot value in curve approximation and interpolation 
has also been investigated in several papers, the recently published [10] and references therein. There are not many 
attempts in the area of knot alteration to get the desired shape change. The main reason for this is the non intuitive 
nature of curve change by knot alteration. The problem arises because with each different placement of knots one can 
derive a new set of control points, which can exactly get the same curve [11]. This problem is further compounded by 
the fact that the estimation of knot value is a non linear process. Czuczor et al. [12] and Mamic et al. [13] used 
optimization procedures to overcome the problem faced in knot vector alteration. The use of optimization is 
computationally expensive. Present work is an attempt to find the B-Spline curve with desired change without any 
iteration involved. 
 
The most effective shape control tool of B-Spline curves is control point repositioning. A remarkable advantage of knot 
modification over control point repositioning is that the modified curve always remains in the region determined by the 
convex hull of the original curve. Thus, the knot based method is preferred if one wants the curve in that region or 
when fine tuning in the curve is required [8]. 
 
Present work involves modifying the shape of an existing B-Spline curve with the shape preserving constraint and less 
deviation from the original curve. The approach uses both knot vector alteration by introducing new knots using knot 
insertion [14] and control point inclusion. Unlike the approach of fitting a B-Spline curve to the given data [15], this 
method works at making the curve change locally. The B-Spline curve fitting problem is to produce a B-Spline curve to 
approximate a target curve within a pre-specified tolerance. This fitting technique uses an energy function and then 
minimizes it to find the new position of the control points. On the contrary, the present work modifies the curve locally, 
by splitting it into parts and then achieves the desired shape change without any optimization involved. 
 
2. PROBLEM DESCRIPTION 

The main aim of the present work is to make a B-Spline curve C(u) pass through a prescribed point P (Fig. 1.) which 
lies in a constrained region R (described later in this section). The other objective of this work is to preserve the curve 
shape and to have limited deviation from the original curve. The shape of the curve is assumed to be preserved if the 
modified curve has the same number of feature points as the original curve. 

 
Fig.1. Problem definition, original curve and the modified curve.  

 
Every curve has certain features that define the shape of that curve, namely, maxima and minima of curvature and 
sudden changes in the curvatures. These points are defined in the present work as feature points Fi. To find these 
feature points, discrete curvatures [16] at regular interval on the curve are evaluated. These feature points are 
identified using fine and rough checking technique proposed by Liu et al. [16]. Feature points are intrinsic to the curve 
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and are used in section 3 to find the ends of the split segment. To have limited deviation from the original curve the 
shape modification is performed  locally, only in the curve segment between the split ends (section 3).  
 
The proposed algorithm for constrained shape modification works when point P is present within a constrained region 
R as shown in Fig.2(b). To modify the curve, the essential step is to find the value of knot to be inserted in the existing 
knot vector using the concept of knot insertion and mapping knots on the control polyline as discussed by Sederberg 
[14].   

 
Fig. 2(a). Finding the knot value to be inserted, 2(b). Hashed region R. 

 
2.1 Admissible Region R for Point P 

Let 2i1ii P,P,P ++  be three consecutive control points of a degree p B-Spline curve (Eqn. (1).). Consider 

knots 11 ,,, ++++ pipiii uuuu ∈ U . Define 
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to be the points on the polygonal leg Li+1{Pi+1 ,Pi} and Li+2{Pi+2 ,Pi+1}, as shown in Fig.2. Here Vi and Vi+1 

correspond to the mapped positions of knot ui+1 on Li+1 and ui+p on Li+2 respectively. The region R has three 
boundaries, two formed by the control polyline and one by the parabola with starting and ending points as Vi and 
Vi+1.  
 
2.2 Algorithm for Constrained Shape Modification 

The given B-Spline curve is made to pass through a point P⊆ R by inserting a knot u in U, such that one of the newly 

formed control polyline {Qj-1Qj} [4], passes through point P (Fig.2(a).). Note that Qj-1 and Qj are the mapped 
positions of knot u on the polygonal legs Li+1 and Li+2 respectively. The steps involved in constrained shape 

modification are: 

• The value of knot u  is found such that    P 1( ) (1 ) ( )j jQ u Q uα α−= + −  where ]1,0[∈α .  

• Using knot insertion [4], new control points jQ   are found.  

• Point P is included in the control point set as a control point of multiplicity p-2. 
 

The use of knot insertion reduces the size of the convex hull and brings it nearer to the curve keeping the curve 
unchanged. The reduction in convex hull size limits the local deviation of the curve in a smaller region (Fig.1.). A B-
Spline curve is monotone if the control polygon is monotone and is convex if it is convex. The present algorithm finds 
a control polygon by inserting knot u , which maintains the convexity. Next, inclusion of point P as control point does 

not change the convexity of newly formed control polygon, since the polygon remains the same with the reduction in 
convex hull size. As there is no change in the convexity of the polygon, the shape of the modified curve is preserved. 
 
Procedure of finding new control points, a set of Qj such that P lies on the polyline and including P as a control point 
of multiplicity p-2 makes one the newly formed polyline tangent to the modified curve at P. This produces a smooth 
curve. It can be seen in Fig.3(a) that polyline Qi+1Qi+2 forms a tangent to the curve at P. There will be a formation of            
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   (a). Original curve (1), modified curve using knot insertion (2)                (b) Formation of Kink in curve (3) 
         and without knot insertion (3). 

Fig. 3. Constrained shape modification. 
 

kink in the curve if the curve is modified by directly including P as a control point of multiplicity p-2 without knot 
insertion, as shown for curve (3) in Fig.3.(b). 
 
3. DETERMINATION OF SPLIT SEGMENT 

Modification of the B-Spline curve affects the shape of the curve in p-1 convex hull [4]. To limit the shape change to 
further smaller region, the curve is split into atmost three segments depending on the positions of point P in space. The 
shape of the segment nearest to the point P is changed. Feature points defined in section 2 are used for the purpose of 
finding the appropriate positions of the split ends. An intrinsic local shape modification method is developed using 
these feature points. 
 
3.1 Determination of Critical Feature Points 

To determine the segment to be modified, the shortest distance of the point P from the original B-Spline curve is 
evaluated. Fig.4 shows a part of a B-Spline curve and point P. The feature points Fi -3to Fi+2 are marked on the curve. 
Point Q* denotes the point on the curve nearest to point P and let D be the distance between them. Let di,i+1 denote 
the length of the curve between two consecutive feature points, Fi and Fi+1. This length controls the placement of the 
feature points on the curve. It is clear that the curve will have frequent changes in curvature if di,i+1 is small as 
compared to a large value of di,i+1 . Consider that point Q* lies on the segment Fi Fi+1, the length of segment Fi Q

* and 
Q*Fi+1 are denoted as li and li+1 respectively. 

 
Fig. 4. Feature points on the curve. 
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Thus 
mI

F denotes the feature point nearest to point P. In order to preserve the shape of the curve, it is important to 

preserve the features in the neighborhood of the desired point P. defined as critical features in this work. Thus 
mI

F is 

one of the critical features. There could be a need to include more features as critical features to provide a smooth 
transition of the curve at the ends of the split segment. It can be observed in curve (1) of Fig.5 that inclusion of only 
one feature as critical feature may lead to an abrupt change in curve shape at split ends. Curve (2) also shown in the 
same figure, with three critical feature points, shows a smooth transition of the modified curve to the other segments at 
the split ends. In order to determine the other critical features, feature points present in the neighborhood of P are 
identified using a threshold distance parameter ã(i) defined as  
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This length parameter relates the relative distance between the neighboring features. To estimate the upper bound of 
ã(i), consider  di,i+1>di-1,i ,  

3 3 1
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Based on the length parameter and the distances di-1,i  and di,i+1 there can be two cases: 
• If  | di,i+1- di-1,i |<ã(i) ⇒  di,i+1≈di-1,i , this is defined as Case A  

• Else if | di,i+1- di-1,i |≥ã(i) ⇒  one of the two lengths, di,i+1 or di-1,i is small as compared to other, this is 

defined    as Case B 
 

For di,i+1=di-1,i ⇒ | di,i+1- di-1,i |=0 and ã(i)= di-1,i , this indicates Case A. On the other hand if  di,i+1>>di-1,i  ⇒ | di,i+1- 

di-1,i |= di,i+1. In Eqn.(4) using 0lim
1,

,1 →
+

−

ii

ii

d

d
, ã(i) is obtained as iid ,1

2

3
−  and since di,i+1>>di-1,i , the set of values of   

di-1,i and di,i+1 belong to Case B. Two examples considered validate the use of the above stated conditions. 
 
It can be observed from Fig.4 that lengths di-2,i-1 and di-1,i belong to case A while di-1,i and di,i+1 belong to case B. It can 
also be seen that di,i+1 and di+1,i+2 belong to case A (here the two distances are almost equal in size but large as 
compared to any of the distances di-2,i-1 or di-1,i). Thus case A can be further divided into two sub cases; case A1 with 
almost equal but large lengths (di,i+1 and di+1,i+2) and case A2 with almost equal but small lengths (di-2,i-1 and di-1,i). 
 

 In order to identify the neighboring critical feature points, three consecutive feature points 1−mI
F

mI
F and 1+mI

F  are 

considered and the case to which they belong is determined. The procedure carried out based on the case is explained 
next. 

Case A1: In this case since the lengths between the feature points is large, only 
mI

F is considered as the critical feature 

point. Other feature point may or may not get included in the split segment depending on the minimum distance of 
point P from the curve. If the distance D is large there is a possibility that the algorithm might include more feature 
points while computing the split length to avoid sudden change in the curve.   
 
In finding the split ends, the splitting is performed at some distance away from the extreme critical features. To make 
sure that the features at the ends are also preserved, it is important to find this distance. This distance is identified by a 
length parameter ∈  defined as  

1,,1 +− +∈=
mmmm IIII dd                                                                                                                                                 (5)                 
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Fig. 5. Need to find Critical Feature points. 

 

Case B: In this case one of the lengths 
mm IId ,1− and 1, +mm IId is small. Without loss of generality it can be assumed 

that 1,,1 +− <
mmmm IIII dd . Other critical feature points for this case are identified by searching for the features in the 

direction of the smaller feature length, 
mm IId ,1−  (Fig.6.). Through this, all the features with small distance di-1,i in this 

direction ( 1−mI
F

mI
F ) are included as critical features. The inclusion terminates whenever a large distance is 

encountered. The last feature included is denoted as Fend . 
 

 
Fig. 6. Finding Critical Feature Points in Case B.                                 Fig. 7. Finding Critical Feature Points in Case A2. 

 

Algorithm  

1. Let J=Im and Case(J)=case for dJ-1,J and 1, +mm IId  

2. if {Case(J)=B} 
• FJ  is included as a critical feature point 
• J=J-1 
• Case(J)=case for dJ-1,J and 1, +mm IId  

3. go to step 2  
4. if the condition is no more satisfied Iend=J, Fend is the last feature included. 
5. Terminate  

For this case ∈ is defined as  
)),...min(( 1,,11, +−+ ++∈=

mmmmendend IIIIII ddd                                                                                                            (6) 

Case A2: In this case since both the distances are small, the search is extended in both the directions until a large 
length is encountered (Fig.7.). 
Algorithm   

(First the features before 
mI

F  are identified) 

1. Let J=Im-1 and Case(J)=case for dJ-1,J and 
mm IId ,1−  

Original Curve 

Modified Curve Segment (1) Modified Curve Segment (2) 

Split ends for curve  (1) 

Split ends for curve  (2) 
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2. if {Case(J)=A} 
• FJ  is included as a critical feature point 
• J=J-1 
• Case(J)=case for dJ-1,J and 

mm IId ,1−  

3. go to step 2  
4. if the condition is no more satisfied, IendL=J, FL is the last feature encountered in the left direction. 
5. go to step 6 

(Next the features after 
mI

F  are identified) 

6. Let J=Im+1 and Case(J)=case for dJ-1,J and 1, +mm IId  

7. if {Case(J)=A} 
• FJ  is included as a critical feature point 
• J=J+1 
• Case(J)=case for dJ,J+1 and 1, +mm IId  

8. go to step 7 
9. if the condition is no more satisfied, IendR=J, FR is the last feature encountered in the right direction. 
10. Terminate  

 
For this case ∈ is defined as  

1

...... ,11,,11,

+−

+++++
∈=

−+−+

endLendR

IIIIIIII

II

dddd
endRendRmmmmendLendL                                                                                (7) 

 The identification of the critical feature points gives a rough estimate of the split length. The curve is split a small 

distance (determined by∈ ) away from the extreme feature points included as the critical feature. Define
x

∈=∈~ , where 

x (>2) is a factor that minimizes the value of split length. The optimal value of the split length is evaluated such that 

both the objectives of limited deviation and shape preserval are addressed. The shape of the curve is preserved by 
finding the critical feature points that would be affected by the shape change. Limited deviation is addressed by 
minimizing the value of∈~ . If ∈~>dm (Eqn.3.), the maximum value of x is obtained as mdx ∈=)max(  where as if 

md≤∈
~ it is obtained as

),,min(

),max(
2)max(

1,,1

1,,1

mIIII

IIII

ddd

dd
x

mmmm

mmmm

+−

+−
+= .          

                        
Fig. 8. Determination of Split Segment. 

 

3.2 Determination of Split Ends 
The splitting of the curve is carried out at some distance from the extreme critical feature points, evaluated at dL and dR 
from the left and the right extreme critical features (FL

 ,F
R) respectively (Fig. 8.). The procedure for obtaining the values 

of dL and dR is presented below. 

Define 22
mm dDD += , DL=length(FL,Q*) and DR=length(FR,Q*). 

Algorithm 

• For i=left (L) or right (R) 
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• if Di<∈~  then di=(∈~+dm)/2 
• else di=(∈~+Dm)/2 

Determination of dR and dL completes the split end identification. Fig.9. shows the split ends for different positions of P. 
Fig.9(a) to (c) indicates different cases based on the placement of P and the determined split ends. In Fig.9(d) the 
curve is split in only two segments. This is observed because one of the split ends coincides with the curve end. It is 
thus indicative that placement of point P is an important parameter to decide the curve segment to be modified. To 
split the curve, the parametric value of the point at which the curve has to be split is evaluated as u*. The parameters 
corresponding to split ends are uL

* and uR
* respectively. Split segment is obtained when the above evaluated 

parameters (uL
*,uR

*) are inserted as knots of multiplicity p each in the knot vector U defined in Eqn.(1). [4].     
 

4. RESULTS AND DISCUSSION 

To illustrate the curve modification strategy into practice, MATLAB TM is employed to develop the prototype system. 
The prototype system was developed using personal computer with 512 MB RAM. 
 

 
Fig. 9. Split Segment. 

 

The original curve is split at the split ends, evaluated in section 3.2. Algorithm for constrained shape modification 
(section 2.2) is applied to the segment between the split ends. The splitting procedure explained in section 3, decides 
the number of segments after splitting. In any given curve and a given point P there could be atmost three segments. 
The segments in between the split ends determined is modified to achieve the desired objective. Application of 
constrained shape modification algorithm makes the curve in the split segment pass through the desired point. After the 
shape of the curve segment is modified, all the segments are combined to obtain the modified curve. This combining 
procedure involves removal of the knots inserted for splitting the curve (uL

*,uR
*) without changing the shape of any of 

the segments [4]. 
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The use of splitting methodology explained restricts the deviation of the curve in a smaller region compared to the 
deviation which occurs without splitting. This is demonstrated in Fig.10. The curve in Fig.10(a) is obtained after 
splitting algorithm is applied with constrained shape modification where as in Fig.10(b) the curve is not split. Fig.10(c) 
 

 
Fig. 10. Intrinsic Local Shape modification. 

 

and Fig.10(d) show an enlarged view of the curves. It can be clearly seen from Fig.10(b) and Fig.10(d) that there is an 
extra deviation in the curve which is not observed when the curve is first split before shape modification (Fig.10(a),(c)). 
Thus splitting of the curve aids in, shape preservation and having limited deviation from the original curve without 
applying any optimization methods. 
 
5. CONCLUSION  

The present work aids in modifying the shape of the curve by making it pass through the desired point with the 
objectives of limited deviation and preserving its shape. Note that the shape modification algorithm discussed in section 
2.2 is constrained for P⊆ R, whereas the concept of splitting the curve and then modifying the split segment is 

applicable for any point P. Though the constrained shape algorithm works for a restricted region R, it is a single step 
non iterative scheme to make the curve pass through the desired point. 
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