

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 447-456

447

An Extension of Polygon Clipping To Resolve Degenerate Cases

Dae Hyun Kim1 and Myoung-Jun Kim2

1Institute for Graphic Interfaces, cregeo@acm.org
2Ewha Womans University, mjkim@ewha.ac.kr

ABSTRACT

We present an extension of Greiner-Hormann polygon clipping that has been regarded as both
computationally efficient and simple to implement. This extended version of the Greiner-Hormann
polygon clipping elegantly handles the degenerate cases in a deterministic way, which in the
previous approach is done by perturbing vertices in an indeterministic way.

Keywords: Clipping, Polygon, Degeneracy, CAD, Graphics.

1. INTRODUCTION

The algorithms described in this paper clip a polygon (referred to as the subject polygon) against a polygon (referred to
as the clip polygon). Clipping 2D polygons has been regarded as a useful but also indispensable part in computer
graphics and computer-aided design (CAD). In rendering, for example, it has been used to produce 3D images
through hidden surface removal, and in parallel ray tracing system to split and distribute the objects of a scene to
several processors. In CAD applications, it has been used to compute 2D B-Rep Boolean operations.

As far as we know, Greiner-Hormann algorithm [2] has the simplest data structure. Furthermore, it not only gives us
intuitive understandings for complex cases (i.e., input polygons are concave or have self-intersections), but also
outperforms the other general polygon-clipping algorithms such as [3][5][7]. However, it has one serious problem;
degenerate cases that often occur in CAD applications are not handled properly. When no degenerate cases are found
between a subject and clip polygon, Greiner-Hormann algorithm is regarded as a significant improvement on Weiler-
Atherton algorithm [7][6][4]. Although Weiler-Atherton algorithm can handle not only degenerate cases but also inner
holes, it requires a complete Boundary Representation (B-Rep), which is an overhead for some applications. In dealing
with the degenerate cases, our extension outperforms the Weiler's approach in [6].

Although the predecessor of our approach is reported to handle degenerate cases by perturbing vertices, additional
running of the overall algorithm is required for each perturbation, thus its running time becomes undeterminable.
Moreover, the clipped results may be different depending on the perturbation direction.

In this paper we extend Greiner-Hormann algorithm in order to successfully handle the degenerate cases. In Section 2,
we review the Greiner-Hormann algorithm. Section 3 shows the problems of perturbation approach to resolve
degeneracy cases. In Section 4, the extended algorithm is presented.

2. REVIEW

A closed polygon P is represented by the ordered set of its vertices,
010 ,,, PPPP n =� . Therefore, the polygon consists

of the line segments that consecutively connect the points
iP , i.e., 10PP , ,,21 �PP

011 PPPP nnn −− = .

For the completion of this paper, we briefly explain the concepts of the Greiner-Hormann algorithm with a simple
example. The overall algorithm consists of three parts: (1) compute intersection points between two input polygons, (2)
set the flags at the intersection vertices, and (3) traverse the two lists yielding the clipping. Since computing
intersections between line segments has already abundant literature (e.g. see [1]), we focus only on the last two steps in
this paper.

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 447-456

448

Fig. 1. Two polygons,),,(321 SSSS = and),,(321 CCCC = . Bottom: After setting traversal flags.

Doubly linked list (DLL) with each node representing each vertex represents a polygon. After placing vertices into the
list, intersections between each edge of the two polygons are computed and inserted into the list in order. Each
intersection vertex has a reference to the coincident vertex in the other polygon; subsequently, this is called neighbor.

Now comes the gist of the algorithm: set the en or ex flags at the intersection vertices, which are referenced while
traversing the lists to get the clipping results. Traversing each list, mark each intersection vertex whether it is entry en or

exit ex point to the other polygon's area on the traversal route. Let us explain this from the example shown in
Fig. 1. For the two polygons, S and C , whose vertices are denoted by

iS and
iC , respectively, three intersection

vertices,
0I ,

1I , and 2I , are computed and properly inserted into the existing DLLs. Then to mark the intersection

vertices, traverse each list in the direction from
0S to

1S . For example, at the vertex
0I of the S , the point is the entry

point to the other polygon, so mark it as en. In the same way, mark all the intersection vertices; note that the flag at the
current intersection node can be set automatically from the previous flag by reversing the previous flag: for example,
since

0I 's flag is en
1I 's flag becomes ex. Two DLLs generated after the intersection computation are shown.

Fig. 2. Top: traversal route. Bottom: traversal result.

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 447-456

449

To traverse the graph, first locate any unused intersection vertex of a polygon and traverse the list as its traversal flag
says: (1) en corresponds to the forward direction and (2) ex to backward. Unless another intersection vertex is met, the
traversal continues on the same list. The flag of all the vertices on the traversal is deleted. On arrival at the next
intersection vertex, the algorithm changes the list to the other; it jumps to the neighbor of the vertex. It traverses the list
in the same manner as above. This process continues unless the traversal makes a cycle, thus yielding a polygon.
When it consumes all the intersection points, the algorithm stops. Fig. 2 shows how to traverse the graph.

By reversing the polygon region (inside as outside and outside as inside) when setting traversal flags, different boolean

operations can be achieved. For example, for the difference operation, set traversal flags for C against S the same as

above, but set traversal flags for S against C regarding the outside of C as inside. For more detail, please refer to [2].

So far, it has been tacitly assumed that there are no degeneracies, i.e., each vertex of one polygon does not lie on an
edge of the other polygon. To partly resolve degeneracy, [2]suggested to use vertex perturbation. Details on the
problem of perturbing degenerate vertices follow in the next section.

3. PROBLEMS

Q1

Q2

P1

Q1

Q2

perturbed P1

Q1

Q2

perturbed P1

Q1

Q2

P1

Q1

Q2

Q1

Q2

perturbed P1

perturbed P1

Case 1 Case 2

Method 1

Method 2

Fig. 3. Top Row: Two kinds of degeneracy. Middle Row: Perturbing.

To handle degenerate cases, perturbing vertices has been suggested in [2]. Two possible perturbations are shown in
Fig. 3: moving the degenerate vertex into the inside of the other polygon or the outside. Let us assume that the line

segment
21PP intersects

21QQ . For the intersection points,
iP and iQ

, we can extract their relative position with respect

to each line segment: 10 ≤≤α and 10 ≤≤ β . By perturbation, α and β can be fixed not to be zero or one. However,

for the perturbed polygons we need to perform line/line intersections again; of course, there still exists possibility to find
another degeneracy from the resulting polygons. This makes the overall algorithm indeterministic. The approach does
not guarantee what result it can produce, for example, as in Fig. 4; for the difference operation, four triangles, one
rectangle with a hole, or sometimes more results can be yielded.

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 447-456

450

SC

C - S

1 2

3
4

or

(a)

(b)

Fig. 4. The same operation can produce different results.

4. EXTENSION OF GREINER-HORMANN ALGORITHM

This paper addresses the degeneracy problem by extending the simple traversal rules of the Greiner-Hormann
algorithm. We introduce two new traversal flags: en/ex and ex/en; however note that they are not new but a

composite flag of en and ex. As implied from the left side of
Fig. 7 the en/ex flag means that en--that tells the event of entering the other polygon--and ex--that tells the event of
exiting from the polygon-occurs at one vertex simultaneously.

en

curr next: case 2

next: case 1

IN OUT

en

curr

next

IN OUT

Fig. 5. Setting en flag.

ex

curr

next

prev: case 1

IN OUT

ex

curr
next

IN OUT

Fig. 6. Setting ex flag.

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 447-456

451

en/ex

curr

prev next

ex/en

curr

prev next

IN OUT IN OUT

Fig. 7. Setting en/ex flag or ex/en.

As in [2], for the extended polygon clipping we need three processing stages; (1) compute intersections between the
two input polygons, (2) set up traversal flags of the four kinds at each intersecting vertex, and (3) traverse the lists to
yield the clipping results.

Degeneracy should be detected and handled during the intersection computation. For simplicity's sake, here we classify
the degenerate cases into two primitive cases occurring between two half open line segments:

- One segment touches the other whilst they are not parallel to each other. See Fig. 8(a).
- Two segments are parallel to each other but coincide in part. See Fig. 8(b).

S1

S2

C1 C2 C1 C2

S1 S2

(a) (b)
Fig. 8. Degeneracies.

In Fig. 8 the circles represent the vertex of the subject polygon, and the rectangles of the clipping polygon. To represent
half closed interval one vertex of each line segment has been drawn filled; for example,

21CC has a parameter domain

],(ba , ba < , of half closed interval. Such distinction between closed and half closed interval helps not to produce

redundant intersection points. Doubly linked lists before and after intersection computation for the situation of Fig. 8(a)
are shown in Fig. 9, respectively.

(a) before intersecting (b) after intersecting
Fig. 9. Linked lists before and after intersection computation.

Data structure for a vertex contains eight fields as shown in Fig. 10: vertex position, pointers to the previous and next
vertex, tag for intersecting vertex, traversal flag, link to the coincident intersection vertex (what is called neighbor) on
the other polygon, and two additional data to run the clipping algorithm for degenerate cases. Two more fields have
been added to [2]. We now explain how to set traversal flags in the extended polygon clipping. The algorithm scans
one list tracking status of the two edges emanating from the current vertex. They consist of three status:

on: the edge is on the boundary of the other polygon.
 in: the edge is inside the other polygon.

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 447-456

452

 out: the edge is outside the other polygon.

vertex = {

 real x, y; /* coordinates */

 vertex *next, *prev; /* links */

 bool isect; /* intersection? */

 int flag; /* none, en, ex, en/ex. ex/en */

 vertex* neighbor;

 vertex* couple; /* additional information 1 */

 bool cross_change; /* additional information 2 */

 }

Fig. 10. Vertex data structure.

We can think nine possible pairs from the above status to tell whether the current vertex is the entry point (en) to the
other polygon or the exit point (ex); more importantly, en/ex and ex/en. For example, a pair (on, out) tells that the
current vertex is exiting from the other polygon. The table below shows the nine possible pairs to determine the
traversal flag for a vertex--note the degenerate cases have been already depicted at from Fig. 5 to Fig. 7.

(prev, next) Traversal flag

(on, on)
(on, out)
(on, in)
(out, on)
(in, on)
(in, out)
(out, in)
(in, in)
(out, out)

none
ex

en

en

ex

ex

en

ex/en

en/ex

Let us assume that m intersection vertices,
mII ,,0 �
, where

mII =0
, have been found between two input polygons S

and C . In case of no degenerate intersections, the following properties are preserved:

- The number of the intersection vertices, m , is always even.

- The traversal flag of
jI differs from that of

1−jI .

This assumption has been exploited in Greiner-Hormann algorithm to set the traversal flags; once the initial traversal
flag at the first intersection vertex is known, the rest can be set automatically without further examination. However,
this assumption does not always approve practical uses; for example, en flag often follows en flag, as shown in

Fig. 11. Our approach to comply the assumption even in degenerate cases is to use ex/en(or en/ex) flags or to couple
two vertices of the same flag, using the couple field in the vertex data structure.

IN OUT

en

en

IN OUT

en en

Fig. 11. Degenerate vertex flags.

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 447-456

453

Now we explain the extension of Greiner-Hormann algorithm. Similarly to the above, it consists of two steps:

(1) Set traversal flags for C .

(2) Select starting vertex for each traversal.
(2-1) Traverse the list from the starting point yielding

4.1 Traversal Flags
 At step (1) above, each intersection vertex

iC
 of the clipping polygon C is examined. If the edge

ii CC 1−
 is on S the

previous edge status
1−iγ is assigned on. Otherwise, it is tested whether the midpoint of the edge falls inside or outside

S ; accordingly, the previous edge stat will have either in or out. Analogously, for the next edge
1+iiCC the edge stat

1+iγ is assigned. The pair (
1−iγ
,

1+iγ) determines the traversal flag of the intersection vertex
iC according to the table

presented before. Let us note that whether an edge is on the other polygon can be efficiently tested by checking the
following condition: Two vertices, neighborprevCi →→ and neighborCi → , form an edge of the other input

polygon S .

Subsequently, intersection vertex with the traversal flag none is no longer considered intersecting. At (1), we set the
traversal flags for C because the traversal flags for the other polygon can be set nearly automatically referencing its

neighbor. The first intersection vertex of S will determine the rest; for example, if the first intersection vertex of C and

its coincident vertex of S are respectively ex and en, then the traversal flags for the remaining vertices of S will be

exclusive to C . If the first flags are the same, the traversal flags of S will be the same as C .

As seen from the data structure in Fig. 10, we have not yet treated couple and cross_change fields. The couple field of
the current vertex on the traversal route is set to reference the closest intersection vertex that has the same single flag

(i.e., ex or en) as the current vertex. Therefore, the coupled vertices behave as if they are one, satisfying the
degeneracy assumption. We explain the use of the cross_change field by illustrating how the en/ex flags have been
conceived.

IN

IN

S3 S1

S2

C1

C2

C3

en/ex en/ex

IN

IN

S3 S1

C1
C3

en

en

ex

ex

(a)
(b)

S1 S2 S3

C1 C2 C3

(c)

en / ex

en / ex

Fig. 12. Conceptualization of the en/ex flag.

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 447-456

454

The role of the en/ex flag shown in Fig. 12(a) has been conceptualized from Fig. 12(b); it symbolically perturbs one
polygon to fix the degeneracy. However, doubly linked list for vertices, which describes only one dimension, cannot

correctly convey the (en, ex) pair appearing in (b); see (c). Therefore, we need an additional flag, cross_change to
indicate the pair. In the example of Fig. 12, cross_change should be set true. Meanwhile, when

1S and
3S is

exchanged, cross_change does not need to be set. This can be determined by computing orientation of the two
triangles:

),,(),,,(11121111 +−−+−− iiiiii CCSTSCST

When the two triangles have different orientation, cross_change is set true. Using vertex information introduced so far,
we can now traverse the vertex lists, yielding clipped polygons.

4.2 Clipping
The algorithm traverses the list starting from the intersection vertex selected among those with any traversal flag. The
visited vertex on the traversal deletes its flag one by one. Since a vertex can have two flags at the same time it needs to
place one flag according to the traversal route to the vertex.

To select the starting vertex, we apply three following rules.

RULE 1. Once a flag of a couple has been deleted, both of the vertices can no longer be used as a starting vertex.

RULE 2. If the couple with each flag still set have (en, en), the second vertex can be selected as a starting vertex; if the
couple have (ex, ex) the first vertex is selected.

RULE 3. Any intersection vertex with any traversal flag except for the above can be chosen as a starting vertex.

Jumping onto a vertex during the traversal can have four routes according to the flag of the currently visited vertex and
its position within the lists, as shown in Fig. 13: (D1) To the right side of the target vertex, (D2) to the left side, (D3)
from the other list to the left side, (D4) from the other list to the right side.

Next

Vertex

D1 D2

D3 D4

Fig. 13. Four routes to the next vertex.

According to the route chosen to reach the current vertex, delete the traversal flag(s) of the vertex. For example,
suppose that a vertex with ex/en flag is being visited along D3 route as shown in Fig. 14. Then ex is deleted but en
remains intact. After the deletion a new traversal status, D2, is created because the traversal is now directed to the left
(i.e. the previous vertex on the list).

ex/en en

before deleting a flag after deletion

D3

D2

Fig. 14. Before and after deleting a flag.

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 447-456

455

When both vertices of a couple are met on one way traversal (i.e., to the right in case of (en, en) and to the left in case
of (ex, ex)), the later visited vertex does not change the traversal direction. For better understanding, see traversal route

on
1I and 2I in

Fig. 15.
Fig. 15 demonstrates the traversal of the lists constructed from the two input polygons.
Fig. 17 shows some examples with different degenerate intersections output from our implementation.

Fig. 15. An example that shows the list traversal by a curve for the operation intersection. Upper: Two input polygons after
intersection computation. Lower: The traversal route is denoted by a curve.

Fig. 16. For the polygons of Fig. 15, this time, subtraction operation, S - C, has been done.

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 447-456

456

Fig. 17. Running examples of polygon clipping with degenerate cases.

5. ACKNOWLEDGEMENT

This research has been done as a part of IT Leading R&D support project, “Development of realistic virtual
engineering technology” (KITA 4300-1000-1823).

6. CONCLUSIONS

We extended Greiner-Hormann algorithm to cope with the degenerate cases. For the case as in Fig. 4, it guarantees
the result: if we use en/ex and ex/en flags Fig. 4(a) is obtained, otherwise Fig. 4(b) is obtained. Even without
implementing a full boundary representation of [7], thus only with the vertex lists, the degenerate cases could be
handled elegantly.
However, our extension shows clearly one limitation. It does not guarantee correct result in a certain situation: for
example, when one self intersection point of an input polygon is crossed by the other polygon. This is mainly because
the vertex data has only one neighbor pointer to the other polygon. To deal with such problem the self-intersecting
polygon has to be separated into none self-intersecting polygons as has been done in [5].

To the complexity of Greiner-Hormann algorithm, our extension adds more complexity to perform inside test while
setting traversal flags for each intersection vertices on one polygon. As noted in Sect.4.1, the inside test is done only for
the edges that have the intersection vertices. Thus our extension outperforms Weiler's approach [6], which performs
inside test for all the edges of both input polygons.

6. REFERENCES

[1] Berg, M., Kreveld, M. and Overmars, M., Computational Geometry, Springer-Verlag, 2000.
[2] Greiner, G. and Hormann, K., Efficient clipping of arbitrary polygons, ACM Transactions on Graphics, Vol. 17,

1998, pp 71-83.
[3] Rappaport, A., An efficient algorithm for line and polygon clipping, Visual Computer, Vol. 7, 1991, pp 19-28.
[4] Rogers, D., Procedural elements for computer graphics, Mc Graw Hill, 1985.
[5] Vatti, B. R., A generic solution to polygon clipping, Communication of ACM, Vol. 37, No. 7, 1992, pp 56-63.
[6] Weiler, K., Polygon comparison using a graph representation, In SIGGRAPH 80, ACM, 1980, pp 10-18.
[7] Weiler, K. and Atherton, P., Hidden surface removal using polygon area sorting, In SIGGRAPH 77, 1977, pp

214-222.

