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ABSTRACT 

 
The curve is the most basic design element to determine shapes and silhouettes of industrial 
products and works for shape designers and it is inevitable for them to make it aesthetic and 
attractive to improve the total quality of the shape design. If we can find an equation of aesthetic 
curves, it is expected that the quality of the curve design improves drastically because we can use it 
as a standard to generate, evaluate, and deform the curves.In this paper, we derive a general 
equation of aesthetic curves that describes the relationship between its radius of curvature and 
length inclusively expressing these two curves. Furthermore we show the self-affinity possessed by 
the curves satisfying the general equation of aesthetic curves. 

 
Keywords: aesthetic curve, general equation of aesthetic curves, self-similarity, self-affinity. 

 
 
1. INTRODUCTION 

For industrial designers, the curve is one of the most basic design parts that determines shapes and silhouettes of their 
products and works. It is necessary to make it aesthetically beautiful and attractive to improve the quality of the 
industrial design. If we can find an equation of aesthetic curves, it is expected that the quality of the curve design 
improves drastically because we can use it as a standard to generate, evaluate, and deform the curves. 
 
Therefore in this paper we discuss the properties of two typical aesthetically beautiful curves: the logarithmic spiral and 
the clothoid curve and we derive a general equation of aesthetic curves that describes the relationship between its 
radius of curvature and length inclusively expressing these two curves. Furthermore we show the self-affinity possessed 
by the curves satisfying the general equation of aesthetic curves. 
 
2. GENERAL EQUATION OF AESTHETIC CURVE 

Here we will discuss the properties of two typical aesthetic curves: the logarithmic spiral and the clothoid curve. We 
also discuss the properties of the Archimedean spiral which does not satisfy the general equation of aesthetic curves 
proposed in this paper as a counterexample to understand the nature of the general equation better. 
 
2.1 Logarithmic Sprial 

The logarithmic spiral is called the equiangular spiral, or Bernoulli's spiral and is well known as a curve representing the 
shape of the chambered nautilus. It is closely related to the Golden Section that has been regarded as a source of the 
beauty since the years of the Greeks and the Romans and is one of the typical beautiful curves as discussed in [5].  
 
2.1.1 Properties of the logarithmic spiral 

A logarithmic spiral can be defined in the complex plane by 
( )( ) , ( 0)a ib tC t e t+= ≥                                                                                                                            (1) 

where i  is the imaginary unit and  a   and b  are constants. Since its radius of curvature ( )tρ  and the arc length ( )s t  

are given by 

2 2 2 21
( ) , ( ) ( 1),at att a b e s t a b e

b
ρ = + = + −                                                                                             (2) 

the following equation is satisfied 

0 1( ) ( )t c s t cρ = +                                                                                                                                                        (3)   
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Figure 1 shows an example of the logarithmic spiral. 
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Fig. 1. Logarithmic spiral (a=0.2, b=1). 

 
2.1.2 Self-similarity  

The self-similarity is a characteristic property of the fractal geometry and it becomes a similar shape to the original after 
scaling it like a saw-toothed coastline [9]. We will show that the logarithmic spiral has the self-similarity below.  
 
A logarithmic spiral is given by Eqn. (1) and we cut the head portion of the curve and define a new curve ( )D t  for 

1t ≥  of ( )C t  as follows: 

( ) ( 1) ( )a ibtD t C t e e C t= + =                                                                                                                            (4) 

As we see from the above equation, the curve ( )D t  can be obtained by scaling ( )C t  by the factor ae  and rotating it 

by the angle b  about the origin. Therefore since the original curve is recovered by scaling the curve whose head 

portion is cut off, the logarithmic spiral has the self-similarity. Here we removed the head portion where 1t < , but it is 

rather obvious to be able to argue similarly by cutting an arbitrary head portion. 
 
2.2 Clothoid Curve  

The clothoid curve is also called Cornu's spiral and is regarded one of the beautiful curves (for example, see [6]).  
 
2.2.1 Properties of the Clothoid Curve 

One of the main properties of the clothoid curve is that its curvature increases in proportion to its arc length. 
Figure 2 shows an example of the clothoid curve.  
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Fig. 2. Clothoid curve (a=1). 

 
A clothoid curve can be defined in the complex plane by 
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2

0
( )

t
iatC t e dt= ∫                                                                                                                                         (5) 

where a  is a positive constant. The first derivative of ( )C t  is  

2( ) iatdC t
e

dt
=                                                                                                                                          (6) 

and its absolute value is always equal to 1 . Hence the parameter t  is the same as the arc length ( )s t  (for example, see 

[8]). Then the curvature is given by the absolute value of the second derivative 

2
2

2

( )
( ) (2 ) 2iatd C t
t iat e at

dt
κ = = =                                                                                                                              (7) 

If we consider cutting off the head portion of the curve again, the radius of curvature ( ) 1/ ( )t tρ κ=  is given by 

1
0 1( ) ( )t c s t cρ− = +                                                                                                                                                      (8) 

 
2.2.2 Self Affinity 

Although the self-similarity can be found ubiquitously in the natural world, not so many phenomena of the self-affinity 
are known. Some kind of the Brownian motion has such a self-affinity that by doubling the scale of the time and 

scaling its amplitude by 2 , it shows the self-similarity [10]. That means the self-similarity by scaling in the different 

coordinate axes by different values is called the self-affinity. We will discuss the self-affinity possessed by the clothoid 
curve below.  
 
Similar to the logarithmic spiral case, we consider cutting off the head portion of the curve and we define the curve 

( )D t  whose parameter 1t ≥  as follows: 

2 2 21

0
0 1 1

( ) ( 1)
t t

iat iat iatD t C t e dt e dt P e dt= + = + = +∫ ∫ ∫                                                                                            (9) 

where the start point of ( )D t  is given by 
21

0
0

iatP e dt= ∫ . Since its shape is invariant under reparametrization of ( )s t  

by an arbitrary monotonously increasing function of t , reparametrize 1 0( ) ( 1)/ts t c e cβ= −  with assuming that β  is a 

positive constant. Then the arc length ( )Ds t  of ( )D t  is given by 

( ) ( 1) ( ) ( )Ds t s t s t e s tβ= + − =                                                                                                                                   (10) 

Therefore the arc length of ( )D t  is obtained by scaling that of the original by eβ . 

 
From Eqn. (8) the inverse of the radius of curvature ( )D tρ  of ( )D t  is 

1 1
0 1( ) ( 1) ( ( ) )D t t e c s t cβρ ρ− −= + = +                                                                                                                        (11) 

Hence  

( ) ( )D t e tβρ ρ−=                                                                                                                                                         (12) 

This means that the radius of curvature of the curve without the head portion is given by scaling that of the original 

curve by e β− .  
 
The clothoid curve without the head portion is identical with that generated by scaling the radius of curvature of the 

original curve in the principal normal direction by e β−  and its arc length in the tangent direction by eβ . This means 
that at an arbitrary point on the curve in the two different orthogonal directions, the principal normal and the tangent 
by scaling the cut curve by the different factors, the original curve can be obtained. This property can be called the self-
affinity. 
 
We will discuss the self-affinity of the curves that satisfy the general equation of aesthetic curve in Section 5 in more 
detail. 
 
2.3 General Equation of Aesthetic Curves  

We can derive the following general equation including both Eqns. (3) and (8): 
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0 1( ) ( )t c s t cαρ = +                                                                                                                                                     (13) 

where 0α ≠  is a constant. When 1α =  and 1α = − , we obtain Eqns. (3) and (8) respectively.   
 
As Equation (13) can express the two typical aesthetic curves: the logarithmic spiral and the clothoid curves and it has 
desirable properties discussed in the following sections, we call it a general equation of aesthetic curves in this paper. 
 
2.4 Counterexample  

We discuss the properties of the Archimedean spiral whose logarithmic curvature histogram can not be approximated 
by a straight line properly as a counterexample of aesthetic curves. We will mention the logarithmic curvature 
histogram in the next section. 
 
The Archimedean spiral is also called the uniform spiral and is a spiral whose radius increases in proportion to the 
angle to the x -axis as shown in Fig. 3. In the complex plane, its general expression is given by 

( ) , ( 0)ibtC t ate t= ≥                                                                                                                                              (14) 

where a  and b  are constants.  
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Fig. 3. Archimedian spiral (a=1,b=1). 

 
The definition of the Archimedean spiral is simply given by Eqn. (14) and has a geometrically regular property that the 
intersection intervals on the x  and y  axes are constant. However, the main usage of the Archimedean spiral is for the 

design of machines such as water pumps and it is not so frequently used for aesthetic design purposes.   
 
3. LOGARITHMIC CURVATURE HISTOGRAM 

Harada et al. [1, 2] insisted that natural aesthetic curves like birds' eggs and butterflies' wings as well as artificial ones 
like Japanese swords and key lines of automobiles have such a property that their logarithmic curvature histograms 
(LCHs) can be approximated by straight lines and there is a strong correlation between the slopes of the lines and the 
impressions of the curves. 
 

Since the vertical value of the LCH is given by log / (log )ds d ρ  [3] and both s  and ρ  are functions of the parameter 

t ,  

log log log( ) log log log
(log )(log )

d

ds ds
ds ddt dt s

ddd dt

dtdt

ρ
ρ ρ
ρρρ

= = = + −                                             (15) 

If we assume t s= , then / 1dds dt s= = . The above equation can be transformed using Eqn. (13) to  

10log log log( ) log
(log )

ds c
C

d

ερ ρ α ρ
ρ α

−= − = +                                                                          (16) 
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where 0log logC cα= − . Therefore the LCH of the curve satisfying the general equation of aesthetic curves is 

strictly given by a straight line whose slope is equal to α . 
 
4. PARAMETRIC EXPRESSIONS 

Equation (13) describes only the relation between the radius of curvature and arc length of the curve and it is not 
suitable to draw it or analyze its properties. In this section, we derive two parametric expressions of the general 
equation of aesthetic curves given by Eqn. (13). One is derived directly from the general equation and the other is 
done by applying the fine tuning method [7] to the clothoid curve.  
 

4.1 Parametric Expressions of the General Aesthetic Curve 

We assume that a curve ( )C s  satisfies Eqn. (13). Then 
1

0 1( ) ( )s c s c αρ = +                                                                                                                            (17) 

As s  is the arc length, 1ds =  (refer to, for example [8]) and there exists ( )sθ  satisfying the following two equations: 

cos , sin
dx dy

ds ds
θ θ= =                                                                                                                                     (18) 

Since ( ) 1/( / )s d dsρ θ= , 
1

0 1( )
d

c s c
ds

α
θ −
= +                                                                                                                           (19) 

Hence 
1

0 1
2

0

( )

( 1)

c s c
c

c

α

αα
θ

α

−

+
= +

−
                                                                                                                               (20) 

If the start point of the curve is given by 0 (0)P C= ,  
1

0 1

2 0

( )

( 1)
0

0
( )

c s c
is

ic cC s P e e ds

α

αα

α

−

+

−= + ∫                                                                                                                              (21) 

The above expression can be regarded as an extension of the clothoid curve whose power of e  in its definition is 

changed from 2 $2$ to 1α +  and its LCH line's slope can be specified to be equal to any value except for 0 . 

 
4.2 Another Parametric Expression  

Here we will apply the fine tuning method developed by Miura et al. [7] to the clothoid curve and extend its  
representation. The fine tuning method can scale curvature at a point on curves and surfaces to an arbitrary value. In 
the curve case, for a given curve ( )C t , by using a scalar function ( ) 0g t >  and define a new curve as follows: 

0
0

( )
'( ) ( )

t dC t
C s P g t dt

dt
= + ∫                                                                                                                                    (22) 

Namely differentiate the original curve, scale the first derivative by multiplying a scale function and change the value of 
curvature arbitrarily. The clothoid curve applied by the fine tuning (Fine Tuned Clothoid : FTC) is  
defined by the following expression in the complex plane: 

2

0
( ) ( )

t
iatC t g t e dt= ∫                                                                                                                                                  (23) 

where i  is the imaginary unit, a  is a constant and ( )g t  is a scale function whose value is always positive. 

 

By using the radius of curvature cρ  of the clothoid curve, we define ( ) (1/2 )g t at β= . If we assume β  can be positive 

or negative values, ( )g t  is equivalent to be the β− -th power of t  except for the constant coefficient. The analysis 

results yield 
1

log log
1

s C
β

ρ
β

−
Δ = +

+
                                                                                                                                         (24) 



 

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 457-464 

 

462 

where log( 1) log2 log logC a cβ= − + − − + . Hence the LCH graph is given by a straight line whose slope is 

( 1)/( 1)β β− +  and the slope α  can be an arbitrary value except for 1 . (If β  is equal to 1− , the curve becomes a 

circle.)  Figure 4 shows several FTC curves whose LCH lines' slopes are given by α . The curve whose α  is equal to 
1−  is a clothoid curve. 

 

The FTC curve which has 1  for its LCH line slope can be obtained with 
2

1
0( ) c tg t c te=  by solving a differential 

equation /s constρΔ =  where 0c  and 0c  are constants. In this case, we can perform the integration explicitly and it 

turns out to be a logarithmic spiral expressed by  
2 2 2

2 1 2 1( )0
0

0
1

( )
2( )

t
ic c t iat ic c ia tc

C t e c te e dt e e
c ia

+= =
+∫                                                                                                     (25) 

where 2c  is a integration constant.  

 

 
 

Fig. 4. Curves whose LCH graphs are given by α –sloped straight lines. 

 

5. SELF-AFFINITY 

Harada et al. [1] addressed that the curve whose logarithmic curvature histogram was expressed by a straight line had 
a self-affinity, but his proof was not mathematically strict. His statement that “the property is called the self-affinity of 
the curve that the curve obtained by cutting the original curve at two positions and applying such an affine matrix that 
scales by two different scaling factors in the two orthogonal directions becomes identical to the original curve” is 

misleading. It might be interpreted that there is a 22×  matrix depending only on the cutting positions. However it is 
trivial that there is not such a matrix for a clothoid curve. (If we apply an affine matrix to a multi-looped clothoid curve, 
the curve will warp and not be another clothoid curve.) It means we need a new definition of the self-affinity for 
aesthetic curves possessed by those who satisfy the general equations of aesthetic curves.  
 
5.1 Self-Affinity of Aesthetic Curve 

We have already shown that the clothoid curve has a self-affinity property. Here we will discuss the self-affinity 
possessed by the curves that satisfy the general equation of aesthetic curves below.  
 
Assume that a curve satisfies the general equation of aesthetic curves expressed by Eqn. (13). Then for a given α , 

0 1( ) ( )t c s t cαρ = +                                                                                                                                                     (26) 

As even if ( )s t  is reparametrized by an arbitrary monotonously increasing function, the shape remains the same,  

we reparametrize the curve by 1 1( ) ( 1)/ts t c e cβ= − . Then  
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1

1( )
t

t c e

β

α αρ =                                                                                                                                                             (27) 

Similar to the previous subsection, we get a curve ( )D t  by cutting the head portion of the curve by substitute t  with 

1t +  and obtain its radius of curvature ( )D tρ  

1( ) ( 1)
t

D t t c e e

β β

α αρ ρ= + =                                                                                                                                         (28) 

Hence the radius of curvature of the curve without the head portion is given by scaling that of the original curve by e
β

α . 
 
The arc length of the curve ( )Ds t  is  

1

0

( ) ( 1) ( ) ( 1)t
D

c
s t s t s t e e

c

β β= + − = −                                                                                                                        (29) 

Therefore the arc length of ( )D t  is obtained by scaling that of the original by eβ . 

 
5.2 Self-Affinity of the Curve 

In summary, the curve without the head portion is identical with that generated by scaling the radius of curvature of the 

original curve in the principal normal direction by e
β

α  and its arc length in the tangent direction by eβ , or in the Frenet 
frame. This means that at an arbitrary point on the curve in the two different orthogonal directions, the principal 
normal and the tangent by scaling the cut curve by the different factors, the original curve can be obtained. We define 
this kind of the self-affinity as that of aesthetic curves.  
 
The self-affinity of the Brownian motion introduced in this subsection is for a fixed coordinate system made by the time 
and the amplitude axes, but the self-affinity of aesthetic curves is for a moving coordinate made by the principal 
normal and tangent directions along the curve. Although the matrix used for the affine transformation is the same in 
the moving coordinate system, no affine matrix exists for a fixed coordinate system.  
 

6. CONCLUSIONS 

Based on the discussions about the two typical aesthetic curves: the logarithmic spiral and the clothoid curve, we have 
derived a general equation of aesthetic curves describing the relationship between the radius of curvature and the arc 
length of the curve. We have shown a curve satisfying the general equation has such a property that its LCH graph is 
given by a straight line. We have found two types of parametric expressions for the general aesthetic curve: the 
extended clothoid and fine tuned clothoid curves. We have also shown that the curve satisfying the general equation of 
aesthetic curves has some kind of a self-affinity and defined it as the self-affinity of aesthetic curves. 
 
For future work, we are planning an automatic classification of curves: 1) determine the rhythm to be simple 
(monotonic) or complex (consisting of plural rhythms), 2) calculate the slope of the line approximating the LCH graph. 
We think there are a lot of possibilities to use the general aesthetic equations to many applications in the fields of 
computer aided geometric design. For example, we may be able to apply the equations to deform curves to change 
their impressions, say, from sharp to stable. Another example is smoothing for reverse engineering. Even if only noisy 
data of curves are available, we may be able to use the equations as kinds of rulers to smooth out the data and yield 
aesthetically high quality curves. We will develop a CAD system using the equations. 
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