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ABSTRACT 

 
A subdivision depth computation technique for Catmull-Clark subdivision surfaces (CCSS's) is 
presented. The subdivision depth computation technique also includes distance evaluation 
techniques for CCSS patches with their control meshes. The distance and the subdivision depth 
computation techniques provide the long-needed precision/error control tools in subdivision 
surface trimming, finite element mesh generation, Boolean operations, and surface tessellation for 
rendering processes. 
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1. INTRODUCTION 

Subdivision surfaces have become popular recently in graphical modeling, animation and CAD/CAM because of their 
stability in numerical computation, simplicity in coding and, most importantly, their capability in modeling/representing 
complex shape of arbitrary topology. Given a control mesh and a set of mesh refining rules (or, more intuitively, 
corner cutting rules), one gets a limit surface by recursively cutting off corners of the control mesh [3, 6]. The limit 
surface is called a subdivision surface because the corner cutting (mesh refining) process is a generalization of the 
uniform B-spline surface subdivision technique. Subdivision surfaces include uniform B-spline surfaces and piecewise 
Bezier surfaces as special cases. Actually subdivision surfaces include non-uniform B-spline surfaces and NURBS 
surfaces as special cases as well [11]. Subdivision surfaces can model/represent complex shape of arbitrary topology 
because there is no limit on the shape and topology of the control mesh of a subdivision surface. With the 
parametrization technique of subdivision surfaces becoming available [12], we now know that subdivision surfaces 
cover both parametric forms and discrete forms. Since parametric forms are good for design and representation and 
discrete forms are good for machining and tessellation (including FE mesh generation) [1], we finally have a 
representation scheme that is good for all graphics and CAD/CAM applications. 
Research work for subdivision surfaces has been done in several important areas, such as surface trimming [8], 

Boolean operations [2], and mesh editing [14]. However, the area of precision/error control for Catmull-Clark 
subdivision surfaces (CCSS's) is almost blank. For instance, given an error tolerance, how many levels of recursive 
Catmull-Clark subdivision should be performed on the initial control mesh so that the distance between the resultant 
control mesh and the limit surface would be less than the error tolerance? This error control technique is required in all 
tessellation based applications such as subdivision surface trimming, finite element mesh generation, Boolean 
operations, and surface tessellation for rendering. A subdivision depth computation method based on an exponential 
bound of the distance between a CCSS patch and its control mesh has been presented [13]. Unfortunately, some of 
the claims in this paper do not seem to be true. For instance, the distance between a CCSS patch and its control mesh 
need not reach the maximum at a control vertex. A subdivision depth computation technique based on bounds of 
second derivatives has been presented for tensor product rational surfaces [4]. The technique used for tensor product 
rational surfaces can not be used here because the parameter space of a CCSS usually does not fit into a rectangular 
grid structure. 
In this paper we present a different technique to compute the subdivision depth for a CCSS patch. The subdivision 

depth computation technique also includes distance evaluation techniques for a CCSS patch with its control mesh. 
The new techniques are based on the control points of the CCSS patch only and work for CCSS patches with or 
without an extraordinary vertex. The presented subdivision depth computation technique provides an efficient error 
control tool that works for all tessellation based applications of CCSS's. A potential disadvantage of the subdivision 
depth computation technique is that it might generate a relatively large subdivision depth for a patch with an 
extraordinary vertex even though the patch is already flat enough. This is due to the fact that the first order norm can 
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not measure the curvature difference between two points. A possible solution to this problem in given in the last 
section. 
 
2. SUBDIVISION DEPTH COMPUTATION FOR REGULAR PATCHES 

Let V0, V1, V2 and V3 be the control points of a uniform cubic B-spline curve segment C(t) whose parameter space is 
[0, 1]. If we parametrize the middle leg of the control polygon as follows: L(t) = V1 + ( V2 - V1 )t, 0 ≤ t ≤ 1, then the 
maximum of (t)- (t) CL  is called the distance between the curve segment and its control polygon. It is easy to see that 
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Since (2 V1 - V0 - V2 )/6 and (2 V2 - V1 - V3)/6 are the values of L(t) - C(t) at t=0 and t=1, we have the following 
lemma. 

Lemma 1: The maximum of (t)- (t) CL  occurs at the endpoints of the curve segment and can be expressed as 
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A form more general than Eqn. (1) has been proved by Peters [9]. His result works for uniform B-spline curves of 
any degree. However, the above result is more intuitive and is all we need for subsequent results. We next define the 
distance between a uniform bicubic B-spline surface patch and its control mesh. 
Let Vi,j, 0 ≤  i, j ≤  3, be the control points of a uniform bicubic B-spline surface patch S(u,v) with parameter space 

[0,1]× [0,1]. If we parametrize the central mesh face { V1,1, V2,1, V1,2, V2,2 } as follows: 
L(u,v) = (1-v) [ (1-u) V1,1 + u V2,1 ] + v [ (1-u) V1,2 + u V2,2 ] ,    0 ≤  u, v ≤  1, 

then the maximum of  L(u,v) - S (u,v) is called the distance between S(u,v) and its control mesh. If we define  
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By applying Lemma 1 on  Qu,1 - Q u,1 ,  Qu,2 - Q u,2 , and  Qv,i - Q v,i , i = 1, 2, 3, and by defining M0 as 

the maximum norm of the second order forward differences of the control points of S(u,v), we have 
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M0 is called the second order norm of S(u,v). This leads to the following lemma. 

Lemma 2: The maximum of  L(u,v) - S (u,v)  satisfies the following inequality 
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where M0 is the second order norm of S (u,v). 

Note that even though the maximum of  L(t) - C(t)  occurs at the end points of the curve segment C(t), the 

maximum of  L(u,v) - S (u,v)  for a surface patch usually does not occur at the corners of S (u,v). This follows 

from the observation that if this is the case then the maximum of  L(u,0) - S (u,0) would occur at the endpoints of 

S (u,0). But unlike the curve case,  L(u,0) - S (u,0) does not satisfy an expression of the following form 

(1-t)3(2V1 -V0 -V2)/6 + t3(2V2 -V1 -V3 )/6 
What we have is the one shown below 

L(u,0) - S (u,0) = (1-u)3[L(0,0) -S(0,0)] + u3 [L(1,0) -S(1,0)]+u(1-u)(2-u)[L(0,0)-( V1,0+ 2V1,1 + V1,2 )/6] 
                             + u(1-u)(2-u)[L(1,0)-( V2,0 + 2V2,1 + V2,2 )/6]. 
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The second and third terms on the right hand side usually are non-zero (actually, they could be very large in 

magnitude if V1,0 and V2,0 are very far away from the other control points). Therefore, the maximum of  L(u,0) - S 

(u,0) is not necessary to occur at the endpoints of S (u,0). Consequently, the maximum of  L(u,v) - S (u,v)  is 

not necessary to occur at the corners of S (u,v). In the following, we present subdivision depth computation technique 
for CCSS patches not adjacent to an extraordinary vertex. 
Let Vi,j, 0 ≤  i, j ≤  3, be the control points of a uniform bicubic B-spline surface patch S(u,v). We use Vi,j

k, 0 ≤  i, j 
≤  3+2k-1, to represent the new control points of the surface patch after k levels of recursive subdivision. The indexing 
of the new control points follows the convention that V0,0

k is always the face point of the mesh face { V0,0
k -1, V1,0

k -1, 
V0,1

k -1, V1,1
k-1 }. The new control points Vi,j

k will be called the level-k control points of S(u,v) and the new control mesh 
will be called the level-k control mesh of S (u,v). 
Note that if we divide the parameter space of the surface patch into 4k regions as follows: 
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where 0 ≤  m, n ≤  2k-1 and let the corresponding subpatches be denoted Sm,n
k(u,v), then each Sm,n

k(u,v) is a uniform 
bicubic B-spline surface patch defined by the level-k control point set { Vp,q

k | m ≤  p ≤  m+3 , n ≤  q ≤  n+3 }. 
Sm,n

k(u,v) is called a level-k subpatch of S(u,v). One can define a level-k bilinear plane Lm,n
k on { Vp,q

k | p = m+1, 
m+2; q = n+1, n+2  } and measure the distance between Lm,n

k(u,v) and Sm,n
k(u,v). We say that the distance between 

S(u,v) and the level-k control mesh is smaller than} ε  if the distance between each level-k subpatch Sm,n
k(u,v) and the 

corresponding level-k bilinear plane Lm,n
k(u,v), 0 ≤  m, n ≤  2k-1, is smaller than ε . In the following, we will show how 

to compute a subdivision depth k for a given ε  so that the distance between S(u,v) and the level-k control mesh is 

smaller than ε  after k levels of recursive subdivision. The following lemma is needed in the derivation of the 

computation process. If we use Mm,n
k to represent the second order norm of Sm,n

k(u,v), i.e., the maximum norm of the 
second order forward differences of the control points of Sm,n

k(u,v), then the lemma shows the second order norm of 
Sm,n

k(u,v) converges at a rate of 1/4 of the level-(k-1) second order norm. The proof of this lemma is shown in the 
complete version of the paper [5]. 

Lemma 3: If Mm,n
k is the second order norm of Sm,n

k(u,v) then we have 
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where M0 is the second order norm of S(u,v). 

With Lemmas 2 and 3, it is easy to see that, for any 0 ≤  m, n ≤  2k-1, we have 
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Hence, if k is large enough to make the right side of Eqn. (6) smaller than ε , we have 
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for every 0 ≤  m, n ≤  2k-1. This leads to the following main result of this subsection. 

Theorem 4: Let Vi,j,  0 ≤  i, j ≤ 3, be the control points of a uniform bicubic B-spline surface patch S(u,v). For any 
given ε >0, if 
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levels of recursive subdivision are performed on the control points of S(u,v) then the distance between S(u,v) and the 
level-k control mesh is smaller than ε  where M0 is the second order norm of S(u,v). 

 
3. SUBDIVISION DEPTH COMPUTATION FOR EXTRA-ORDINARY PATCHES 

The subdivision depth computation process for a CCSS patch near an extraordinary vertex is different. This is because 
in the vicinity of an extraordinary vertex one does not have a uniform B-spline surface patch representation and, 
consequently, cannot use the technique of Theorem 4 directly. Fortunately, the size of such a vicinity can be made as 
small as possible, therefore, one can reduce the size of such a vicinity to a degree that is tolerable (i.e., within the given 
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error bound) and use the technique of Theorem 4 to work on the remaining part of the surface patch. A subdivision 
depth computation technique based on this concept for a CCSS patch near an extraordinary vertex will be presented 
below. We assume the initial mesh has been subdivided at least twice so that each mesh face is a quadrilateral and 
contains at most one extraordinary vertex. We need to define a few notations first. 
Let Π 0

0 = { Vi |  1 ≤  i ≤  2N+8 } be a level-0 control point set that influences the shape of a surface patch S(u,v) 
(=S0

0(u,v)). V1 is an extraordinary vertex with valence N. The control vertices are ordered following Stam's fashion 
[12] (see Fig. 1.). 

 

             
                                                      (a)                                                                         (b) 

Fig. 1. (a) Ordering of control points for an extra-ordinary CCSS patch; (b) Control point sets Π 1
n, Π 2

n and Π 3
n. 

 
If we use Vi

n to represent the level-n control vertices generated after n levels of recursive Catmull-Clark subdivision, 
and use S0

n, S1
n, S2

n and S3
n to represent the subpatches of S0

n-1 defined over the tiles 
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n, S1
n, S2

n and S3
n are influenced by the level-n control 

point sets Π 0
n, Π 1

n, Π 2
n and Π 3

n, respectively. Π 0
n is defined by Π 0

n = { Vi
n | 1 ≤  i ≤  2N+8 }, and definition of 

Π 1
n, Π 2

n and Π 3
n  can be found in Fig. 1(b). S1

n, S2
n and S3

n  are standard uniform bicubic B-spline surface patches 
because their control meshes satisfy a 4-by-4 structure. Hence, the technique described in Theorem 4 can be used to 
compute a subdivision depth for each of them. S0

n is not a standard uniform bicubic B-spline surface patch. Hence, 
Theorem 4 can not be used to compute a subdivision depth for S0

n directly. For the convenience of reference, we shall 
call S0

n a level-n extraordinary subpatch of S(u,v) because it contains the limit point of the extraordinary points (The 
proof is in the next subsection.) Note that if H0 and Hn are column vector representations of the control points of Π 0

0 
and Π 0

n, respectively, H0≡ (V0, V1, ..., V2N+8)
t, and Hn≡ (V0

n, V1
n, ..., V2N+8

n)t, where (X, X, ..., X)t represents the 
transpose of the row vector (X, X, ..., X) then we have 
Hn=(T)nH0,                                                                                                                                                                 (8) 
where T is the (2N+8)× (2N+8) (extended) subdivision matrix defined as follows [7, 12]: 
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and  aN=1-7/(4N), bN=3/(2N2), cN=1/(4N2), a=9/16, b=3/32, c=1/64, d=3/8, e=1/16, f=1/4. 
 
3.1 Computing Subdivision Depth for a Vicinity of the Extraordinary Vertex 

The goal here is to find an integer εn  for a given ε  > 0 so that if n ( ≥ εn ) recursive subdivisions are performed on 

Π 0
0, then the control point set of the level-n extraordinary subpatch S0

n of S(u,v), Π 0
n = { Vi

n | 1 ≤  i ≤  2N+8 }, is 
contained in the sphere B(V5

n+1, ε /2) with center V5
n+1 ≡ (V1

n + V4
n +V5

n +V6
n)/4 and radius ε /2. Note that if the 

(2N+8)-point control mesh Π 0
n is contained in the sphere B(V5

n+1, ε /2) then the level-n extraordinary subpatch S0
n 

is contained in the sphere B(V5
n+1, ε /2) as well. This follows from the fact that S0

n, as the limit surface of Π 0
n, is 

contained in the convex hull of Π 0
nand the convex hull of Π 0

n is contained in the sphere B(V5
n+1, ε /2). But then we 

have 

max  S0
n(u,v) - L0

n(u,v)  < ε                                                                                                                             (13) 

where L0
n(u,v) is a bilinear plane defined on the level-n mesh face {V1

n, V4
n, V5

n, V6
n }. The construction of such an 

εn  depends on several properties of the (extended) subdivision matrix T and the control point sets Π 0
n. 

First note that since all the entries of the extended subdivision matrix T are non-negative and the sum of each row 
equals one, the extended subdivision matrix is a transition probability matrix of a (2N+8)-state Markov chain [10]. In 

particular, the (2N+1)× (2N+1) block T  of T is a transition probability matrix of a (2N+1)-state Markov chain. The 

entries in the first row and first column of T  are all non-zero. Therefore, the matrix T  is irreducible because T 2 has 
no zero entries and, consequently, all the states are accessible to each other. On the other hand, since all the diagonal 

entries of T  are non-zero and entries of T n are non-zero for all n ≥  2, it follows that all the states of T  are aperiodic 
and positive recurrent. Consequently, the Markov chain is irreducible and ergodic. By the well-known theorem of 

Markov chain ([10], Theorem 4.1), T n converges to a limit matrix T * whose rows are identical. More precisely, 
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where Δ i are the unique non-negative solution of 
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with t i,j being the entries of T . One can easily get the following observations. 
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• The vector ( Δ 1, Δ 2, ..., Δ 2N+1) satisfies the following properties: 
         Δ 1=N/(N+5), Δ 2 = Δ 4 = ... = Δ 2N = 4/(N(N+5)), and Δ 3 = Δ 5 = ... = Δ 2N+1 = 1/(N(N+5)). 

• The matrix T * is an idempotent matrix, i.e., T * T *= T *. Hence, T * has two eigenvalues, 1 and 0 (with 
multiplicity 2N). 

• T  has 1 as an eigenvalue and all the other 2N eigenvalues of T  have a magnitude smaller than one. 

• As it is well known [7], the limit point of { V1
n } is V1

* ≡ Δ 1V1+ Δ 2V2+...+ Δ 2N+1V2N+1. But V1
* is actually the 

limit point of all Vj
n, j=1, 2, ... , 2N+8. Therefore, the convex hull of {V1

n, V2
n, ... , V2N+8

n} converges to V1
* 

when n tends to infinity and, consequently, V1
* = S(0,0). The fact that V1

* is the limit point of { V1
n, V2

n, ... , 
V2N+1

n } follows from Eqns.(8) and (14). The fact that V1
* is also the limit point of { V2N+2

n, V2N+3
n, ... , V2N+8

n } is 
proved in the complete version of the paper [5]. 

The last observation is important because it shows that 
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converges. Therefore, it is possible to reduce the size of S0
n to a degree that is tolerable if n is large enough. For a given 

ε  > 0 we will find an εn  so that if n ≥  εn  then the level-n control point set Π 0
n is contained in the sphere B(V5

n+1, 

ε /2). To do this, we need to know how fast Eqn. (16) converges. 
 

 
Fig. 2. Control point sets ΦΦΦΦ0

n, ΦΦΦΦ1
n, ΦΦΦΦ2

n and ΦΦΦΦ3
n. 
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(V8
k in ΦΦΦΦ1

k should be replaced with V2
k if N=3) and define G0

k, G1
k, G2

k and G3
k as follows: 
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Gi
k is called the first order norm of ΦΦΦΦi

k, i=0, 1, 2, 3. We need the following lemma for the construction of εn . The 

proof is shown in the complete version of the paper [5]. 

Lemma 5: If ΦΦΦΦi
k and Gi

k are defined as above then, for i=0, 1, 2, 3, we have 
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where G0 ≡max { G0
0, G1

0, G2
0, G3

0 }. G0 is called the first order norm of Π 0
0. 

To construct εn , note that if V ∈ Π 0
n and V ∈ΦΦΦΦ0

n, we have  

nnnnnnnnn G01161514
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4
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4
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4

1
≤−+−+−+−≤−+ VVVVVVVVVV . 

It is easy to prove that similar inequalities hold for ΦΦΦΦ1
n, ΦΦΦΦ2

n and ΦΦΦΦ3
n as well. Hence, for each V∈ Π 0

n, by Lemma 5, we 
have 
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Since the maximum of 
22

13

4

7

4

3

NN
−+  occurs at N=7, Eqn. (20) can be simplified as 
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where 
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Hence, V5
n+1 - V  is smaller than ε /2 if n is large enough to make the right hand side of Eqn. (21) smaller than or 

equal to ε /2. Consequently, we have the following theorem. 

Theorem 6: Let Π 0
0 = { Vi | 1 ≤  i ≤  2N+8 } be a level-0 control point set that influences the shape of a CCSS 

patch S(u,v) (=S0
0(u,v)). V1 is an extraordinary vertex with valence N. The control vertices are ordered following 

Stam's fashion [12] (see Fig. 1.). For a given ε >0, if εn  is defined as follows: 


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
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

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
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







≡

εδε
2

7
log

0G
n ,                                                                                                                                                 (23) 

where δ is given in Eqn. (22) and G0 is the first order norm of Π 0
0, then the distance between the level-n 

extraordinary subpatch S0
n(u,v) and the corresponding bilinear plane L0

n(u,v) is smaller than or equal to ε  if n ≥ εn . 

Theorem 6 shows that the rate of convergence of the control mesh in the vicinity of an extraordinary vertex is fastest 
when valence of the extraordinary vertex is three. 
 
3.2 Computing Subdivision Depth for the Remaining Part 

The idea here is, for each k between 1 and εn , to determine a subdivision depth Dk ( ≥ εn ) so that if Dk recursive 

subdivisions are performed on the control mesh Π 0
0 of S(u,v), then the distance between the level-Dk control mesh 

and the subpatches Si
k, i=1, 2, 3, is smaller than ε . Consequently, if we define D to be the maximum of these Dk (i.e., 

D = max { Dk | 1 ≤  k ≤  εn  }), then after D recursive subdivisions, the distance between the level-D control mesh 

and the subpatches Si
k, i=1, 2, 3, would be smaller than ε  for all 1 ≤  k ≤  εn . Note that the distance between the 

level-D control mesh and the subpatches S1
k, S2

k and S3
k for εn +1 ≤  k ≤  D, and the distance between the level-D 

control mesh and the level-D extraordinary subpatch S0
D would be smaller than ε  as well. This is because these 
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subpatches are subpatches of S εn
0  and the distance between S εn

0  and the level- εn  control mesh is already smaller 

than ε . Hence, the key here is the construction of Dk. We will show the construction of Dk for S3
k(u,v). This Dk works 

for S1
k(u,v) and S2

k(u,v) as well. 
For 0 ≤  u, v ≤  1, define a bilinear plane L3

k(u,v) on the mesh face { V4
k, V5

k, V2N+7
k, V2N+6

k }as follows: 
L3

k(u,v) = (1-v) [ (1-u) V4
k + u V5

k ] + v [ (1-u) V2N+7
k + u V2N+6

k  ].                                                                        (24) 
Since S3

k(u,v) is a uniform bicubic B-spline surface patch with control mesh Π 3
k(u,v), we have, by Lemma 2, 

L3
k(u,v) - S3

k(u,v) ≤ Z3
k/3,                                                                                                                                  (25) 

where Z3
k is the second order norm of S3

k(u,v). If we define Z0
i to be the second order norm of S0

i(u,v), we have 
Z3

k ≤ WZ0
k-1 ≤ (W)kZ0

0,                                                                                                                                                 (26) 
where 
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The proof of Eqn. (26) is shown in the complete version of the paper [5]. Hence, by combining the above results, we 
have 

Lemma 7: The maximum distance between S3
k and L3

k satisfies the following inequality 

max L3
k(u,v) - S3

k(u,v) ≤ (W)kZ0
0/3,                                                                                                                     (28) 

where W is defined in Eqn. (27) and Z0
0 is the second order norm of S(u,v). 

It should be pointed out that when defining Z0
i, only the following items are needed for second order forward 

differences involving V1
i: 

 2V1
i - V2j

i - V2[(j+2)\%N]
i ,    j=1, 2, ... , N. 

Lemma 7 shows that if (W)kZ0
0/3<ε  then the distance between S3

k and L3
k is already smaller than ε . However, 

since εn  subdivisions have to be performed on Π 0
0 to get S εn

0  anyway, Dk for S3
k in this case is set to εn . This 

condition holds for S1
k and S2

k as well. 

If (W)kZ0
0/3>ε , further subdivisions are needed on Π i

k, i = 1, 2, 3, to make the distance between Si
k, i = 1, 2, 3, 

and the corresponding mesh faces smaller than ε . Consider S3
k again. S3

k is a uniform bicubic B-spline surface patch 

with control mesh Π 3
k. Therefore, if lk recursive subdivisions are performed on the control mesh Π 3

k, by Lemma 2 
and Lemma 3, we would have 

L kl
3 (u,v) - S3

k(u,v) ≤
3

1
 

kl









4

1
 Z3

k,                                                                                                                  (29) 

where L kl
3 (u,v) is a level-lk control mesh relative to Π 3

k and Z3
k is the second order norm of S3

k(u,v). Therefore, by 

combining the above result with Eqn. (26), we have 

L kl
3 (u,v) - S3

k(u,v) ≤
3

1 kl









4

1
 (W)kZ0

0,                                                                                                           (30) 

We get the following Lemma by setting the right hand side of Eqn. (30) smaller than or equal to ε . 

Lemma 8: In Lemma 7, if the distance between S3
k and L3

k is not smaller than ε , then one needs to perform lk 

( )
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log
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4
ZW

l
k

k ,                                                                                                                                              (31) 

more recursive subdivisions on the level-k control mesh Π 3
k of S3

k to make the distance between S3
k and the level-

(k+lk) control mesh smaller than ε . 
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This result works for S1
k and S2

k as well. Note that the value of (W)kZ0
0 is already computed in Lemma 7 and W has 

to be computed only once. Therefore, the subdivision depth Dk for S1
k, S2

k and S3
k is defined as follows: 
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Consequently, we have the following main theorem: 

Theorem 9: Let Π 0
0 ={ Vi | 1 ≤  i ≤  2N+8 } be the control mesh of a CCSS patch S(u,v). The control points 

are ordered following Stam's fashion [12] with V1 being an extraordinary vertex of valence N (see Fig. 1). For a given 
ε  > 0, if we compute εn  as in Eqn. (23) and D as follows: 

D = max { Dk | 1 ≤  k ≤  εn  },                                                                                                                                (33) 

where Dk is defined in Eqn. (32) then after D recursive subdivisions, the distance between S(u,v) and the level-D 
control mesh is smaller than ε . 

 
4. EXAMPLES 

Some examples of the presented distance evaluating and subdivision depth computing techniques are shown in this 
section. In Figs. 3(a), 3(b) and 3(c), the distances between the blue faces of the control meshes and the corresponding 
limit surface patches are 0.034, 0.15 and 0.25, respectively. For an error tolerance of 0.01, the subdivision depths 
computed for these mesh faces are 1, 22 and 24, respectively. The reason that the last two cases have large subdivision 
depths is because each of them has an extraordinary vertex. For the blue mesh face shown in Fig. 3(c), subdivision 
depths for error tolerances 0.25, 0.2, 0.1, 0.01, 0.001, and 0.0001 are 1, 3, 9, 24, 40, and 56, respectively. 

 

                 
                                           (a)                                  (b)                                           (c) 
Fig. 3. Distance and subdivision depth computation for a CCSS patch with: (a) no extraordinary vertex, (b) an extraordinary vertex of 

valence 8, (c) an extraordinary vertex of valence 5. 

 
 
5. CONCLUSIONS 

A subdivision depth computation technique for CCSS's is presented. This technique provides a precision/error control 
tool for all tessellation based applications of subdivision surfaces. 
One possible disadvantage of the subdivision depth computation technique is that it might generate a relatively large 

subdivision depth for a vicinity of an extraordinary vertex which is actually quite flat. This is because the first order 
norm can detect the location difference of two points, but not the difference between their curvatures. Therefore, even 
though two points are on the same plane, as far as they are far apart, a large εn  would still be generated by the 

subdivision depth computation process (see Theorem 6). A possible solution to this problem is to consider second 
order norm for ΦΦΦΦ0

n, ΦΦΦΦ1
n, ΦΦΦΦ2

n and ΦΦΦΦ3
n as well as the first order norm when computing εn  for the vicinity of an 

extraordinary vertex. 
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