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ABSTRACT 

 

We present a new abstraction, association space, in the context of recursive subdivision surfaces.  

An association space relates elements in a recursive subdivision surface at a given refinement level 

to the elements of the surface at the previous refinement level.  These associations allow a 

programmer to easily implement recursive subdivision algorithms and augment them with 

computations, such as multigrid techniques, that require inter-level traversals of the hierarchy of 

refined meshes.  These associations also extend to distributed recursive subdivision surfaces.  They 

underlie the mechanism for stitching the refined partitions of a mesh into a single refined mesh. 

 

Keywords: association spaces; recursive subdivision surfaces; multigrid techniques; distributed 

surfaces. 

 

 

1. INTRODUCTION 

Recursive subdivision surfaces are now one of the surface representations of choice in Computer Graphics and 

Geometric Modeling.  They provide a compact and flexible representation for modeling three-dimensional geometry in 

a robust and computationally effective manner.  They can represent smooth surfaces, as well as surfaces with creases 

and sharp edges, and have shown their effectiveness in a number of general modeling, interrogation, reconstruction, 

shape editing, animation, and related tasks.  Recursive subdivision surfaces represent the geometry as the limit surface 

of a subdivision process.  An initial coarse mesh—the control mesh—is refined repeatedly, both geometrically and 

topologically, using rules specified by a particular subdivision scheme.  Repeated refinements lead to a hierarchy of 

increasingly refined models which approach the limit surface. 

The interest in recursive subdivision surfaces has motivated a number of efforts to provide support for implementing 

various schemes in a generic fashion.  Velho [1] proposed a notation based on L-systems [2] for describing recursive 

subdivision algorithms. Ivrissimtzis [3] studied factorizations of subdivision rules in terms of polyhedra operators to 

simplify their analysis and implementation.  Sovakar and Kobbelt [3] designed a generic API where subdivision 

operators are built as compositions of rules that perform the basic splits, edge flips, etc. needed for the generation of a 

refined mesh from a coarser one.  Shiue and Peters [5] developed a template-based generic refinement library for 

applying subdivision rules on meshes supporting iterators and Euler operators, such as the half-edge data structure. 

These libraries greatly facilitate the development of models and allow users to readily implement, in principle, new 

subdivision schemes.  Their main advantage, namely their genericity, comes from their decoupling of the specifics of a 

given subdivision scheme from the traversal, interrogation, and topological cutting/splicing mesh operations.  While not 

as run-time efficient as hand-crafted array-based representations customized for a given scheme, their flexibility and 

generality offset the small cost. 

More recently, subdivision surfaces have been used in numerical simulations and computational science problems. 

Simulations involving the discretization of Navier-Stokes and other differential operators defined on subdivision 

surfaces have been demonstrated.  Subdivision surfaces have also enabled reliable thin-shell simulations since they 

provide, by construction, the necessary continuity (and square integrability) conditions necessary for representing the 

deformed geometry.  Thin-shell finite element simulations have been developed [6], [7], [8] in which subdivision is 

used to represent the curvilinear geometry as well as the finite element basis functions used in the discretization. 
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Numerical simulations arising from the discretization of differential operators generally result in very large sets of 

algebraic equations that must be solved repeatedly, and whose solutions represent major bottlenecks in the 

computations.  The hierarchical nature of recursive subdivision representations provides a natural setting in which 

multilevel schemes can be used to significantly speed up these solutions.  In multigrid methods, for example, coarser 

meshes are used to resolve the low frequency components of the solutions while finer meshes resolve the high 

frequency components.  By maintaining a hierarchy of refined meshes and propagating the solution and residuals up 

and down this refinement hierarchy, computation times that scale linearly with problem size can be obtained.  

Unfortunately, generic libraries that support these computations on subdivision surfaces do not yet exist.  Developers 

still have to custom-build structures to perform the necessary operations for aggregating values from local 

neighborhoods of a given mesh level and spreading them appropriately, in a fashion dictated by the specific 

subdivision scheme used, to coarser and finer levels.  This makes it far more time consuming to build and experiment 

with multilevel solvers and related computational strategies.  Because the inter- and intra-level aggregation and 

spreading operations are scheme-specific, it should be possible to abstract them and greatly facilitate the 

implementation of hierarchical multilevel computations. 

As the interest in more complex and realistic models grows, there is a need for supporting the implementation, 

rendering, and computations with recursive subdivision surfaces on distributed-memory machines.  Distributed 

memory machines allow high-resolution meshes to be processed in parallel, potentially real-time high-quality 

rendering, and fast high-resolution computational science simulations.  There is currently no infrastructure for building 

systems with distributed representations of recursive subdivision schemes.  Such an infrastructure must provide the 

functionality to partition a coarse mesh, perform distributed refinement, transfer information between distributed 

partitions, and stitch refined partitions up and down the hierarchy into a coherent and consistently refined surface.  

Ideally, these operations should be independent of the particular subdivision scheme being used. 

This paper presents a library for computing with distributed recursive subdivision surfaces.  This library provides an 

association space which allows a developer to establish associations between a vertex at a given refinement level and 

one or more geometric elements (vertices, edges, and faces) at the previous refinement level.  The developer can then 

retrieve vertices at a particular refinement level by querying the association space using elements from the previous 

refinement level.  These associations simplify the implementation of recursive subdivision surfaces and the code that 

traverses the hierarchy of meshes.  Furthermore, these associations automate the stitching of a refined surface out of its 

refined partitions.  The main contributions of this paper are the association spaces abstraction and the demonstration 

of its applicability.  Specifically, we show how it provides (1) an intuitive mechanism for implementing subdivision 

schemes, (2) elegant support for multilevel computations with general subdivision schemes, and (3) higher-level 

functionality for implementing distributed recursive subdivision. 

The rest of this paper is organized as follows.  Section 2 defines Association Spaces.  Section 3 illustrates the 

implementations of several subdivision schemes (Catmull-Clark [9], Doo-Sabin [10], Sqrt-3 [11], and a new ternary 

scheme).  Section 4 shows how multilevel computations can be performed generically on subdivision surfaces.  

Section 5 demonstrates the use of association spaces to implement parallel subdivision surfaces efficiently. 

 

2. ASSOCIATION SPACES 

 

2.1 Definitions 

An inter-level topological association relates a vertex at a particular refinement level to one or more elements (vertices, 

edges, or faces) at the previous refinement level.  An association space is the set of topological associations between 

two consecutive refinement levels.  The association space maps one or more elements of the control polygon at a given 

refinement level onto the vertices of the control polygon at the next refinement level.  Formally, Πi is an m:1 mapping 

from tuples of Pi elements onto Vi+1 elements where Pi is the level i control polygon which consists of Vi, Ei, and Fi, the 

sets of level i vertices, edges, and faces respectively, along with their connectivity information; Vi+1 is the set of vertices 

of Pi+1, the level i+1 control polygon.  This relationship can be generalized to include edges and faces at the refined 

level too.  However, we have not found a need for it. 

Primal subdivision schemes exhibit mostly 1:1 associations.  For example, Catmull-Clark splits a face and its edges; it 

associates a level i vertex, edge, or face with its corresponding v-Point, e-Point, or f-Point at level i+1.  Fig. 1 shows 

one of each of these three 1:1 association types.  Dual subdivision schemes exhibit 2:1 associations.  For example, the 

Doo-Sabin subdivision algorithm splits a vertex and associates a level i vertex-face pair (a vertex and one of the faces 

that it belongs to) with an f-Point at level i+1.  Fig. 2 shows two such associations.  They associate a level i vertex and 

each of two of its incident faces with two level i+1 vertices. 



 

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 495-504 

 

497 

     
 

Association spaces allow a system to store references to elements at the next refinement level by establishing 

associations between these elements and others at the previous refinement level used to derive them.  It then allows the 

system to retrieve these references by querying the association space for the associations of the coarse level elements. 

Associations encode computational dependencies.  However, they differ from dependencies by recording only the 

essential dependencies rather than all.  We will show below how we can use these essential dependencies to decouple 

the generation of vertices at the refined level from establishing the topological connectivity of these vertices.  This 

decoupling simplifies the implementation of recursive subdivision algorithms and the use of subdivision surfaces for 

multilevel numerical techniques such as multigrid techniques. 

 

2.2 Association Space Operations 

The association space defines the assoc function which takes one or more level i elements as its parameters.  The 

function can be used as both an l-value and an r-value.  On the right-hand side of an assignment, the function behaves 

as an r-value and returns the level i+1 vertex that is associated with its parameters.  On the left-hand side of an 

assignment, the function behaves as an l-value and associates the right-hand side level i+1 vertex to the level i 

elements that appear as the parameters of the function.  Establishing an association also implicitly adds a vertex to the 

level i+1 control polygon. 

To simplify the notation, the assoc function is overloaded and acts in a manner similar to the Lisp map function.  It 

accepts vectors of level i as its parameters.  All vector parameters must have the same size.  In this case, the assoc 

function implicitly loops over the elements of these vectors in lockstep mode and pairs the corresponding elements of 

these vectors.  When the parameters are mixed vectors and scalars, the function pairs the scalar parameters with each 

element of the vector(s).  The function returns a vector of level i+1 vertices when it is used as an r-value; it associates 

the level i+1 vertices in a vector with the level i elements of its vector parameters when it is used as an l-value. 

Reusing the Catmull-Clark example, the expression assoc(edgei) ← e-Pointi+1 associates the level i+1 vertex, e-

Pointi+1, to the level i edge, edgei, which is used to derive the e-Point vertex.  By contrast, the expression assoc(edgei) 

retrieves the level i+1 e-Point vertex associated with the level i edge, edgei.  Note here that the level i+1 e-Point vertex 

depends on the level i edge as well as the two faces adjacent to it.  However, this association only records the 

dependency of the e-Point vertex on an edge. 

For the Doo-Sabin example, the expression assoc(vi, fi) ← vf-Pointi+1 associates the level i+1 vertex, vf-Pointi+1, to the 

level i vertex-face pair <vi, fi>.  Within the same example, the expression assoc(vi, vi.faces()) returns a vector of 

level i+1 vertices associated with the level i vertex vi and each of its faces; this is the list of vertices that form the 

level i+1 v-Face that correspond to vi. 

 

3. ASSOCIATION-BASED IMPLEMENTATIONS OF SUBDIVISION SURFACES 

A subdivision scheme that uses associations consists of the following three steps: (1) instantiate level i+1 vertices out of 

existing levels i and i+1 vertices; (2) associate the newly created vertices with geometric elements used to create them; 

(3) select level i+1 vertices using their associations in a specific order and assemble them into the faces of the level i+1 

surface.  We assume here that an implementation of geometric surfaces is available and that this implementation 

provides data structures such as the half-edge or the quad-edge which handle the topological interconnectivity between 

vertices, edges, and faces.  Such implementations provide functions that return the vertices of a face, the 1-ring vertices 

of a vertex, the origin and destination vertices of an edge, its left and right faces, etc. 

Fig. 1. Associations for a Face & Edge Split. Fig. 2. Associations for a Vertex Split. 

 

Level i 

Level i+1 
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The rest of this section illustrates the flexibility of the association-based approach by sketching implementations of the 

following four subdivision schemes: Catmull-Clark—a primal scheme, Doo-Sabin—a dual scheme, Sqrt-3 subdivision, 

and a new ternary scheme developed by Nasri and Hasbini [12], [13]. 

 

3.2 Illustrative Schemes 

The Catmull-Clark subdivision algorithm uses primal refinement operators and acts on quad meshes.  It refines a level i 

quad into four level i+1 quads.  The topological refinement operator inserts an f-Point (face point) vertex into a level i 

quad and an e-Point (edge point) vertex into a level i edge.  It also replaces an existing level i vertex by its 

corresponding v-Point (vertex point).  The relations facei:f-Pointi+1, edgei:e-Pointi+1, and vertexi:v-Pointi+1 directly map 

onto 1:1 associations (face:vertex, edge:vertex, and vertex:vertex respectively) as shown in Fig. 3.  These associations 

can be readily used to implement the Catmull-Clark subdivision algorithm; Alg. 1 below sketches such an 

implementation. 

The Doo-Sabin algorithm is a dual scheme that acts on quad meshes.  It splits a level i vertex of valence n into n 

level i+1 vertices with each new vertex corresponding to one of the faces that the level i vertex belongs to.  It then 

forms v-Faces, e-Faces, and f-Faces out of the newly created vertices.  The correspondence between a level i+1 vertex 

and the level i <vertex, face> pair used to create it directly maps onto 2:1 associations.  Fig. 4 shows the associations 

used in Doo-Sabin; Alg. 2 below shows the implementation of the Doo-Sabin algorithm using associations. 

The Sqrt-3 subdivision algorithm acts on triangular meshes.  Its refinement operator splits a triangular face by inserting 

a new vertex at the centroid of the triangle and adjusts the positions of existing vertices thereby forming three new 

triangles.  It then flips the existing edges so the new triangular faces ride over existing edges.  For the Sqrt-3 

subdivision, the correspondence between level i+1 vertex and the level i faces and vertices that derives them can be 

readily modeled as vertex-face and vertex-vertex 1:1 associations.  Alg. 4 sketches the implementation of the Sqrt-3 

subdivision using associations. 

The Nasri-Hasbini ternary subdivision scheme has a refinement operator that acts on quad and triangle meshes.  It has 

v-Point vertices that correspond to the existing vertices of a quad.  It also inserts 2 e-Point vertices per edge and 4 

f-Point vertices per quad.  This results in 9 new quads replacing an existing quad.  Fig. 5 shows one refinement step of 

this scheme.  The topology of the refined mesh bears a striking resemblance to a composition of Catmull-Clark and 

Fig. 5. Nasri-Hasbini Ternary Subdivision Scheme. 

Level i+1 

f-Point 

e-Point 

v-Point 

Level i 

Fig. 4. Doo-Sabin Associations (<vi, fi>:vi+1). 

Level i 

Level i+1 

Fig. 3. Catmull-Clark Associations: face:vertex (fi:vi+1), edge:vertex (ei:vi+1), vertex:vertex (vi:vi+1). 

Level i+1 

Level i 

Level i+1 

Level i 

Level i+1 

Level i 
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Doo-Sabin into one step.  It uses 1:1 vertex-vertex associations to map the level i vertices onto level i+1 v-Points.  It 

also uses 2:1 associations to map level i <vertex, face> pairs (a face and one of its vertices) onto level i+1 f-Points and 

level i <vertex, edge> pairs (an edge and one of its end vertices) onto level i+1 e-Points.  Alg. 4 sketches the 

implementation of this ternary scheme using the three sets of associations. 

Associations can handle extraordinary vertices.  Fig. 7 shows the associations used in Catmull-Clark to form the quad 

that is the result of splitting a face with a valence 5 extraordinary vertex.  These associations are identical to the ones 

used for splitting a regular face: 1 facei:f-Pointi+1, 2 edgei:e-Pointi+1, and 1 vertexi:v-Pointi+1.  Similarly, Fig. 7 shows the 

five 2:1 associations used in Doo-Sabin to split a valence 5extraordinary vertex into a pentagon face. 

 

  
 

 
 

3.3 Storage & Runtime Costs 

The storage cost for using associations to refine a level i control mesh into a level i+1 mesh is O(ni+1) pointers where 

ni+1 is the number of vertices at level  i+1—one pointer per level i+1 vertex.  The storage cost for refining a mesh up 

to level l adds up the costs over all levels.  As such, the cost of refining a mesh up to level l using Catmull-Clark, which 

only uses 1:1 associations, is 4/3 nl pointers.  This additional storage cost is acceptable when compared to the storage 

needed for representing a mesh (vertex coordinates & normals, connectivity information, face normals, etc.) or storing 

physical quantities needed in numerical simulations on the mesh (e.g., 3 or 6 doubles per vertex). 

 

Alg. 2. Doo-Sabin Using Associations 

Input: Pi, control polygon at level i. 

Output: Pi+1, control polygon at level i+1. 

Pi+1 ← Mesh() 

forall vi in Pi.vertices() do // vf-Points 

 forall fi in vi.faces() do 

  assoc(vi, fi) ← 2/n × vi + 1/8 ∑ fi.neighbors(vi) 

+ 1/4n ×∑ fi.vertices() 

 

forall fi in Pi.faces() do  // generate f-Faces 

 Pi+1.add(new face(assoc(fi.vertices(), fi))) 

 

forall ei in Pi.edges() do // generate e-Faces 

 Pi+1.add(Face(assoc(ei.org(), ei.rface()), 

   assoc(ei.dst(), ei.rface()), 

   assoc(ei.dst(), ei.lface()), 

   assoc(ei.org(), ei.lface()))) 

 

forall vi in Pi.vertices() do // generate v-Faces 

 Pi+1.add(Face(assoc(vi, vi.faces()))) 

Alg. 3. Sqrt-3 Using Associations 

Input: Pi, control polygon at level i. 

Output: Pi+1, control polygon at level i+1. 

Pi+1 ← Mesh() 

forall fi in Pi.faces() do 

 assoc(fi) ← fi.centroid() // f-Points. 

 

forall vi in Pi.vertices() do 

 αn ← 4/9 – 2/9 cos(2π/n) 

 assoc(vi) ← (1 – αn) v
i + 1/n αn ∑ 1ring(v

i) 

 

forall vi in Pi.vertices() do 

 forall ei in vi.edges() do 

  Pi+1.add(Face(assoc(vi), assoc(ei.rface()), assoc(ei.lface()))) 

Alg. 1. Catmull-Clark Using Associations 

Input: Pi, control polygon at level i. 

Output: Pi+1, control polygon at level i+1. 

Pi+1 ← Mesh() 

forall fi in Pi.faces() do  // f-Points. 

 assoc(fi) ← fi.centroid() 

 

forall ei in Pi.edges() do // e-Points. 

 assoc(ei) ← centroid(ei.org(), ei.dst(), 

   assoc(ei.lface()), assoc(ei.rface())) 

 

forall vi in Pi.vertices() do // v-Points. 

 sumFPs ← Σ assoc(vi.faces()) 

 sumEPs ← Σ assoc(vi.edges()) 

 assoc(vi) ← 
n-2

n
 vi +

1

n2
  sumFPs + 

1

n2
 sumEPs) 

 

forall vi in Pi.vertices() do 

 forall ei in vi.edges() do 

  Pi+1.add(Face(assoc(vi), assoc(ei), 

assoc(ei.lface()), assoc(ei.next())) 
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The runtime cost of using associations to refine a level i mesh is O(ni+1): a subdivision algorithm must establish one 

association per vertex; it will access this association a very small number of times depending on the particular 

subdivision scheme.  This cost assumes that the cost of establishing and accessing an association is O(1).  As such, the 

total cost incurred for using associations to refine a mesh up to level l by Catmull-Clark is O(4/3 nl).  This additional 

cost is acceptable considering the flexibility of the approach.  The real cost of using associations is the loss of data 

locality from the point of view of cache access.  However, this is a cost that we have not studied. 

Our current implementation uses the quad-edge data structure for storing and manipulating topological relations 

between geometric elements at a given refinement level.  The inter-level associations use C++ arrays and STL vectors.  

Tab. 1 gives run times up to level 6 for refining the rook model shown in Fig. 8.  At the coarsest level, the rook consists 

of 130 vertices and 256 faces.  A level 5 Catmull-Clark refinement produces a mesh with 49,152 vertices & 49,154 

faces and takes 0.51 sec on a 3.2 GHz Intel CPU with GCC 4.0.  These numbers are nearly 20% faster than the 

numbers reported in [5].  However, these latter numbers are for a slower CPU (2.4 GHz) and an older version of the 

compiler (GCC 3.3.2).  Nevertheless, associations do not seem to incur a significant penalty. 

 

Alg. 4. Nasri-Hasbini Using Associations 

Input: Pi, control polygon at level i. 

Output: Pi+1, control polygon at level i+1. 

Pi+1 ← Mesh() 

forall vi in Pi.vertices() do // Create vertices 

 assoc(vi) ← affineCombination(vi, vi.1ring()) // v-Point 

 forall ei in vi.edges() do  // ve-Points 

  assoc(vi, ei) ← affineCombination(vi, ei.vertices(), vi.1ring()) 

 forall fi in vi.faces() do  // vf-Points 

  assoc(vi, fi) ← affineCombination(vi, fi.vertices(), vi.1ring()) 

 

forall vi in Pi.vertices() do // v-Faces 

 forall ei in vi.edges() do 

  Pi+1.add(Face(assoc(vi), assoc(vi, ei), assoc(vi, ei.lface()), assoc(vi, ei.next()))) 

 

forall ei in Pi.edges() do // e-Faces 

 Pi+1.add(Face(assoc(ei.org(), ei), assoc(ei.dst(), ei), assoc(ei.dst(), ei.lface()), assoc(ei.org(), ei.lface())) 

 Pi+1.add(Face(assoc(ei.org(), ei), assoc(ei.org(), ei.rface()), assoc(ei.dst(), ei.rface()), assoc(ei.dst(), ei))) 

 

forall fi in Pi.faces() do // f-Faces 

 Pi+1.add(Face(assoc(fi.vertices(), fi))) 

Fig. 6. Associations at an Extraordinary Vertex for 

Catmull-Clark. 

Level i 

Level (i+1) 

v-Point 
e-Point 

f-Point 

Fig. 7. Associations at an Extraordinary Vertex for Doo-

Sabin. 

Level i 

Level (i+1) 
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Tab. 1. Run Times for Rook Refinement 

Level Time (s) Faces 

1  256 

2 0.01 768 

3 0.03 3072 

4 0.13 12,288 

5 0.51 49,152 

6 2.11 196,608  
 

Fig. 8. Rook—Initial Mesh. 
 

Fig. 9. Rook—Level 5 Mesh. 

 

4. HIERARCHICAL COMPUTATIONS 

In this section, we show how association spaces can be used to express hierarchical computations generically.  Our 

illustration is a multigrid iteration.  Multigrid methods are a family of multiresolution methods that are used as solvers 

or preconditioners of other iterative methods, and for solving algebraic equations defined on a mesh (often derived by 

discretizing a differential operator on the mesh).  Their performance as solvers or accelerators for other iterative solvers 

is nearly optimal, allowing in practice an almost-linear scaling of solution time with mesh size.  The implementation of 

multigrid solutions is more involved than that of other solvers, as they require inter-level transfer of information 

between finer and coarser mesh levels with all the associated bookkeeping.  Recursive subdivision surfaces are a 

natural fit to multigrid computations.  However, the bookkeeping needed to take advantage of subdivision surfaces for 

these computations is quite involved.  For simple and globally regular cases, the inter-level bookkeeping is based on 

manipulating array indices.  Unfortunately, this technique does not work for meshes with general connectivity. 

The core of a multigrid implementation recursively transfers information from a fine level to its coarse parent and 

eventually back down to the fine level after operating at the coarse level.  As such, an implementation must carry out 

this information transfer throughout the levels of the hierarchy of meshes.  The multigrid interpolation operator 

transfers information from a coarse level to a finer one. When using subdivision surfaces, interpolation is most logically 

done using the subdivision operator of the particular subdivision scheme representing the surface.  The multigrid 

restriction operator transfers information from a fine mesh to its coarse parent.  It is most logically done using the 

transpose of the subdivision operator.  A reusable implementation that couples subdivision surfaces and multigrid 

techniques must express these transfer operators in separate modular units.  Association spaces allow us to directly 

implement these operators in this manner. 

Multigrid interpolation mirrors the geometric refinement operation of subdivision algorithms and uses the same pattern 

for accessing elements at the fine level.  We can readily use associations to implement this operator in exactly the same 

way as was done in Algorithms 1–4 for the four schemes illustrated earlier. 

The restriction operation retraces the interpolation step in reverse for all level i+1 vertices.  Alg. 5 sketches the 

implementation of this operator for Catmull-Clark.  The algorithm first spreads the vertex values (residuals) of v-Points 

to the level i vertices, and the level i+1 e-Points and f-Points used to generate those v-Points.  It then spreads the 

values of e-Points to the level i+1 f-Points and the vertices of the level i edges used to generate these e-Points.  Finally, 

it spreads the values of f-Points to the vertices of the faces they are associated with.  We use associations to access the 

level i+1 elements throughout the algorithm.  Notice how this code is essentially the reverse of that of Alg. 1. 

Alg. 6 sketches the restriction operator for Doo-Sabin.  As in the case of Catmull-Clark, this is a retracing of Alg. 2 in 

reverse.  The operator spreads the values of a level i+1 vertex to (1) the corresponding level i vertex, (2) the two 

connected neighbors within the face of this level i vertex, and (3) the vertices of the face that it is associated with.  Once 

again, the operator uses 2:1 associations (<vertex, face>:vertex) for this dual scheme. 

In our sample implementation, the inter-level transfer operators for the same rook example took 0.29 sec for a 

restriction and interpolation cycle between levels 5 and 6; the numbers of vertices at these two levels are 49,154 and 

196,610 respectively.  This number indicates to us that the runtime performance of systems that use associations is 

quite acceptable in spite of its high-level of expressiveness. 

 

5. DISTRIBUTED RECURSIVE SUBDIVISION MESHES 

Recursive subdivision surfaces are memory bound when only used to represent a surface.  The number of face grows 

by a factor of 3 or 4 with each refinement level in many subdivision schemes.  This growth can easily overwhelm the 

memory resources of any machine.  Distributed recursive subdivision surfaces can delay hitting this limitation.  Padrón 

et al. have presented parallel implementations of the Butterfly subdivision scheme [14]. 



 

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 495-504 

 

502 

 
 

 

 
 

We used shadows and associations as a foundation to parallelize recursive subdivision algorithms.  The process of 

parallelizing the generation of a recursive subdivision surface is as follows: (1) partition a control polygon into several 

submeshes and extend each submesh with a layer of shadow or ghost cells; the depth of the shadow layer depends on 

the algorithm being parallelized; (2) distribute the partitions to the various processors and renumber a partition’s 

elements to use local ids; (3) subdivide each partition on its own processor; (4) renumber each refined partition’s 

elements to use consistent global ids.  This global numbering scheme effectively stitches the refined partitions into a 

global distributed refined mesh and obviates the need for assembling the refined mesh on a single processor.  Fig. 10 

gives a graphical depiction of this process. 

The subdivision algorithm can be transformed into a trivially parallelizable algorithm: refining a partition can proceed 

without any information from adjacent partitions when the partition is augmented with a layer of shadow faces from 

these adjacent partitions.  The depth of the shadow layer depends on the diameter of the stencil used in the refinement 

operation.  For most primal and dual schemes such as Catmull-Clark and Doo-Sabin, this depth is 1.  It is also 1 for the 

Nasri-Hasbini ternary scheme.  However, it is 2 for the Sqrt-3 subdivision scheme. 

Alg. 6. Multigrid Restriction for Doo-Sabin 

Input: Pi, control polygon at level i and residuals at Pi+1. 

Output: Updated residuals of Vi, the vertices of Pi, control polygon at level i+1. 

 

forall vi in Pi do 

 forall fi in vi.faces() do 

  vi.r += 2/n × assoc(vi, fi).r     // Contrib to parent vertex 

  fi.neighbors(vi).r += 1/8 × assoc(vi, fi).r  // Contrib to neighbors of vertex in face 

  fi.vertices().r += 1/4n × assoc(vi, fi).r  // Contrib to vertices of face 

Alg. 5. Multigrid Restriction for Catmull-Clark 

Input: Pi, control polygon at level i. 

Output: Updated vi+1 vertices of Pi+1, control polygon at level i+1. 

 

// Contribution of v-Points 

forall vi in Pi.vertices() do 

 vi.r = (n–2)/n × assoc(vi).r     // from contributing vertex 

 assoc(vi.edges()).r += 1/n2 × assoc(vi).r  // from contributing e-Points 

 assoc(vi.faces()).r += 1/n2 × assoc(vi).r  // from contributing f-Points 

 

// Contribution of e-Points 

forall ei in Pi.edges() do 

 ei.vertices().r += ¼ × assoc(ei).r   // from contributing edge endpoints 

 assoc(ei.faces()).r += ¼ × assoc(ei).r  // from contributing f-Points 

 

// Contribution of f-Points 

forall fi in Pi.faces() do 

 fi.vertices().r += 1/n × assoc(fi).r 

Fig. 10. Generating a Distributed Recursive Subdivision Surface. 
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(a) Partitioned mannequin 

 
(b) Partitions after 4 subdivisions 

 
(c) Assembled level 5 image 

Fig. 11. Distributed Catmull-Clark of Mannequin Head (partitions appear in different colors). 

 

 
(a) Partitioned torus 

 
(b) After 1 subdivision 

 
(c) After 4 subdivisions 

Fig. 12. Torus Mesh after 1 level of Doo-Sabin Subdivision (partitions & shared faces appear in different colors). 

 

 

The depth of the shadow layer remains constant during refinement.  The refinement process only retains half of the 

refined shadow faces that are generated from the coarse shadow faces; these are the elements that are adjacent to the 

inter-partition boundary or that straddle this boundary.  Nevertheless, the feature size of the retained shadow elements 

shrinks with the refinement process. 

The refined partitions use a separate numbering scheme each.  A distributed implementation of subdivision surfaces 

must renumber the elements of all refined partitions in a consistent manner to reestablish the identity of the globally 

distributed and refined mesh.  This renumbering requires a substantial amount of bookkeeping as it must handle the 

presence of elements in multiple partitions; adjacent refined partitions share at least shadow elements.  Each partition 

has its own association space that maps onto vertices of its corresponding refinement.  Furthermore, each coarse 

partition has its global ids.  We reestablish global ids at the fine level by propagating these coarse global ids along the 

distributed associations. 

For primal schemes such as Catmull-Clark, the v-Points and e-Points associated with vertices and edges on the inter-

partition boundary at the coarse level form the inter-partition boundary at the refined level.  Therefore, the stitching 

algorithm for primal schemes simply traces the associations of vertices and edges on the coarse inter-partition 

boundary to identify the refined inter-partition boundary. 

For dual schemes such as Doo-Sabin, vertices and edges on the coarse inter-partition boundary result in v-Faces and 

e-Faces on the refined inter-partition boundary.  These elements are generated in each refined partition.  The stitching 

algorithm identifies these common elements by tracing the coarse inter-partition boundary and using the associations 

of vertex-face pairs where vertices are on the inter-partition boundary and faces lie on either side of this boundary. 

Schemes such as Sqrt-3 present an additional problem.  At odd subdivision levels, the coarse inter-partition boundary 

maps onto a set of edges and vertices.  However, it maps onto a set of faces at even subdivision levels.  The stitching 

algorithm needs to handle both cases and, as such, combines aspects of primal and dual schemes. 

We have implemented distributed versions of several subdivision algorithms: Catmull-Clark, Doo-Sabin, Loop, and the 

Nasri-Hasbini ternary scheme.  This distributed system uses MPI as the underlying communication layer and 

METIS [15] for graph and mesh partitioning.  It can refine the mannequin head example show in Fig. 11(a) to level 7 

on a 4-CPU cluster—1 master and 3 slaves with only the slave CPUs carrying out the subdivision process.  By contrast, 

the serial implementation ran out of memory before reaching this refinement level.  This initial control mesh consists of 

712 vertices and 1,377 faces that are a mixture of triangles, quads, and pentagons.  The level 6 mannequin has more 
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than 4 million faces, a comparable number of vertices, and nearly 8.5 million edges.  Fig. 11(a) shows the mesh as a 

wireframe and its initial partitioning into three submeshes.  Each partition is rendered in a different color.  Fig. 11(b) 

shows each partition after 4 subdivisions using Catmull-Clark as rendered by its processor.  Fig. 11(c) shows the 

assembled image at level 5. 

Fig. 12 shows an example of Doo-Sabin applied to a torus that is split into 3 partitions.  After 1 level of refinement, the 

common faces straddling the inter-partition boundaries are depicted in green—the three green rings.  These elements 

become barely visible after 4 subdivisions. 

 

5. CONCLUSIONS 

Association spaces are a high-level abstraction that simplifies the implementation of recursive subdivision surfaces, the 

specification of multilevel computations on these surfaces, and the parallelization of these algorithms.  Association 

spaces are n:1 mappings from tuples at a coarse level onto vertices at a fine level.  In this paper, we illustrated their use 

to implement a number of schemes and showed that despite their high-level expressiveness, these implementations do 

not incur a performance penalty.  In the future, we want to extend our sample implementations to handle creases and 

boundaries.  We also want to use associations to implement multilevel distributed computations on subdivision 

surfaces.
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