

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 495-504

495

A Topological Abstraction for Implementing

Recursive Subdivision Surface Computations

Walid Keirouz1, Nassim Jibai2, George Turkiyyah3, Ahmad Nasri4 and Elie Choueiri5

1American University of Beirut, walid@aub.edu.lb
2American University of Beirut, nmj03@aub.edu.lb

3University of Washington, george@ce.washington.edu
4 American University of Beirut, anasri@aub.edu.lb
5American University of Beirut, esc00@aub.edu.lb

ABSTRACT

We present a new abstraction, association space, in the context of recursive subdivision surfaces.

An association space relates elements in a recursive subdivision surface at a given refinement level

to the elements of the surface at the previous refinement level. These associations allow a

programmer to easily implement recursive subdivision algorithms and augment them with

computations, such as multigrid techniques, that require inter-level traversals of the hierarchy of

refined meshes. These associations also extend to distributed recursive subdivision surfaces. They

underlie the mechanism for stitching the refined partitions of a mesh into a single refined mesh.

Keywords: association spaces; recursive subdivision surfaces; multigrid techniques; distributed

surfaces.

1. INTRODUCTION

Recursive subdivision surfaces are now one of the surface representations of choice in Computer Graphics and

Geometric Modeling. They provide a compact and flexible representation for modeling three-dimensional geometry in

a robust and computationally effective manner. They can represent smooth surfaces, as well as surfaces with creases

and sharp edges, and have shown their effectiveness in a number of general modeling, interrogation, reconstruction,

shape editing, animation, and related tasks. Recursive subdivision surfaces represent the geometry as the limit surface

of a subdivision process. An initial coarse mesh—the control mesh—is refined repeatedly, both geometrically and

topologically, using rules specified by a particular subdivision scheme. Repeated refinements lead to a hierarchy of

increasingly refined models which approach the limit surface.

The interest in recursive subdivision surfaces has motivated a number of efforts to provide support for implementing

various schemes in a generic fashion. Velho [1] proposed a notation based on L-systems [2] for describing recursive

subdivision algorithms. Ivrissimtzis [3] studied factorizations of subdivision rules in terms of polyhedra operators to

simplify their analysis and implementation. Sovakar and Kobbelt [3] designed a generic API where subdivision

operators are built as compositions of rules that perform the basic splits, edge flips, etc. needed for the generation of a

refined mesh from a coarser one. Shiue and Peters [5] developed a template-based generic refinement library for

applying subdivision rules on meshes supporting iterators and Euler operators, such as the half-edge data structure.

These libraries greatly facilitate the development of models and allow users to readily implement, in principle, new

subdivision schemes. Their main advantage, namely their genericity, comes from their decoupling of the specifics of a

given subdivision scheme from the traversal, interrogation, and topological cutting/splicing mesh operations. While not

as run-time efficient as hand-crafted array-based representations customized for a given scheme, their flexibility and

generality offset the small cost.

More recently, subdivision surfaces have been used in numerical simulations and computational science problems.

Simulations involving the discretization of Navier-Stokes and other differential operators defined on subdivision

surfaces have been demonstrated. Subdivision surfaces have also enabled reliable thin-shell simulations since they

provide, by construction, the necessary continuity (and square integrability) conditions necessary for representing the

deformed geometry. Thin-shell finite element simulations have been developed [6], [7], [8] in which subdivision is

used to represent the curvilinear geometry as well as the finite element basis functions used in the discretization.

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 495-504

496

Numerical simulations arising from the discretization of differential operators generally result in very large sets of

algebraic equations that must be solved repeatedly, and whose solutions represent major bottlenecks in the

computations. The hierarchical nature of recursive subdivision representations provides a natural setting in which

multilevel schemes can be used to significantly speed up these solutions. In multigrid methods, for example, coarser

meshes are used to resolve the low frequency components of the solutions while finer meshes resolve the high

frequency components. By maintaining a hierarchy of refined meshes and propagating the solution and residuals up

and down this refinement hierarchy, computation times that scale linearly with problem size can be obtained.

Unfortunately, generic libraries that support these computations on subdivision surfaces do not yet exist. Developers

still have to custom-build structures to perform the necessary operations for aggregating values from local

neighborhoods of a given mesh level and spreading them appropriately, in a fashion dictated by the specific

subdivision scheme used, to coarser and finer levels. This makes it far more time consuming to build and experiment

with multilevel solvers and related computational strategies. Because the inter- and intra-level aggregation and

spreading operations are scheme-specific, it should be possible to abstract them and greatly facilitate the

implementation of hierarchical multilevel computations.

As the interest in more complex and realistic models grows, there is a need for supporting the implementation,

rendering, and computations with recursive subdivision surfaces on distributed-memory machines. Distributed

memory machines allow high-resolution meshes to be processed in parallel, potentially real-time high-quality

rendering, and fast high-resolution computational science simulations. There is currently no infrastructure for building

systems with distributed representations of recursive subdivision schemes. Such an infrastructure must provide the

functionality to partition a coarse mesh, perform distributed refinement, transfer information between distributed

partitions, and stitch refined partitions up and down the hierarchy into a coherent and consistently refined surface.

Ideally, these operations should be independent of the particular subdivision scheme being used.

This paper presents a library for computing with distributed recursive subdivision surfaces. This library provides an

association space which allows a developer to establish associations between a vertex at a given refinement level and

one or more geometric elements (vertices, edges, and faces) at the previous refinement level. The developer can then

retrieve vertices at a particular refinement level by querying the association space using elements from the previous

refinement level. These associations simplify the implementation of recursive subdivision surfaces and the code that

traverses the hierarchy of meshes. Furthermore, these associations automate the stitching of a refined surface out of its

refined partitions. The main contributions of this paper are the association spaces abstraction and the demonstration

of its applicability. Specifically, we show how it provides (1) an intuitive mechanism for implementing subdivision

schemes, (2) elegant support for multilevel computations with general subdivision schemes, and (3) higher-level

functionality for implementing distributed recursive subdivision.

The rest of this paper is organized as follows. Section 2 defines Association Spaces. Section 3 illustrates the

implementations of several subdivision schemes (Catmull-Clark [9], Doo-Sabin [10], Sqrt-3 [11], and a new ternary

scheme). Section 4 shows how multilevel computations can be performed generically on subdivision surfaces.

Section 5 demonstrates the use of association spaces to implement parallel subdivision surfaces efficiently.

2. ASSOCIATION SPACES

2.1 Definitions

An inter-level topological association relates a vertex at a particular refinement level to one or more elements (vertices,

edges, or faces) at the previous refinement level. An association space is the set of topological associations between

two consecutive refinement levels. The association space maps one or more elements of the control polygon at a given

refinement level onto the vertices of the control polygon at the next refinement level. Formally, Πi is an m:1 mapping

from tuples of Pi elements onto Vi+1 elements where Pi is the level i control polygon which consists of Vi, Ei, and Fi, the

sets of level i vertices, edges, and faces respectively, along with their connectivity information; Vi+1 is the set of vertices

of Pi+1, the level i+1 control polygon. This relationship can be generalized to include edges and faces at the refined

level too. However, we have not found a need for it.

Primal subdivision schemes exhibit mostly 1:1 associations. For example, Catmull-Clark splits a face and its edges; it

associates a level i vertex, edge, or face with its corresponding v-Point, e-Point, or f-Point at level i+1. Fig. 1 shows

one of each of these three 1:1 association types. Dual subdivision schemes exhibit 2:1 associations. For example, the

Doo-Sabin subdivision algorithm splits a vertex and associates a level i vertex-face pair (a vertex and one of the faces

that it belongs to) with an f-Point at level i+1. Fig. 2 shows two such associations. They associate a level i vertex and

each of two of its incident faces with two level i+1 vertices.

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 495-504

497

Association spaces allow a system to store references to elements at the next refinement level by establishing

associations between these elements and others at the previous refinement level used to derive them. It then allows the

system to retrieve these references by querying the association space for the associations of the coarse level elements.

Associations encode computational dependencies. However, they differ from dependencies by recording only the

essential dependencies rather than all. We will show below how we can use these essential dependencies to decouple

the generation of vertices at the refined level from establishing the topological connectivity of these vertices. This

decoupling simplifies the implementation of recursive subdivision algorithms and the use of subdivision surfaces for

multilevel numerical techniques such as multigrid techniques.

2.2 Association Space Operations

The association space defines the assoc function which takes one or more level i elements as its parameters. The

function can be used as both an l-value and an r-value. On the right-hand side of an assignment, the function behaves

as an r-value and returns the level i+1 vertex that is associated with its parameters. On the left-hand side of an

assignment, the function behaves as an l-value and associates the right-hand side level i+1 vertex to the level i

elements that appear as the parameters of the function. Establishing an association also implicitly adds a vertex to the

level i+1 control polygon.

To simplify the notation, the assoc function is overloaded and acts in a manner similar to the Lisp map function. It

accepts vectors of level i as its parameters. All vector parameters must have the same size. In this case, the assoc

function implicitly loops over the elements of these vectors in lockstep mode and pairs the corresponding elements of

these vectors. When the parameters are mixed vectors and scalars, the function pairs the scalar parameters with each

element of the vector(s). The function returns a vector of level i+1 vertices when it is used as an r-value; it associates

the level i+1 vertices in a vector with the level i elements of its vector parameters when it is used as an l-value.

Reusing the Catmull-Clark example, the expression assoc(edgei) ← e-Pointi+1 associates the level i+1 vertex, e-

Pointi+1, to the level i edge, edgei, which is used to derive the e-Point vertex. By contrast, the expression assoc(edgei)

retrieves the level i+1 e-Point vertex associated with the level i edge, edgei. Note here that the level i+1 e-Point vertex

depends on the level i edge as well as the two faces adjacent to it. However, this association only records the

dependency of the e-Point vertex on an edge.

For the Doo-Sabin example, the expression assoc(vi, fi) ← vf-Pointi+1 associates the level i+1 vertex, vf-Pointi+1, to the

level i vertex-face pair <vi, fi>. Within the same example, the expression assoc(vi, vi.faces()) returns a vector of

level i+1 vertices associated with the level i vertex vi and each of its faces; this is the list of vertices that form the

level i+1 v-Face that correspond to vi.

3. ASSOCIATION-BASED IMPLEMENTATIONS OF SUBDIVISION SURFACES

A subdivision scheme that uses associations consists of the following three steps: (1) instantiate level i+1 vertices out of

existing levels i and i+1 vertices; (2) associate the newly created vertices with geometric elements used to create them;

(3) select level i+1 vertices using their associations in a specific order and assemble them into the faces of the level i+1

surface. We assume here that an implementation of geometric surfaces is available and that this implementation

provides data structures such as the half-edge or the quad-edge which handle the topological interconnectivity between

vertices, edges, and faces. Such implementations provide functions that return the vertices of a face, the 1-ring vertices

of a vertex, the origin and destination vertices of an edge, its left and right faces, etc.

Fig. 1. Associations for a Face & Edge Split. Fig. 2. Associations for a Vertex Split.

Level i

Level i+1

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 495-504

498

The rest of this section illustrates the flexibility of the association-based approach by sketching implementations of the

following four subdivision schemes: Catmull-Clark—a primal scheme, Doo-Sabin—a dual scheme, Sqrt-3 subdivision,

and a new ternary scheme developed by Nasri and Hasbini [12], [13].

3.2 Illustrative Schemes

The Catmull-Clark subdivision algorithm uses primal refinement operators and acts on quad meshes. It refines a level i

quad into four level i+1 quads. The topological refinement operator inserts an f-Point (face point) vertex into a level i

quad and an e-Point (edge point) vertex into a level i edge. It also replaces an existing level i vertex by its

corresponding v-Point (vertex point). The relations facei:f-Pointi+1, edgei:e-Pointi+1, and vertexi:v-Pointi+1 directly map

onto 1:1 associations (face:vertex, edge:vertex, and vertex:vertex respectively) as shown in Fig. 3. These associations

can be readily used to implement the Catmull-Clark subdivision algorithm; Alg. 1 below sketches such an

implementation.

The Doo-Sabin algorithm is a dual scheme that acts on quad meshes. It splits a level i vertex of valence n into n

level i+1 vertices with each new vertex corresponding to one of the faces that the level i vertex belongs to. It then

forms v-Faces, e-Faces, and f-Faces out of the newly created vertices. The correspondence between a level i+1 vertex

and the level i <vertex, face> pair used to create it directly maps onto 2:1 associations. Fig. 4 shows the associations

used in Doo-Sabin; Alg. 2 below shows the implementation of the Doo-Sabin algorithm using associations.

The Sqrt-3 subdivision algorithm acts on triangular meshes. Its refinement operator splits a triangular face by inserting

a new vertex at the centroid of the triangle and adjusts the positions of existing vertices thereby forming three new

triangles. It then flips the existing edges so the new triangular faces ride over existing edges. For the Sqrt-3

subdivision, the correspondence between level i+1 vertex and the level i faces and vertices that derives them can be

readily modeled as vertex-face and vertex-vertex 1:1 associations. Alg. 4 sketches the implementation of the Sqrt-3

subdivision using associations.

The Nasri-Hasbini ternary subdivision scheme has a refinement operator that acts on quad and triangle meshes. It has

v-Point vertices that correspond to the existing vertices of a quad. It also inserts 2 e-Point vertices per edge and 4

f-Point vertices per quad. This results in 9 new quads replacing an existing quad. Fig. 5 shows one refinement step of

this scheme. The topology of the refined mesh bears a striking resemblance to a composition of Catmull-Clark and

Fig. 5. Nasri-Hasbini Ternary Subdivision Scheme.

Level i+1

f-Point

e-Point

v-Point

Level i

Fig. 4. Doo-Sabin Associations (<vi, fi>:vi+1).

Level i

Level i+1

Fig. 3. Catmull-Clark Associations: face:vertex (fi:vi+1), edge:vertex (ei:vi+1), vertex:vertex (vi:vi+1).

Level i+1

Level i

Level i+1

Level i

Level i+1

Level i

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 495-504

499

Doo-Sabin into one step. It uses 1:1 vertex-vertex associations to map the level i vertices onto level i+1 v-Points. It

also uses 2:1 associations to map level i <vertex, face> pairs (a face and one of its vertices) onto level i+1 f-Points and

level i <vertex, edge> pairs (an edge and one of its end vertices) onto level i+1 e-Points. Alg. 4 sketches the

implementation of this ternary scheme using the three sets of associations.

Associations can handle extraordinary vertices. Fig. 7 shows the associations used in Catmull-Clark to form the quad

that is the result of splitting a face with a valence 5 extraordinary vertex. These associations are identical to the ones

used for splitting a regular face: 1 facei:f-Pointi+1, 2 edgei:e-Pointi+1, and 1 vertexi:v-Pointi+1. Similarly, Fig. 7 shows the

five 2:1 associations used in Doo-Sabin to split a valence 5extraordinary vertex into a pentagon face.

3.3 Storage & Runtime Costs

The storage cost for using associations to refine a level i control mesh into a level i+1 mesh is O(ni+1) pointers where

ni+1 is the number of vertices at level i+1—one pointer per level i+1 vertex. The storage cost for refining a mesh up

to level l adds up the costs over all levels. As such, the cost of refining a mesh up to level l using Catmull-Clark, which

only uses 1:1 associations, is 4/3 nl pointers. This additional storage cost is acceptable when compared to the storage

needed for representing a mesh (vertex coordinates & normals, connectivity information, face normals, etc.) or storing

physical quantities needed in numerical simulations on the mesh (e.g., 3 or 6 doubles per vertex).

Alg. 2. Doo-Sabin Using Associations

Input: Pi, control polygon at level i.

Output: Pi+1, control polygon at level i+1.

Pi+1 ← Mesh()

forall vi in Pi.vertices() do // vf-Points

 forall fi in vi.faces() do

 assoc(vi, fi) ← 2/n × vi + 1/8 ∑ fi.neighbors(vi)

+ 1/4n ×∑ fi.vertices()

forall fi in Pi.faces() do // generate f-Faces

 Pi+1.add(new face(assoc(fi.vertices(), fi)))

forall ei in Pi.edges() do // generate e-Faces

 Pi+1.add(Face(assoc(ei.org(), ei.rface()),

 assoc(ei.dst(), ei.rface()),

 assoc(ei.dst(), ei.lface()),

 assoc(ei.org(), ei.lface())))

forall vi in Pi.vertices() do // generate v-Faces

 Pi+1.add(Face(assoc(vi, vi.faces())))

Alg. 3. Sqrt-3 Using Associations

Input: Pi, control polygon at level i.

Output: Pi+1, control polygon at level i+1.

Pi+1 ← Mesh()

forall fi in Pi.faces() do

 assoc(fi) ← fi.centroid() // f-Points.

forall vi in Pi.vertices() do

 αn ← 4/9 – 2/9 cos(2π/n)

 assoc(vi) ← (1 – αn) v
i + 1/n αn ∑ 1ring(v

i)

forall vi in Pi.vertices() do

 forall ei in vi.edges() do

 Pi+1.add(Face(assoc(vi), assoc(ei.rface()), assoc(ei.lface())))

Alg. 1. Catmull-Clark Using Associations

Input: Pi, control polygon at level i.

Output: Pi+1, control polygon at level i+1.

Pi+1 ← Mesh()

forall fi in Pi.faces() do // f-Points.

 assoc(fi) ← fi.centroid()

forall ei in Pi.edges() do // e-Points.

 assoc(ei) ← centroid(ei.org(), ei.dst(),

 assoc(ei.lface()), assoc(ei.rface()))

forall vi in Pi.vertices() do // v-Points.

 sumFPs ← Σ assoc(vi.faces())

 sumEPs ← Σ assoc(vi.edges())

 assoc(vi) ←
n-2

n
 vi +

1

n2
 sumFPs +

1

n2
 sumEPs)

forall vi in Pi.vertices() do

 forall ei in vi.edges() do

 Pi+1.add(Face(assoc(vi), assoc(ei),

assoc(ei.lface()), assoc(ei.next()))

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 495-504

500

The runtime cost of using associations to refine a level i mesh is O(ni+1): a subdivision algorithm must establish one

association per vertex; it will access this association a very small number of times depending on the particular

subdivision scheme. This cost assumes that the cost of establishing and accessing an association is O(1). As such, the

total cost incurred for using associations to refine a mesh up to level l by Catmull-Clark is O(4/3 nl). This additional

cost is acceptable considering the flexibility of the approach. The real cost of using associations is the loss of data

locality from the point of view of cache access. However, this is a cost that we have not studied.

Our current implementation uses the quad-edge data structure for storing and manipulating topological relations

between geometric elements at a given refinement level. The inter-level associations use C++ arrays and STL vectors.

Tab. 1 gives run times up to level 6 for refining the rook model shown in Fig. 8. At the coarsest level, the rook consists

of 130 vertices and 256 faces. A level 5 Catmull-Clark refinement produces a mesh with 49,152 vertices & 49,154

faces and takes 0.51 sec on a 3.2 GHz Intel CPU with GCC 4.0. These numbers are nearly 20% faster than the

numbers reported in [5]. However, these latter numbers are for a slower CPU (2.4 GHz) and an older version of the

compiler (GCC 3.3.2). Nevertheless, associations do not seem to incur a significant penalty.

Alg. 4. Nasri-Hasbini Using Associations

Input: Pi, control polygon at level i.

Output: Pi+1, control polygon at level i+1.

Pi+1 ← Mesh()

forall vi in Pi.vertices() do // Create vertices

 assoc(vi) ← affineCombination(vi, vi.1ring()) // v-Point

 forall ei in vi.edges() do // ve-Points

 assoc(vi, ei) ← affineCombination(vi, ei.vertices(), vi.1ring())

 forall fi in vi.faces() do // vf-Points

 assoc(vi, fi) ← affineCombination(vi, fi.vertices(), vi.1ring())

forall vi in Pi.vertices() do // v-Faces

 forall ei in vi.edges() do

 Pi+1.add(Face(assoc(vi), assoc(vi, ei), assoc(vi, ei.lface()), assoc(vi, ei.next())))

forall ei in Pi.edges() do // e-Faces

 Pi+1.add(Face(assoc(ei.org(), ei), assoc(ei.dst(), ei), assoc(ei.dst(), ei.lface()), assoc(ei.org(), ei.lface()))

 Pi+1.add(Face(assoc(ei.org(), ei), assoc(ei.org(), ei.rface()), assoc(ei.dst(), ei.rface()), assoc(ei.dst(), ei)))

forall fi in Pi.faces() do // f-Faces

 Pi+1.add(Face(assoc(fi.vertices(), fi)))

Fig. 6. Associations at an Extraordinary Vertex for

Catmull-Clark.

Level i

Level (i+1)

v-Point
e-Point

f-Point

Fig. 7. Associations at an Extraordinary Vertex for Doo-

Sabin.

Level i

Level (i+1)

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 495-504

501

Tab. 1. Run Times for Rook Refinement

Level Time (s) Faces

1 256

2 0.01 768

3 0.03 3072

4 0.13 12,288

5 0.51 49,152

6 2.11 196,608

Fig. 8. Rook—Initial Mesh.

Fig. 9. Rook—Level 5 Mesh.

4. HIERARCHICAL COMPUTATIONS

In this section, we show how association spaces can be used to express hierarchical computations generically. Our

illustration is a multigrid iteration. Multigrid methods are a family of multiresolution methods that are used as solvers

or preconditioners of other iterative methods, and for solving algebraic equations defined on a mesh (often derived by

discretizing a differential operator on the mesh). Their performance as solvers or accelerators for other iterative solvers

is nearly optimal, allowing in practice an almost-linear scaling of solution time with mesh size. The implementation of

multigrid solutions is more involved than that of other solvers, as they require inter-level transfer of information

between finer and coarser mesh levels with all the associated bookkeeping. Recursive subdivision surfaces are a

natural fit to multigrid computations. However, the bookkeeping needed to take advantage of subdivision surfaces for

these computations is quite involved. For simple and globally regular cases, the inter-level bookkeeping is based on

manipulating array indices. Unfortunately, this technique does not work for meshes with general connectivity.

The core of a multigrid implementation recursively transfers information from a fine level to its coarse parent and

eventually back down to the fine level after operating at the coarse level. As such, an implementation must carry out

this information transfer throughout the levels of the hierarchy of meshes. The multigrid interpolation operator

transfers information from a coarse level to a finer one. When using subdivision surfaces, interpolation is most logically

done using the subdivision operator of the particular subdivision scheme representing the surface. The multigrid

restriction operator transfers information from a fine mesh to its coarse parent. It is most logically done using the

transpose of the subdivision operator. A reusable implementation that couples subdivision surfaces and multigrid

techniques must express these transfer operators in separate modular units. Association spaces allow us to directly

implement these operators in this manner.

Multigrid interpolation mirrors the geometric refinement operation of subdivision algorithms and uses the same pattern

for accessing elements at the fine level. We can readily use associations to implement this operator in exactly the same

way as was done in Algorithms 1–4 for the four schemes illustrated earlier.

The restriction operation retraces the interpolation step in reverse for all level i+1 vertices. Alg. 5 sketches the

implementation of this operator for Catmull-Clark. The algorithm first spreads the vertex values (residuals) of v-Points

to the level i vertices, and the level i+1 e-Points and f-Points used to generate those v-Points. It then spreads the

values of e-Points to the level i+1 f-Points and the vertices of the level i edges used to generate these e-Points. Finally,

it spreads the values of f-Points to the vertices of the faces they are associated with. We use associations to access the

level i+1 elements throughout the algorithm. Notice how this code is essentially the reverse of that of Alg. 1.

Alg. 6 sketches the restriction operator for Doo-Sabin. As in the case of Catmull-Clark, this is a retracing of Alg. 2 in

reverse. The operator spreads the values of a level i+1 vertex to (1) the corresponding level i vertex, (2) the two

connected neighbors within the face of this level i vertex, and (3) the vertices of the face that it is associated with. Once

again, the operator uses 2:1 associations (<vertex, face>:vertex) for this dual scheme.

In our sample implementation, the inter-level transfer operators for the same rook example took 0.29 sec for a

restriction and interpolation cycle between levels 5 and 6; the numbers of vertices at these two levels are 49,154 and

196,610 respectively. This number indicates to us that the runtime performance of systems that use associations is

quite acceptable in spite of its high-level of expressiveness.

5. DISTRIBUTED RECURSIVE SUBDIVISION MESHES

Recursive subdivision surfaces are memory bound when only used to represent a surface. The number of face grows

by a factor of 3 or 4 with each refinement level in many subdivision schemes. This growth can easily overwhelm the

memory resources of any machine. Distributed recursive subdivision surfaces can delay hitting this limitation. Padrón

et al. have presented parallel implementations of the Butterfly subdivision scheme [14].

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 495-504

502

We used shadows and associations as a foundation to parallelize recursive subdivision algorithms. The process of

parallelizing the generation of a recursive subdivision surface is as follows: (1) partition a control polygon into several

submeshes and extend each submesh with a layer of shadow or ghost cells; the depth of the shadow layer depends on

the algorithm being parallelized; (2) distribute the partitions to the various processors and renumber a partition’s

elements to use local ids; (3) subdivide each partition on its own processor; (4) renumber each refined partition’s

elements to use consistent global ids. This global numbering scheme effectively stitches the refined partitions into a

global distributed refined mesh and obviates the need for assembling the refined mesh on a single processor. Fig. 10

gives a graphical depiction of this process.

The subdivision algorithm can be transformed into a trivially parallelizable algorithm: refining a partition can proceed

without any information from adjacent partitions when the partition is augmented with a layer of shadow faces from

these adjacent partitions. The depth of the shadow layer depends on the diameter of the stencil used in the refinement

operation. For most primal and dual schemes such as Catmull-Clark and Doo-Sabin, this depth is 1. It is also 1 for the

Nasri-Hasbini ternary scheme. However, it is 2 for the Sqrt-3 subdivision scheme.

Alg. 6. Multigrid Restriction for Doo-Sabin

Input: Pi, control polygon at level i and residuals at Pi+1.

Output: Updated residuals of Vi, the vertices of Pi, control polygon at level i+1.

forall vi in Pi do

 forall fi in vi.faces() do

 vi.r += 2/n × assoc(vi, fi).r // Contrib to parent vertex

 fi.neighbors(vi).r += 1/8 × assoc(vi, fi).r // Contrib to neighbors of vertex in face

 fi.vertices().r += 1/4n × assoc(vi, fi).r // Contrib to vertices of face

Alg. 5. Multigrid Restriction for Catmull-Clark

Input: Pi, control polygon at level i.

Output: Updated vi+1 vertices of Pi+1, control polygon at level i+1.

// Contribution of v-Points

forall vi in Pi.vertices() do

 vi.r = (n–2)/n × assoc(vi).r // from contributing vertex

 assoc(vi.edges()).r += 1/n2 × assoc(vi).r // from contributing e-Points

 assoc(vi.faces()).r += 1/n2 × assoc(vi).r // from contributing f-Points

// Contribution of e-Points

forall ei in Pi.edges() do

 ei.vertices().r += ¼ × assoc(ei).r // from contributing edge endpoints

 assoc(ei.faces()).r += ¼ × assoc(ei).r // from contributing f-Points

// Contribution of f-Points

forall fi in Pi.faces() do

 fi.vertices().r += 1/n × assoc(fi).r

Fig. 10. Generating a Distributed Recursive Subdivision Surface.

(1) Partition

& Extend
M0 P0

0, P1
0… Pn-1

0

P0
1, P1

1… Pn-1
1 M1

(4) Renumber

& Stitch

Distributed

Subdivide

L0
0, L1

0… Ln-1
0

L0
1, L1

1… Ln-1
1

(3) Subdivide

(2) Distribute &

Renumber

Global ids

Local ids

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 495-504

503

(a) Partitioned mannequin

(b) Partitions after 4 subdivisions

(c) Assembled level 5 image

Fig. 11. Distributed Catmull-Clark of Mannequin Head (partitions appear in different colors).

(a) Partitioned torus

(b) After 1 subdivision

(c) After 4 subdivisions

Fig. 12. Torus Mesh after 1 level of Doo-Sabin Subdivision (partitions & shared faces appear in different colors).

The depth of the shadow layer remains constant during refinement. The refinement process only retains half of the

refined shadow faces that are generated from the coarse shadow faces; these are the elements that are adjacent to the

inter-partition boundary or that straddle this boundary. Nevertheless, the feature size of the retained shadow elements

shrinks with the refinement process.

The refined partitions use a separate numbering scheme each. A distributed implementation of subdivision surfaces

must renumber the elements of all refined partitions in a consistent manner to reestablish the identity of the globally

distributed and refined mesh. This renumbering requires a substantial amount of bookkeeping as it must handle the

presence of elements in multiple partitions; adjacent refined partitions share at least shadow elements. Each partition

has its own association space that maps onto vertices of its corresponding refinement. Furthermore, each coarse

partition has its global ids. We reestablish global ids at the fine level by propagating these coarse global ids along the

distributed associations.

For primal schemes such as Catmull-Clark, the v-Points and e-Points associated with vertices and edges on the inter-

partition boundary at the coarse level form the inter-partition boundary at the refined level. Therefore, the stitching

algorithm for primal schemes simply traces the associations of vertices and edges on the coarse inter-partition

boundary to identify the refined inter-partition boundary.

For dual schemes such as Doo-Sabin, vertices and edges on the coarse inter-partition boundary result in v-Faces and

e-Faces on the refined inter-partition boundary. These elements are generated in each refined partition. The stitching

algorithm identifies these common elements by tracing the coarse inter-partition boundary and using the associations

of vertex-face pairs where vertices are on the inter-partition boundary and faces lie on either side of this boundary.

Schemes such as Sqrt-3 present an additional problem. At odd subdivision levels, the coarse inter-partition boundary

maps onto a set of edges and vertices. However, it maps onto a set of faces at even subdivision levels. The stitching

algorithm needs to handle both cases and, as such, combines aspects of primal and dual schemes.

We have implemented distributed versions of several subdivision algorithms: Catmull-Clark, Doo-Sabin, Loop, and the

Nasri-Hasbini ternary scheme. This distributed system uses MPI as the underlying communication layer and

METIS [15] for graph and mesh partitioning. It can refine the mannequin head example show in Fig. 11(a) to level 7

on a 4-CPU cluster—1 master and 3 slaves with only the slave CPUs carrying out the subdivision process. By contrast,

the serial implementation ran out of memory before reaching this refinement level. This initial control mesh consists of

712 vertices and 1,377 faces that are a mixture of triangles, quads, and pentagons. The level 6 mannequin has more

Computer-Aided Design & Applications, Vol. 3, Nos. 1-4, 2006, pp 495-504

504

than 4 million faces, a comparable number of vertices, and nearly 8.5 million edges. Fig. 11(a) shows the mesh as a

wireframe and its initial partitioning into three submeshes. Each partition is rendered in a different color. Fig. 11(b)

shows each partition after 4 subdivisions using Catmull-Clark as rendered by its processor. Fig. 11(c) shows the

assembled image at level 5.

Fig. 12 shows an example of Doo-Sabin applied to a torus that is split into 3 partitions. After 1 level of refinement, the

common faces straddling the inter-partition boundaries are depicted in green—the three green rings. These elements

become barely visible after 4 subdivisions.

5. CONCLUSIONS

Association spaces are a high-level abstraction that simplifies the implementation of recursive subdivision surfaces, the

specification of multilevel computations on these surfaces, and the parallelization of these algorithms. Association

spaces are n:1 mappings from tuples at a coarse level onto vertices at a fine level. In this paper, we illustrated their use

to implement a number of schemes and showed that despite their high-level expressiveness, these implementations do

not incur a performance penalty. In the future, we want to extend our sample implementations to handle creases and

boundaries. We also want to use associations to implement multilevel distributed computations on subdivision

surfaces.

6. REFERENCES

[1] Velho, L., Stellar Subdivision Grammars, SGP ’03: Proceedings of the 2003 Eurographics/ACM SIGGRAPH

Symposium on Geometry Processing, 2003, pp 188–199.

[2] Prusinkiewicz, P., Samavati, F., Smith, R. and Karwowski, R., L-System Description of Subdivision Curves,

International Journal of Shape Modeling, Vol. 9, 2003, pp 41–59.

[3] Ivrissimtzis, I. and Seidel, H.-P., Polyhedra Operators for Mesh Refinement. Proceedings, Geometric Modeling

and Processing, Theory and Applications, IEEE, 2002.

[4] Sovakar, A. and Kobbelt L., API Design for Adaptive Subdivision Schemes. Computers and Graphics, Vol. 28,

No. 1, 2004, pp 67-72.

[5] Shiue, L. and Peters, J. A., Mesh Refinement Library based on Generic Design. Proceedings of the 43rd ACM

Southeast Conference, 2004.

[6] Cirak, F., Ortiz, M. and Schröder, P., Subdivision Surfaces: a New Paradigm for Thin-Shell Finite-Element

Analysis, International Journal for Numerical Methods in Engineering, Vol. 47, No. 12, 2000, pp 2039--72.

[7] Green, S., Turkiyyah, G. and Storti, D., Subdivision-Based Multilevel Methods for the Large Scale Simulation of

Thin Shells. Seventh ACM Proceedings on Solid Modeling and Applications. ACM, 2002.

[8] Green, S. and Turkiyyah, G., Second Order Accurate Constraints for Subdivision Finite Elements, International

Journal for Numerical Methods in Engineering, Vol. 60, No. 13, 2004.

[9] Catmull, E. and Clark, J., Recursively Generated B-spline Surfaces on Arbitrary Topological Meshes, Seminal

Graphics, Rosalee Wolfe (ed.), 1998, pp 183–188, ACM Press.

[10] Doo, D. and Sabin, M., Behaviour of Recursive Division Surfaces near Extraordinary Points, Seminal Graphics,

Rosalee Wolfe (ed.), 1998, pp 177–181, ACM Press.

[11] Kobbelt, L., 3 Subdivision, SIGGRAPH’00, 2000, pp 103–112.

[12] Hasbini, I., A Ternary Subdivision Scheme for B-spline Surfaces over Arbitrary Meshes, Masters’ Thesis,

Computer Science, American University of Beirut, Beirut, Lebanon, 2005.

[13] Nasri, A., Hasbini, I., Zheng, J. and Sederberg, T., A Ternary Subdivision Scheme for B-spline Surfaces over

Arbitrary Meshes, Technical Report 02/2005, American University of Beirut. Also presented at the Geometric

Dagstuhl seminar on Geometric Modeling, May 29–June 03, 2005, http://www.dagstuhl.de/05221/Materials.

[14] Padrón, E. J., Amor, M., Bóo, M. and Doallo, R., Efficient Parallel Implementations for Surface Subdivision,

Fourth Eurographics Workshop on Parallel Graphics and Visualization, 2002, pp 113–121.

[15] Karypis, G. and Kumar, V., METIS: Unstructured Graph Partitioning and Sparse Matrix Ordering System,

Version 4.0, 1998, http://www.cs.umn.edu/~karypis/metis.

