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ABSTRACT 

 

This paper pursues an approach for the construction of smooth surfaces for geometric modeling 

and computer graphics (often referred to as lofting) that starts from a network of polygons 

representing a set of intersecting curves. The contribution of this paper is in (1) a new method for 

transforming the initial set of polygons to an equivalent set of polygonal complexes and (2) a new 

skinning algorithm that adds more vertices and edges thus completing the formation of the control 

polyhedron. When subdivided, this polyhedron converges on a smooth surface interpolating the 

initial set of input curves. The resulting surface is C2, except at points where the initial curves meet, 

where it is at least C1. The approach is modular, easy to understand and implement. 
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1. INTRODUCTION 

The construction of a smooth surface for computer graphics and computer-aided design applications often start from a 

sketch. That is, the design often starts from a set of (perhaps intersecting) curves. This is to suggest the constraint that, 

whatever it is, the surface must pass through these curves.  

In this context, the process (often referred to as lofting) that starts from the initial curves as input and generates the 

interpolating surface, with very little (or no) user intervention, is of particular interest to designers [10].  

The first problem that such a process should face is that of compatibility; that is, not any set of curves can admit a 

smooth interpolating surface. But, this can always be treated as a background assumption. 

The second problem is that a compatible set of curves can admit infinity of interpolating surfaces. For this reason, the 

process should exploit this degree of freedom by allowing the user to modify the resulting surface to best suit any 

additional constraints. For many practical reasons, this stage of design is best performed interactively. 

In outline, our solution to this problem goes as follows: 

1. The curve network is represented by a set of polygons each corresponding to a cubic B-spline curve. 

2. A control polyhedron is constructed starting from the curves control points of this network. In other words, 

this is nothing other than a mesh generation process. 

3. When suitably subdivided, this control polyhedron converges on an adequately smooth surface interpolating 

the initial curve network. 

This outline closely parallels that reported in [19]. However, the particular solution of the problem presented in this 

paper directly follows from our own research on the interpolation problem [15, 16, 17]. It is also less mathematically 

involved, as it relies on transparent geometric intuition to derive equivalent formulae and transformations, which 

makes it simpler to understand and to implement. 

Since we have essentially covered (in [2] and [3]) the details of how the Catmull-Clark Subdivision algorithm should be 

adapted to achieve interpolation (item 3 above), the main thrust of this paper is on: 

1. showing how the control polyhedron is constructed (item 2 above) and, more importantly perhaps, 

2. presenting a single unified framework within which all these tools are integrated. 

The input network of intersecting curves defines a corresponding set of patches. Each patch is delimited by a closed 

loop of curves identifying its boundaries. As such, some patches will appear like wide gaps within the mesh. When a 

patch is composed of more than four boundary edges, we use a new skinning algorithm that adds more control points 
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in its interior, therefore closing the corresponding gap. Finally, a smooth surface is computed using a modification of 

Catmull-Clark subdivision scheme [7] as specified in [2] and [3].  

 

2. PREVIOUS WORK 

Compared with early approaches to the interpolation problem [4, 5, 6], subdivision surfaces provide an altogether sim-

pler framework for handling the problem, especially in computer graphics applications and more so in the context of 

meshes with arbitrary topology. 

The modification of standard Catmull-Clark subdivision coefficients at and around arbitrary intersection points of input 

curves is necessary, because standard coefficients are incapable of achieving interpolation at extraordinary vertices.  

Beside the work of Schaefer et al [19], Levin's combined subdivision scheme [11] is an earlier approach to the 

interpolation problem. This method adjusts the subdivision rules near the curve network to ensure that the surface 

smoothly interpolates the input curves. Combined subdivision produces surfaces that can interpolate, not just networks 

of cubic splines, but also arbitrary parametric curves. 

Our own work in this area develops subdivision methods for interpolation based on the notion of polygonal complexes 

[12, 13, 14]. These complexes consist of the portion of a surface mesh defining the curve to be interpolated. As such, it 

can be integrated as an inherent part of the control mesh. This way, when the mesh is subdivided, the curve will 

automatically be found lying on the corresponding limit surface.  

Polygonal complexes also embody additional information (such as normal and curvature) of the corresponding curve. 

This allows the designer to adjust the shape of the complex without affecting the interpolation constraints, even though 

adjustments might affect the nature and quality of the interpolation surface. Therefore, the ability to control 

adjustments is quite critical for the quality of the overall design [1]. 

This paper is structured as follows: 

• Section 3 reviews relevant subdivision literature; especially with regard to the subdivision of a cubic B-spline 

curves and also with relevance to both the Doo-Sabin and the Catmull-Clark schemes. 

• Section 4 reviews the notion of Polygonal complexes and its relevance as a solution to the interpolation 

problem.  

• Section 5 presents our new skinning algorithm. This algorithm is used to break down a face with more than 

four edges to faces with at most four edges each. This is done by introducing more vertices and edges within 

the boundary of that face. 

• Section 6 integrates the above intermediate results to show our solution to the interpolation problem. 

• Section 7 concludes the paper with some pointers for further research. 

 

3. SUBDIVISION OF POLYGONS AND MESHES  

The idea behind subdividing an initial control polygon (resp. mesh) is that more vertices and shorter edges can 

repeatedly be generate to replace existing ones, up to a limit where this polygon (resp. mesh) converges on a smooth 

curve (resp. surface).  

 

3.1 The Cubic Subdivision of a Polygon 

In a single subdivision step (see Fig. 1), the control polygon  [P0, P1, P2, P3] is subdivided into a polygon [M1,  N1, M2, 

N2, M3] as follows: 

 

 

 

 

 

 

 
 

Fig. 1. The Cubic Subdivision of a Polygon. 
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• M1 (resp. M2 and M3) is the midpoint of the edge P0P1 (resp. P1P2 and P2P3). 

• N1 (resp. N2) is the midpoint of the edge joining the midpoints of M1P1 and P1M2 (resp. the midpoint of the 

edge joining the midpoints of M2P2 and P2M3). 

• Repeating this process sufficiently often leads to a smooth cubic B-spline curve. As a special case, the 

extremities P0 and P3 and of the open polygon can be considered as extremities of the new polygon, and thus 

be interpolated by the resulting curve. 

 

3.2 The Doo-Sabin Subdivision Scheme 

In a single subdivision step [8] (see Fig. 2), for each face f of the initial control mesh and for each vertex vf of this face, 

a new vertex wf is computed by suitably averaging the vertices of f. The particular coefficients that are used in this 

calculation are omitted here.  

Now, for each face f = (vf) of the initial control mesh, a new F-face (wf) is constructed.  Similarly, for each inner edge 

vv’ joining two faces f and f’, a new E-face is constructed of the four new vertices wf, w’f, wf’ and w’f’. In the same vain, 

for each inner vertex v connecting the faces fi’s, a new V-face will be constructed of each w vertex calculated from the 

corresponding v vertex with respect to each face fi.  

The subdivided mesh will be obtained from the initial control mesh by connecting these newly composed faces in the 

obvious way. 

Subdividing the initial mesh sufficiently often will result in a smooth limit surface. 

Fig. 2. The Doo-Sabin Subdivision Scheme.                                        Fig. 3. The Catmull-Clark Subdivision Scheme. 

 

3.3 The Catmull-Clark Subdivision Scheme 

In a single subdivision step [7] (see Fig. 3), each face f (of the initial control mesh) results in a new F-vertex. Similarly, 

each edge connecting two faces results in a new E-vertex. In the same vain, each vertex connecting a set of faces 

results in a new V-vertex. The particular coefficients that are used to calculate the new vertices are omitted here. 

Connecting these new vertices in the obvious way will result in a subdivided mesh. Subdividing the initial mesh 

sufficiently often results in a smooth limit surface. 

 

4. POLYGONAL COMPLEXES FOR INTERPOLATION 

A simple polygonal complex is a 3×n matrix M of points representing three control polygons top(ti), middle(mi) and 

bottom(bi), all having the same number n of vertices. These may be seen as a sequence of pairs of rectangular faces 

where each pair of faces of this sequence has a common edge and each two consecutive pairs have common 

respective edges (see fig. 4).  

A general polygonal complex is encountered when the control polygons (ti), (mi) and (bi) do not all have the same 

number of vertices. That is, the corresponding faces are not all rectangular at the outer edges. However, it is important 

to note here that each inner vertex of such a complex is regular in the sense that it connects exactly four edges. A 

general complex leads to a simple one after a single Catmull-Clark subdivision step.  
 
4.1 The Limit of a Polygonal Complex 

A Polygonal complex is interesting because, under subdivision, it leads to a sequence of thinner and thinner complexes 

which, at the limit, converges to a smooth curve. 

In this context, the limit of a simple complex M is a B-spline curve whose control polygon is specified by the following 

formula (see [Nasri&Abbas, 2002]): 
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(1/6)*[1 4 1]*M                                                                                (1) 

Thus, when a complex is embodied within a control mesh, its limit curve is automatically interpolated by the limit 

surface of this mesh. Likewise, if a complex M’ is obtained from a complex M by substituting the mid-polygon m of M 

by the polygon (see [Nasri et al, 2003]): 

m’=(1/4)*[-1 6 -1]*M                                                                           (2) 

the limit of M’ is a B-spline curve identical to that of m. Thus, given a curve defined by a control polygon (mi)can turn 

it into a polygonal complex M by adding to it two more rows of points (ti) and (bi). The transformation (2), guarantees 

that any mesh embodying the complex M’ interpolates the original curve defined by (mi).  

For the purpose of interpolation, we designate the complex M’ as the equivalent of m, since they both generate the 

same limit curve. 

                   Fig. 4. A Simple Polygonal Complex.                                                                            Fig. 5. An X-Configuration. 
 

4.2 X-Configurations and X-Complexes 

Now, starting from the initial input set of intersecting polygons, each polygon will be replaced by an equivalent 

polygonal complex.  

Moreover, in the region where the polygons meet, we will arrange it so that the corresponding polygonal complexes 

meet at so-called X-Configurations [2, 3] (see fig. 5). 

Fig. 5 illustrates an X-Configuration where 3 Polygonal complexes meet. The set of Polygonal complexes representing 

the initial set of polygons is called an X-Complex. 

It is obvious now that, by filling in the remaining patches in an X-Complex (see section 5), we will obtain a control 

mesh. When suitably subdivided, this mesh will yield a smooth surface interpolating the initial input curves. 

 

5. THE SKINNING ROUTINE 

The aim here is to fill in a patch delimited by a number of input polygons with additional vertices and edges. This will 

fill the patch with mostly quadrilateral (and some triangular) faces. 

The basic intuition behind this routine should be reminiscent of the routine we devised in [17].  There, the initial input 

curves for the interpolation task were parallel or, in other words, non-intersecting.   

Finally, the reader can compare the skinning algorithm below with the quadrangulation algorithm presented in [19]. 

 

5.1 The Divide Routine 

In the present routine, a face is a closed polygon, which can be considered as an array F of points of length M greater 

than 2 (see fig. 6). 

We need to find the pair on non-adjacent points of indices N and P of this array that are closest to each other in terms 

of Cartesian distance. 

There are many reasons why the shortest distance should be the main criterion for this selection. There are also other 

criterions that should be satisfied. The most obvious of these is that the edge NP should lie within the boundaries of the 

face, if this face is planer. 

Obviously we need to perform this selection only in cases where M is greater than 4. Moreover, in cases where M is 

greater than 5, the chosen pair of points should be separated, in the array F, with more then a single point. 
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                  Fig. 6. An Initial Face to be Divided.                                                   Fig. 7. The Initial Face after a Single Division. 
 

Remembering that divide is a basically heuristic routine; we gave it a parameter d representing the minimum length of 

all the edges of the face F.  This is used to determine whether the edge NP divides the face F viably with respect to d. 

By viable, we mean here that the distance of all vertices (other than N and P) of the face F to the edge NP is no less 

than d.  

Finally, if the edge NP is found to be too long, we subdivide it to sub-edges in such a way that each of these sub-edges 

is no longer than the maximum length of any of the initial edges of F. 

Definition I: a primitive face of the polyhedron is one that consists of no more than four edges. 

Definition II: a normal face is one that is convex and where its edges are not too disproportionate in length. 

The Divide Routine: this routine splits a non-primitive face f into two viable faces f1 and f2. This is done be creating 

an edge vw of two opposing vertices v and w of the face f. The main criterions for selecting v and w are: 

1. the edge vw must lie within the face f. 

2. the edge vw is as short as possible. If it turns out that the length of vw is too big with respect to the existing 

edges of f, it will be subdivided into sub-edges none of which is too big in this respect. 

3. the areas of the faces f1 and f2 are not too disproportionate. 

Clearly, the Divide routine relies on geometric and heuristic intuitions. As such, it will work best on normal faces in the 

sense of definition II above. However, the shortest criterion guarantees reasonable performance in many awkward 

situations that might occur in practice. 

We mention here that this last part of the routine might leave instances where several of the newly introduced vertices 

are co-linear. Consequently, fairing techniques [9, 18] might need to be applied to these instances to reduce the 

negative effect that might have on the resulting surface. 

                  Fig. 8. The Initial Face after Skinning.                                                    Fig. 9.  The Skinned Face after Some Editing  

                                                                                                                                                (Superfluous Edges Removed). 

 

5.2 The Skin Routine 

The divide routine decomposes a face F into two faces F1 and F2, that is. As such, we will need to call this routine 

repeatedly on the resulting sub-faces until we get at the end a sequence of faces that cannot be decomposed anymore. 

A face that cannot be decomposed anymore is either a triangle or a quadrilateral (see above definition).   

The main skinning algorithm calls the Divide routine on every non-primitive face f of the polyhedron repeatedly. After 

every call, it replaces f by the corresponding sub-faces f1 and f2 until all the faces of the polyhedron are primitive.  
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Thus, we have, for the overall skin routine, the following loop: 

                         L = a list containing the initial list of faces // initially 

                         While L contains a non-primitive face F0 { 

                              Remove F0 from F; 

                              Divide F0 into two sub-faces F1 and F2; 

                              Add F1 and F2 to L;} // it is obvious that all the face members of L are now primitive 

The suggested algorithm will introduce more vertices to the initial set of vertices. The overall algorithm will be as good 

as these new vertices are well-positioned.  

 

6. THE INTERPOLATION PROCESS 

The interpolation process can be described as follows: 

1. Start with a network of intersecting curves, each is represented by a B-spline polygon (this will define a mesh 

M0). 

2. Perform an adaptation of the Doo-Sabin F-face F on each of the large faces of M0. This will give us a 

polygonal complex Pi containing an initial curves Ci, where Ci is the mid row of Pi. It will also give us a 

smaller face f lying inside the big face F. Furthermore, this will give us an X-Configuration around each 

intersection point (see fig. 10). More illustrations are also listed in the appendix. 

3. Reposition Ci to (1/4)*[-1 6 -1]*Pi. This will give us a new mesh M1 from M0. 

4. Perform the skinning routine on each small faces f. This will give us another mesh M2 from M1. 

5. Iteratively manipulate (fairing, for example) some of the quads on the faces f to improve the positioning of 

those quads 

6. Subdivide according to our modified CC subdivision coefficients 

5 This process will give us a surface interpolating the initial set of curves. 

6 It is worth noting here that the modified subdivision scheme is employed only at the intersection points. This 

scheme is explained at length in [3]. Moreover, the resulting surface is C2, except at the points where the 

initial curves meet, where it is at least C1. 

                   Fig. 10. Doo-Sabin F-Face Application                                             Fig. 11. Symmetric Carry-Through Curve. 

                      Makes Polygonal Complexes Apparent. 

 

This process will give us a surface interpolating the initial set of curves. 

It is worth noting here that the modified subdivision scheme is employed only at the intersection points. This scheme is 

explained at length in [3]. Moreover, the resulting surface is C2, except at the points where the initial curves meet, 

where it is at least C1. 

 

7. CONCLUSIONS AND FURTHER DIRECTIONS 

If a curve is to carry through with C2 continuity then the corresponding polygonal complex should be symmetric near 

and with respect to the point of intersection. Note here that the point of intersection will be the center of the X-

Configuration where the curves passes through. 
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Note also that, although the polygonal complexes and, consequently, the rest of the X-Complex might seem more 

awkward to construct; this extra effort will be worthwhile as it will give the designer that much more freedom to tailor 

the resulting surface to adhere to any further constraints that may be. 

Moreover, polygonal complexes have more benefits that are worth mentioning. These are the immediacy, through 

which the long process seems to follows through, and also the simplicity and transparency of the underlying concepts 

that have been utilized throughout.  

Finally, the generality of the approach is also worth mentioning. In fact, odd or awkward cases seem to be nowhere in 

sight. 
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APPENDIX  

We list here a sequence of figures that illustrates the working of the process presented in this paper through all its 

underlying stages. 

               Fig. 12. The initial network of polygons.                                            Fig. 13. The Subdivided Cubic B-Spline  

                                                                                                                        Curves Corresponding to the above Polygons  

                                                                                                                        and Designated for interpolation.  

           Fig. 14. The Same Network with the Adapted                                              Fig. 15. This illustrates how the Skinning Algorithm 

           Doo_Sabin Subdivision Creating a Polygonal                                               Closes the Above-Mentioned Gaps. 

           Complex From Each of the Input Polygons.  

           The Wider Gaps Left on the Mesh are Shown. 

 

          Fig. 16. the Subdivision of the Mesh Into                                                 Fig. 17. the Interpolated Curves with one 

          a Smooth Interpolating Surface.                                                       Irregular Intersection Point Clearly Shown. 

 

 


