
 

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 719-729 

 

719 

Knowledge-guided NURBS: Principles and Architecture 

 
Les A. Piegl1 

 
1Univesity of South Florida, lap@piegl.com 

 

 

ABSTRACT 

 

This paper outlines the fundamentals of a knowledge-guided modeling system based on NURBS. 

NURBS have become standard tools in shape representation in almost all fields where shape 

information is processed, however, the representation has been largely numerical with no sufficient 

information attached to aid the design and production processes. The purpose of this research and 

development effort is two-fold: (1) transform the raw numerical data into a knowledge base, 

incorporating relevant design parameters and decisions for later use, and (2) increase the 

robustness and productivity of NURBS-based systems by proliferating knowledge from low level 

functions to the entire system, and from one system to any other receiving system. 

 

Keywords: Design knowledge, Design intent, Knowledge-guided systems, NURBS. 

 

 

1. INTRODUCTION 

The B-spline technology, both the rational as well as the non-rational B-spline, commonly referred to as NURBS [10], 

has become the de facto standard in shape representation, design and processing. Once a part design is finished, it can 

be saved in popular formats such as those of the CAD vendors or some standard data formats such as IGES or STEP. 

Unfortunately, the saved data is largely numerical carrying no information about the design process parameters or the 

reasoning behind the decision of the designer. As the design process becomes more and more knowledge intensive, 

possibly involving numerous designers working in geographically diverse locations, it is becoming a necessity to record 

as much information about the design process as possible. This applies not only at the higher level, as witnessed in, the 

by now mature field of, knowledge-based engineering, but at any level where information loss can cause problems 

somewhere in the design pipeline, e.g. sending design parts from one system to the other. 

 

This paper is a step in the direction toward addressing two major challenges [12]: 

• organizing and managing knowledge (in a NURBS-based kernel [10]); and 

• building a useful knowledge-based system. 

The current paper is the first in a series of papers that report on the progress of building a knowledge-guided NURBS 

modeling kernel. Our goals are as follows: 

• embed design knowledge into the geometric model; 

• capture design intent and incorporate it into the model’s knowledge base; 

• support design replay, i.e. provide a mechanism for design reproducibility; 

• provide more robust computations supported by knowledge; and 

• introduce capabilities for knowledge acquisition, deduction and mining. 

 

The literature on knowledge-guided systems is fairly sparse, spanning fields from artificial intelligence to cognitive 

science. To start with, the survey paper [12] is highly recommended, along with the references therein. Additional 

references worth perusing are in the areas of design rationale [9,12], knowledge capture [3], behavioral modeling [13], 

knowledge representation [14], design intent [4-6], design knowledge [7] and cognitive factors [8]. Other alternative 

schemes are ISO STEP [11], the Core Product Model [2] and the Open Assembly Model [1]. 

 

The paper is organized as follows. Section 2 is on data healing to support the relevance of using knowledge. In Section 

3 the general usage of knowledge in knowledge-guided NURBS systems is outlined, followed by the presentation of 

relevant details about our system in Sections 4 and 5. Section 6 is on knowledge acquisition and Section 7 illustrates 

how the knowledge base is built and used. Some conclusions are offered at the end of the paper. 

 



 

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 719-729 

 

720 

2. DATA HEALING 

CAD/CAM systems produce models that satisfy certain requirements, either embedded into the system used to 

produce the model, or given by the contractors. Although many modeling methods are subject to numerical failures, 

the problems can be handled with a few tweaks and patches. Unfortunately, these fixes loose their effects once the part 

begins its journey in the world of supply chain companies (it is not unusual to see anywhere from 100 to 200 

companies producing parts for such a simple thing as a laptop computer). The part, entering the various CAD systems, 

may be received with varying levels of enthusiasm, ranging from minor misfits to major glitches. To illustrate the 

magnitude of the problem, let us take a simple example of trimming surfaces covering point clouds in a reverse 

engineering application. 

 

Surface trimming is an operation known as surface-surface intersection. To obtain the intersection curve, one 

computes a dense set of intersection points, followed by fitting a curve to these points up to a certain tolerance. Now, 

the points do not lie on the surfaces and the curve only approximates these points as well. This is OK as long as the 

curve is “close enough” for manufacturing applications. What does it mean “close enough?” The answer is simple: we 

do not know. What is close enough for one application, e.g. placing the fender to the front end of the car, may be too 

far for another, e.g. modeling the wind shield to avoid glare. So here comes the problem: once the part, made in 

system A, is read into system B, things may not match up, i.e. the trimmed model may not be water tight. Even though 

the topological data structure does show the intersection curve as an edge between the two surfaces, the gap between 

the surfaces and the intersection curve contradicts the data structure. To remedy this problem the CAD doctor is called 

in and the data healing process begins. While there is no good solution to this problem, the CAD doctor prepares a 

remedy to fill the gap with a small surface including or excluding the (incorrect) trimming curve. The small patch 

surface indeed fills the gap and makes the model water tight, however, it opens up another can of worms in the areas 

of parametrization, smoothness, shape fidelity, etc. Unfortunately, one cannot squeeze a small surface between two 

large ones with reasonable level of continuity as the cross-partial derivatives of the two large surfaces would push the 

tiny surface way out of proportion (the surface may loop around). 

 

There are three significant problems at hand in the receiving system: 

• there is no (or not enough) information on what the curve is; 

• there is no information on how it was generated; and 

• there is no indication as to why or what it was made for. 

 

In a knowledge-guided system the above information is readily available and the problem is solved as follows: 

• the system sees that the curve is a spline curve, created via approximation and used to represent the 

intersection curve; 

• the intersection curve is in relationship with the two surfaces whose references and definitions are also 

available; 

• the parameters of obtaining the intersection curve, i.e. the number of sampling points, their locations and the 

tolerance used, are available; 

• obtaining all this information, the initial design can be replayed and the new intersection curve is computed 

satisfying system B’s requirements; 

• everything that needs to be modified is done and the knowledge base is updated. 

 

The price to be paid for this design replay is that both the sending and the receiving system must have the ability to 

process both geometric as well as knowledge information. The best way this can be done is that both systems have the 

same capabilities in the form of the same knowledge-guided kernel. Translating knowledge information from one 

output to a proprietary input may have the same data loss as translating geometric information from one 

representation to the other. 

 

History has taught us that patching up CAD models does not pay very well, in fact, it can cause an avalanche. Assume 

that the model in the previous example is now passed on to system C. If we get lucky, then the requirements in system 

C’s applications are such that the model remains water tight. However, if not, which is the case quite often, then yet 

another call to the CAD doctor is required to put another, perhaps even smaller, patch in two gaps (between the patch 

surface and the two original surfaces). One can only imagine what happens when this part reaches the 107th company 

in the supply chain! 



 

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 719-729 

 

721 

3. KNOWLEDGE BASE FOR NURBS SYSTEMS 

A knowledge base is used in a NURBS-based modeling system primarily in two different case scenarios: (1) building an 

initial model and its knowledge-base, and (2) using the model and the data base for various design tasks. Fig. 1 

illustrates how the data bases are built. 

 
Fig. 1. Building an initial knowledge base for NURBS modeling. 

 

The data bases are built in four steps. The process starts with the two data bases, the model base and the knowledge 

base, which may be, and often are, empty. As the design proceeds, the modeled parts are recoded and knowledge 

about the design intent is acquired. All this information is then propagated to the rest of the system to aid additional 

design tasks. Upon completing the job, or part thereof, a model data base and a knowledge base are built. 

 
Fig. 2. Using knowledge bases in NURBS modeling. 

 

Fig. 2 illustrates the process of how to make (good) use of all the information generated during the first phase shown in 

Fig. 1. The retrieve-recapture-reuse mechanism is employed to pass information to the design and to the knowledge 

managers. The design manager may use this information to generate a new design, modify an existing design or just 

simply make a small update. The knowledge manager, working in parallel to the design manager as well as 

independently, takes advantage of the recaptured information along with the output of the design manager to generate 

new knowledge, or update existing entries in the data base, or deduce knowledge from existing ones, and finally to 

propagate all this to the rest of the system. The end result is the updated model and knowledge bases. This cycle can, 

of course, continue indefinitely as long as the modeling system is in use. Details on all the major elements are given in 

subsequent sections of this paper. 

 

Model data 
base 

Knowledge 
base 

Updated 
model data 

base  

Updated 
knowledge 

base  

Retrieve 
Design manager 
New design 

Modified design 
Updated design 

Recapture 

Reuse 

Knowledge manager  
New knowledge 

Updated knowledge 
Deducted knowledge 
Propagated knowledge 

Model data 
base (may 
be    empty) 

Knowledge 
base (may 
be empty) 

NURBS 
model data 

base  

Knowledge 

base  

NURBS 
modeling 
tools 

Knowledge 
acquisition 
manager 

Initialize Design Propagate Build 

Knowledge 

propagation 

Functions 
 
Modules 
 
System 
 
Sys-to-sys 



 

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 719-729 

 

722 

4. KNOWLEDGE-GUIDED NURBS (KGN) 

A major challenge in knowledge-guided systems is how much information to retain and/or generate. Too little 

information may not allow the system to replay the design process, on the other hand, too much information may 

create problems with storing, using and maintaining all the relevant as well as irrelevant knowledge. The major 

components of our knowledge-guided NURBS system, developed after two decades of experience with NURBS 

systems, are shown in Fig. 3. 

 
Fig. 3. Structure of knowledge-guided NURBS. 

 

4.1 Identification 

Each entity in the system has a unique ID for purposes of identification, saving and rebuilding the data bases. The ID 

can be as simple as a number, e.g. “2007”, however, to make it more meaningful, the recommended identification is 

in the form of “KGN_V2.1_2007_CUR_0008.” That is, it uses a prefix (KGN), a version number (V2.1), the year of 

the release (2007), the entity type (CUR) and the entity ID (0008). 

 

4.2 Classification: The Three Treasures 

Knowledge-related disciplines have considered the what-how-why or the syntax-semantics-pragmatics paradigm for 

design rationale or capturing design intent. In the knowledge-guided NURBS system we use the following trilogy: 

• Type represents the type of the object, or what exactly it is in terms of the NURBS modeling scheme. 

Example types are point, line, curve, surface, etc. 

• Origin tells the system where the part comes from, or how it was created. Example origins are input, 

definition, interpolation, etc. 

• Destination refers to the application where the object will be used, or why or what was it made for. 

Examples are offsetting, styling, lofting, etc. 

Below is an example using the process of offsetting and representing the offset curve as a NURBS curve: 

 

 Type  spline curve 

 Origin  approximation 

 Destination offset 

 

That is, the base curve was sampled, each point was offset, and the offset points were approximated to get the offset 

curve represented as a spline curve. In order to be able to replay this simple design session, the information above is 

not sufficient. The sections below provide the missing pieces of the puzzle. 

 

5. DESIGN INTENT 

The key element of the knowledge-guided system is to capture the design intent inherent in every design process for 

later use or for complete reproduction of the design. The most important parts of capturing intent are the relationships 

and the parameters used to define those relationships. 

 

Knowledge-guided NURBS 

Identification Classification Design intent 

Part ID Type 
 
Origin 
 
Destination 

Design relationships 
 
Design parameters 
 
Design function 
 
Design history 



 

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 719-729 

 

723 

5.1 Relationships 

Fig. 4 illustrates the five elements used to define what is meant by a relationship in KGN: name, objects, conditions, 

quality and participation. 

 

 
Fig. 4. Elements of relationships used in KGN. 

 

5.1.1 Name 

The name of the relationship incorporates both the name as well as the participating objects. An example is parallelism 

with various entities involved: 

 

 Line_to_line_parallel lines are parallel 

 Line_to_plane_parallel lines and planes are parallel 

 Curve_to_curve_parallel two or more curves are parallel 

 

5.1.2 Objects 

For each relationship a list of objects are given that take part in that relationship. Some examples are below. 

 
 Line_to_line_parallel  = { l1,l2; … } 
 Line_to_plane_parallel = { l1, l2, l3, pl; … } 

 

5.1.3 Conditions 

Each relationship requires certain conditions to be satisfied. There are conditions for parallelism, perpendicularity, 

incidence, etc. Fig. 5 below shows three cases of parallel lines. 

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 5. Cases of parallel line segments. 

 

First of all, all entities in KGN are finite. Second, the traditional definitions, e.g. cross-product magnitude is less than a 

tolerance, are no longer appropriate. That is, parallelism between two lines is defined as follows: 

• the projections of the line segments onto each other must overlap (Fig. 5a-b); and 

• 1 2d dδ ε= − < , where 1d  and 2d are the distances of the projections of the end points, and ε  is the 

parallelism tolerance. 

Relationship 

Name Objects Conditions Quality Participation 

Name of the 

relationship 

Participating 

objects 

Conditions 
used to 

establish 

relationship 

Quality of the 

relationship 

Level of 
participation in 

the 

relationship 

l
1 l

1

l
1

l
2

l
2

l
2

d
1

d
1

d
2d

2

O
O

(a) (c) (b) 



 

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 719-729 

 

724 

5.1.4 Quality 

It makes perfect sense to ask the question: “just how good is the relationship?” That is, in the case of parallel lines, it is 

a legitimate question to ask “just how parallel are they?” Referring to the definition above, we can introduce the 

following quality measure: 

q
ε δ

ε

−
=                                                                                                                                                                  (1) 

This quantity lets us know how far we are, in percentages, from the theoretically parallel lines. That is if ε δ≈  the 

quality of the parallelism is near zero percent. On the other hand, 0.0δ ≈  produces a nearly perfect parallelism. Put it 

in another way, there is no such thing in KGN as parallel lines. However, there are lines that are weakly parallel, 

parallel or strongly parallel. The classification may change from application to application, or from system to system. A 

useful application of the quality measure is in error accumulation, e.g. if one of the two weakly parallel lines is offset, it 

may produce a third line that is no longer parallel to one of them. 

 

5.1.5 Participation 

The level of participation indicates to what degree the entities are participating in the relationship. Referring to Fig. 5 

above, it is clear that the two lines have different degrees of participation. For example, one line in Fig. 5(b) is 

participating with its entire length, whereas the other is only partially utilized. The level of participation for the parallel 

line case is defined as  

1 2

min ,
O O

p
L L

   =  
   

                                                                                                                                                       (2) 

where O is the overlap region of the projections and 1L and 2L are the total length of the lines. A legitimate question is: 

why is it important? Fig. 6 illustrates the reason. 

 
Fig. 6. Increasing the level of participation for parallel lines. 

 

That is, as the level of participation increases, i.e. the length of the lines are getting longer and longer, the quality of the 

relationship may decrease, e.g. short line segments that are strongly parallel may become weakly parallel or even non-

parallel when extended. In the world of NURBS more is not necessarily better. The more entities are participating in a 

relationship, the more error can creep in and the worse the quality may be to the point where the relationship may no 

longer exist. 

 

5.2 Design Parameters 

Each design task is individually specific and requires its own set of parameters. To reproduce the design one has to 

store these parameters either in the form of a master parameter table or, what KGN elected, in the form of individual 

parameters sets attached to the relationships. Fig. 7 illustrates how the parameters are represented for the relationship 

called “curve_to_point.”  

 

The following explanation is in order: 

• The relationship is called “curve to point” to reflect a directional dependence, i.e. from a curve we produced 

a set of points. 

• There are sub-relationships within “curve to point” such as sampling or incidence and the actual parameters 

are listed for each “refined” relationship. 

l
1

l
2

d
1

d
2

d
3

d d
1 2
− < ε

d d
1 3
− > ε



 

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 719-729 

 

725 

• The sampling process requires the reference to the points P_ref (the ones that are in relationship with the 

curve), the reference to the parameters u_ref, the parameter bounds of the curve ul, ur (in case it gets 

rescaled), and the quality q and the participation p (both are 100% for sampling). 

• The incidence relationship needs the reference to the points, the tolerance used, the quality of the incidence 

(just how close these points are to the curve), and the level of participation (how many of the points are 

participating). 

 

 
Fig. 7. Curve to point relationship. 

 

Once the points are sampled, additional information is stored into the entity type as follows: 

 

 Type  through point 

 Origin  sampling 

 Destination polygonal approximation 

 

To see that relationships may not be symmetrical, the reader is referred to Fig. 8 that depicts the “point to curve” 

relationship. 

 

 
Fig. 8. Point to curve relationship. 

 

The structure is quite similar to the “curve to point” except the sub-cases are not the same and of course the 

parameters are different. Please note that u_ref is optional for both the interpolation and the approximation. Once 

the curve is computed, some additional information is stored as follows: 

 

 Type  spline curve 

 Origin  approximation 

 Destination intersection curve 
 
 

5.3 Design functions 

In order to reproduce the design, the functions that used to make the part need to be recorded. As a minimum, the 

following information is necessary:   

• the name of the functions used, e.g. KGN_asc_spnloft.c; 

Curve 

Interpolation:     <C_ref, u_ref, q, p>, <…>,… 

  

Approximation:  <C_ref, u_ref, eps, q, p>, <…>, … 

 
Other:         <…>, …   

Point 

Point 

Sampling:  <P_ref, u_ref, ul, ur, q, p>, <…>,…

   
Incidence:  <p_ref, eps, q, p>, <…>, … 

 
Other: <…>, …   

Curve 



 

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 719-729 

 

726 

• the location of the functions, e.g. c:\KGnurbs\src; 

• version and release date, e.g. V2.1-2007; and 

• reference to the (on-line or off-line) documentation, e.g. c:\KGnurbs\doc\index.htm. 

 

5.4 Design history 

In order to keep the amount of information under control, design history should be kept short. Relevant detailes that 

are worth recording are: 

• the date of the initial creation; 

• name and contact details of the designer; 

• all major updates, modifications and error fixes; 

• contact details of all individuals who made changes since the initial installation; and 

• reference to the file that documents all changes if the changes are substantial and require detailed and 

elaborate documentation. 

 

5.5 Packaging 

There is a lot of information to be stored in order to serve the objectives of a knowledge-guided system. The question is 

where exactly should all this information go, i.e. how to package the bits and pieces of information? KGN elected to 

partition the information space as shown in Fig. 9. 

 
Fig. 9. Partitioning the knowledge space for KGN. 

 

There is an obvious discrepancy between the conceptual presentation of knowledge-guided NURBS and how 

information gets stored at the software level. The requirement of conceptual modeling and software design are not 

necessarily the same, and therefore creating images of the system in both the conceptual and software spaces are 

equally important. 

 

6. KNOWLEDGE ACQUISITION 

In this section we examine where and how knowledge enters the KGN system. The five main sources of knowledge are 

construction, deduction, enforcement, reclassification and double bookkeeping. 

 

6.1 Knowledge by Construction 

This is by far the most common way to create a new piece of knowledge. Once an object has been constructed, e.g. an 

approximating curve is computed to a set of points, it gets an ID, a type (spline curve), origin (approximation) 

and destination (unknown) are specified, and the relationship with the point set along with the parameters of the 

approximation procedure are recorded. The name of the design function is saved and the history field is marked as 

“initial construction.” If any change is required, e.g. a tighter approximation, only the information that has changed, 

e.g. the approximation tolerance and the curve, is updated. 

 

6.2 Knowledge by Deduction 

KGN recognizes two ways of knowledge deduction: (1) logical inference and (2) relationship query. Logical inference is 

a two step process: 

• use logical reasoning to infer a new relationship; and 

KGN = < entity, relationship > 

entity 

ID 
type 
origin 
destination 
control points and knots 
design function 
design history 

relationship 

name 
objects 
parameters 
conditions 
quality 
participation 



 

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 719-729 

 

727 

• test if this (theoretical) relationship is valid under the system’s requirements. 

 

More formally, deduction works like this: 

{ } inference
1 1,..., (?)n nκ κ κ +→                                                                                                                                    (3) 

where iκ represents the i-th piece of knowledge and 1nκ + is the new piece of knowledge. A simple example is as 

follows: 

{ } inference
1 2 2 3 1 3|| , || || (?)l l l l l l→                                                                                                                             (4) 

which is the well known transitive relationship of parallelism. If such a (theoretical) relationship is found, the next step is 

to test if indeed the two lines are parallel using the conditions shown in Figs. 5 and 6. 

 

Relationship query operates on the objects, instead of on the knowledge elements. It can be formulated as follows: 

{ } query
1,..., n κΩ Ω →                                                                                                                                               (5) 

That is, a query is going to be made on some objects to see if they satisfy a certain relationship. Here is an example: 

{ } co-planar
1,..., n co planarityP P κ −→                                                                                                                              (6) 

That is, given a set of points, check if they are co-planar. If yes, link the plane and the points together with the 

relationship entity called “co-planar.” 

 

6.3 Knowledge by Enforcing Intent 

One of the major uses of design intent is to resolve discrepancies between the numerical results and the designer’s 

actual intention. Assume that on checking if two lines are parallel, it turns out that the numerical condition is not met, 

however, the knowledge base flags the entities as parallel, i.e. the designer intended them to be parallel. The 

discrepancy may be eliminated in a number of ways: 

• Repair the entities until the condition is met, e.g. modify one or both of the lines till the tolerance condition is 

met. 

• Redesign the part that has the offending parts so as to meet the requirements. 

• Modify the condition without altering the entities, e.g. the lines, or the part that has the entities. 

If there is a discrepancy between the design intent and the numerical solution, there has to be a way to fix the problem, 

although it may not be simple. One method is to follow the design intent by assigning the new entity instead of 

computing it, or computing it flowed by subsequent adjustment based on the original intent. 

 

6.4 Knowledge by Reclassification 

When entities are passed between systems, due to differing requirements, some of the relationships may no longer be 

valid. In this case new relationships must be established (if allowed) leading to new pieces of information. An example 

follows using parallelism between lines: 

 

 System A: 1 2||l l with respect to 1ε  

 System B:  1 2||l l with respect to 2 1ε ε<  

 

Now, if the two lines in system B are no longer parallel, then this knowledge must be erased and a new piece of 

knowledge may be generated, i.e. 1 2l lρ with respect to 2ε . Possibilities for ρ  in case of line segments are: parallel, 

perpendicular, nearly parallel, overlapping and general. That is, an initially parallel relationship may 

be reclassified to “nearly parallel” to satisfy the new requirement (and perhaps to aid robustness in, say, line-line 

intersection). One minor wrinkle with reclassification is that the change of knowledge has to be propagated to the entire 

knowledge base and if contradictions are found, they need to be properly addressed. 

 

6.5 Double Bookkeeping 

Assume that two curves are intersected to get one intersection point. This constitutes a “curve to point” relationship 

which is called “intersection” and the point is listed under this category. At a later time the designer points at the point 

and asks the question: what do we know about this point? Although the point is involved in a “point to curve” 

relationship with the two curves, it is only implicit and some browsing is required to find that out. To make data base 

browsing, knowledge mining, that is, more efficient, an explicit relationship is entered into the data base, called 



 

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 719-729 

 

728 

“incidence”, i.e. the intersection relationship created a new piece of knowledge, called incidence, via double 

bookkeeping. Strictly speaking, all relationships would require double bookkeeping, e.g. point sampling would require 

an extra incidence, however, it is worthwhile to record relationships both ways if and only if they are needed for design 

reuse or for knowledge mining.  

 

7. WORKING WITH KNOWLEDGE 

During the design process knowledge is constantly generated and used at the same time. Design decisions are recorded 

into the knowledge base, on the other hand, decisions are also made based on what type of knowledge is already 

available. There are two processes at work: (1) design and record knowledge, and (2) make use of knowledge. 

 

The design and record session first identifies the participating entities. Then their types, origins and destinations are 

established. Then relationships with their relevant parameters are recorded. Finally, the knowledge is propagated to: 

• the current design function; 

• other functions that may be used by the current routine; 

• various modules and to the entire system; and 

• other systems upon completion of the design task. 

Propagation within the system is done by the mechanism of access control, scoping and references. The system to 

system propagation requires the knowledge base to be exported to a file and to be rebuilt in the receiving system. 

 

Making use of knowledge is done by a simple three step process: 

• retrieve all relevant knowledge along with all the participating entities; 

• recapture all relationships and the stored parameters; and 

• reuse the pair <entities, relationship> to re-create, update, maintain or document the design, or to 

increase the robustness of various processes with all the available knowledge instead of applying blind 

computation. 

 

8. CONCLUSIONS 

The principles and some architectural issues of a knowledge-guided NURBS system have been presented in this paper. 

The motivation for developing such a system lies in the concept of intelligent computing that supports the capturing of 

design intent, design reuse, robust computing via intelligent choice of methods and tolerances, and in-system and 

cross-platform compatibility. Although the amount of knowledge may seem overwhelming, and indeed it can be if the 

system is used improperly, the knowledge base can, and should, be built in a flexible manner. In the extreme, all 

knowledge can be recorded or none at all. In between, it is the user’s decision to record only relevant relationships with 

some parameters, or only a few difficult relationships, e.g. overlapping, with a full range of parameters. Knowledge can 

also be recorded incrementally starting with a small knowledge base to support a few design tasks, and ending up with 

the full-blown data base used to support legacy systems. 

 

9. ACKNOWLEDGEMENTS 

The author is indebted to Professors Tony Woo and Nick Sapidis and to Dr. Wayne Tiller for their many valuable 

comments on the first draft of this paper. This work was supported by the US National Science Foundation under grant 

No. DMI-0200385, awarded to the University of South Florida. All opinions, findings, conclusions and 

recommendations expressed in this paper are those of the author and do not necessarily reflect the views of the 

National Science Foundation or the University of South Florida. 

 

10. REFERENCES 

[1] Baysal, M. M., Roy, U., Sundarsan, R., Sriram, R. D. and Lyons, K., The open assembly model for the 

exchange of assembly and tolerance information: overview and example, Proc. DETC 2004, Salt Lake City, 

UT, 2004, 

[2] Fenves, S. J., A core product model for representing design information, NISTIR6736, Gaithersburg, MD, 2001. 

[3] Hicks, B. J., Culley, S. J., Allen, R. D. and Mullineux, G., A framework for the requirements of capturing, storing 

and reusing information and knowledge in engineering design, International Journal of Information 

Management, Vol. 22, 2002, pp 263-280. 

[4] Ishino, Y. and Jin, Y., Estimate design intent: a multiple genetic programming and multivariate analysis based 

approach, Advanced Engineering Informatics, Vol. 16, 2002, pp 107-125. 



 

Computer-Aided Design & Applications, Vol. 3, No. 6, 2006, pp 719-729 

 

729 

[5] Iyer, G. R. and Mills, J. J., Design intent in 2-D CAD: definition and survey, Computer-Aided Design and 

Applications, Vol. 3, Nos. 1-4, 2006, pp 259-267. 

[6] Iyer, G. R., Mills, J. J., Barber, S., Devarajan, V. and Maitra, S., Using a context-based inference approach to 

capture design intent from legacy CAD, Computer-Aided Design and Applications, Vol. 3, Nos. 1-4, 2006, pp 

259-267. 

[7] Kitamura, Y., Kashiwase, M., Fuse, M. and Mizoguchi, R., Deployment of an ontology framework of functional 

design knowledge, Advanced Engineering Informatics, Vol. 18, 2004, pp 115-127. 

[8] Lang, S. Y. T., Dickinson, J. and Buchal, R. O., Cognitive factors in distributed design, Computers in Industry, 

Vol. 48, 2002, pp 89-98. 

[9] McMahon, C. and Browne, J., CAD/CAM: Principles, Practice and Manufacturing Management, 2nd Edition, 

Harlow, London, UK, 1998. 

[10] Piegl, L. and Tiller, W., The NURBS Book, 2nd Edition, Springer-Verlag, New York, NY, 1997. 

[11] Pratt, M. J. and Anderson, W. D., A shape modeling applications programming interface for the STEP standard, 

Computer-Aided Design, Vol. 33, 2001, pp 531-543. 

[12] Regli, W. C., Hu, X., Atwood, M. and Sun, W., A survey of design rationale systems: approaches, 

representations, capture and retrieval, Engineering with Computers, Vol. 16, 2002, pp 209-235. 

[13] Xu, X. W. and Galloway, R., Using behavioral modeling technology to capture designer’s intent, Computers in 

Human Behaviour, Vol. 21, 2005, pp 395-405. 

[14] Yap, A. Y., Ngwenyama, O. and Osei-Bryson, K.-M., Leveraging knowledge representation, usage, and 

interpretation to help re-engineer the product development life cycle: visual computing and the tacit dimension 

of product development, Computers in Industry, Vol. 51, 2003, pp 89-110. 




