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ABSTRACT 

 

Geodesics and flow fronts are orthogonal to each other. These two sets constitute the space time 

function of a source and play an important role in dealing with two types of problem: initial value 

problem and final value problem. This paper reveals the computation of the flow fronts from a 

point source in a two dimensional domain with a given velocity field. A space time function is 

established for the point source. The space time functions of the higher dimension sources such as 

line source, curve source and polygonal source can be derived geometrically based on that of a 

point source. Co-operation and competition between two sources in a two dimensional domain and 

their relationship with Voronoi diagram is presented. 

 

 

1. INTRODUCTION 

Orthogonal to the direction of the flow is the so-called flow front – these are terms come from fluids dynamics.  Indeed, 

the transport of matter or energy is fundamental to thermal and fluid studies.  But “flow” and “front” are not unique to 

these areas.  An orthogonal set such as the normal and the tangent also arises in optics.  There, the pair is called ray 

and wave front, respectively.  Actually, the roots of the orthogonal pair date back several hundred years.  Perhaps 

taking a hint from Fermat, Bernoulli blended mechanics with optics in the celebrated formulation of the 

Brachistochrone (or least time) problem.  As science matures, the orthogonal set of the shortest path and the Hamilton-

Jacobi characteristic surface, arising from theoretical mechanics, are now firmly embraced by optimization, as well as 

by control theory.  As geometry is related to mechanics, it should not be surprising that there are counterparts in 

differential geometry; they are called: geodesic and isosurface.  Table 1 summarizes the seemingly disparate fields and 

the terms; those in italics are adopted in this paper. 

  

Thermal/fluids Optics mechanics/optimization/control geometry 

flow Ray shortest path geodesic 

flow front wave front 

(or eikonal) 

Hamilton-Jacobi surface Iso-surface 

(or iso-curve) 

 

Tab. 1:  Orthogonal Sets. 

 

The mathematical details and properties of the geodesics can be found in the reference 1. Most of the researches in 

geodesics concentrate on various methods to compute the curve for a given surface which is either analytical2, 

parametric3 or discrete4-8. Other generates a surface pencil from a given geodesic9. The geometric aspects of a geodesic 

are explored in these works.  This article addresses the computation of a geodesic from the view of its physical 

meaning. It begins by stating the problem that the calculus of variations solves: find a path between two points, which 

minimizes the time function, in a domain with a given velocity field. Using two velocity fields, kv =  and kyv =  (where 

k is a constant). Based on the geodesics, the flow fronts from a point source can be derived. Two phenomena, co-

operation and competition of having more than one source in a domain are discussed. The filling pattern prediction in 

plastic injection moulded part is discussed as an application example.  

 

2. GEODESICS, POINT SOURCE AND FLOW FRONT 

A geodesic is the minimal path between two points. The spatial coordinates will be denoted by ),( yx    Given a path 

parametrized in u, with components )(ux  and )(uy , its line element 222 )()()( dydxds += is invariant. As it will be 

useful, the conversion factor between the parameter u and the arc length s is duyxds uu
22 )()( +=  where 

du

dx
x
u
=  
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and 
du

dy
y
u
= . The time to travel along a path γ  with velocity v  is given as ∫=

θγ v

ds
t . The calculus of variation allows 

one obtain a differential equation for describing the path that minimizes the time of travel between two points which is 

a geodesic in the form of  









=

∂
∂

ds

dx

ds

d

x
η

η
  (1.1) 









=

∂
∂

ds
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ds

d

y
η

η
  (1.2) 

where 
v

1
=η . 

 

Since the left hand side of equation (1.1) and (1.2) involves the Euclidean coordinates and its right hand side is the arc 

length, it may be referred to as the spatial form of a geodesic. The geometry of a geodesic between two points depends 

upon the velocity field v  within a domain.  

 

A point source j in a domain D is characterized by two parameters: emission velocity jv  and the instant it starts 

emission jt  with respect to a reference time 0=t . Based on the principle of least action, the path θγ  from source j at 

the instant jt  to a point q at time t  in a domain D with velocity field v  is a geodesic governing by the equation 

∫+=
θγ v

ds
tt j

. 

 

The flow front from an emitted point source j is the front line of the emission. It is a topological circle in the domain D. 

An advancing flow front is a function of time t . The flow front possesses the geometrical property that it must be 
orthogonal to the geodesic from the source, hence, the equation of the flow front at time t  is given by 

0=







+− ∫

θγ v

ds
tt j , ]2,0[ πθ ∈∀  (2) 

For instance, in a domain D with a constant velocity field, the geodesic from a point ),( 00 yx  takes on the form of a 

straight line. Let the location of a source j be (0,0). The geodesic from j to q is 







=








θ
θ

cos

sin

vt

vt

y

x
 where v  is the velocity. 

Therefore, the flow front is expressed as 0

22

=
+

−
v

yx
t  (with 0=jt ), which is a family of concentric circles with 

variable t . Figure 1 shows the geodesics and the flow fronts from a source j with constant emission velocity. 

 

 
Fig. 1: Flow fronts of a point source j with constant velocity. 
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3. SPACE TIME FUNCTION OF A SOURCE 

A space time describes the position in domain D with a velocity field v  at a specific time instant. The equation of flow 
front,  

0),( =Ψ− yxt     (3) 

with ∫+=Ψ
θγ v

ds
tyx j),(  gives the relationship between a two dimensional space (in terms of yx, ) and time. Hence, 

the space time function of a point source j at ),0( 0y  in a velocity field kv =  (where k  is a constant) is 

0
)( 2
0

2

=












 −+
+−

k

yyx
tt j , where jt  is the time delay of source j. 

 

Figure 2 shows space time function of a point source j at ),0( 0y  in a constant velocity field with a time delay jt . The 

black curves link all the events happen simultaneously while the grey lines are the world lines. Projecting these black 

and grey curves onto the space ( xy  plane) gives the flow fronts and the geodesics in the domain D. 

 
Fig. 2: Space time function of a point source in a constant velocity field. 

 

When there exit more than one source in a domain, two possible phenomena arise:  

1. these agents co-operate to acquire territories and; 

2. these agents counteract to compete for territories. 

 

Let ),( yxt jΨ=  and ),( yxt kΨ=  be the space time functions for two sources j and k in a domain D. The resultant 

space time function is: 

)],(),,(min[ yxyxt kj ΨΨ= , D∈∀ ),( yx  (4) 

 

If these agents co-operate, then the resultant flow front at time t is given by the Boolean union of the function 

),(),( yxyx kj ΨΨ ∪ .  

 

For instance, a curve source is a typical example of co-operation. A curve source c in a domain D can be considered 

as an aggregation of infinite number of point sources along the curve. All these point sources co-operate to acquire 

territories. The flow front of the curve source at time t  is ∪ j j
yx ),(Ψ , Dcj ∈∀∈∀ ),(, yx . Hence, the space time 
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function of a curve source is the envelope obtained by sweeping the space time function of a point source with time 

delays. Figure 3(a) and 3(b) show the space time functions of a line and a curve source with various time delay in a 

domain with a constant velocity field respectively. Similarly, the space time function of a polygonal source in a domain 

with constant velocity field is shown in figure 3(c). 

 

 
Fig. 3: Various curve sources. 

 

If the agents counteract and compete for territories, a frontier µ  exists to partition the domain. This frontier is the 
algebraic intersection of their space time functions. Therefore, 

( ) ( ){ }),(),(|),,(),,(, yxtyxttyxtyx kjkj Ψ=Ψ== ∩µ  (5) 

Voronoi diagram in computational geometry demonstrates this phenomenon. 

 

4. VORONOI DIAGRAM 

A Voronoi diagram partitions the space based on a set of given sites according to a membership function. A distance 

function measuring the Euclidean distance is commonly employed. Such a distance function assumes a constant 

velocity field on the Euclidean space. Considering each sites as a source, the flow front propagates along the geodesic 

from the sources. A Voronoi diagram can be generated by projecting the space time function on the space as shown in 

figure 4. 
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Fig. 4:  A Voronoi diagram. 

 

Hence, it can be seen that the flow front is the boundary of the growing space time function while the frontier is the 

internal edges. This information is obtained by modeling the space time function as solid geometry and performing the 

Boolean operation “union”. An algorithm for constructing a Voronoi diagram with varies site characteristics based on 

solid modeling is listed in figure 5: 

 

create a solid geometry 0Κ  based on 0t  and 0v  at 0q  

while (not done) do 

begin 

 create a solid geometry jΚ  based on jt  and jv  at jq  

 jΚΚ←Κ ∪00  

end 

extracting the edges in 0K  

projecting the edges onto the domain 

 

 

Fig. 5: An algorithm for constructing the Voronoi diagram. 

 

Figure 6 shows a Voronoi diagram for sites with various dimensionalities. Site 1 and 2 are point sites (source), site 3 is 

a line site (source) while site 4 is a polygonal site (source). Their space time functions are depicted in figure 3. These 

sites possess different site characteristics. 

 
Fig. 6:  A Voronoi diagram for sites with various dimensionalities. 
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2 (10,0.268) 
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However, these agents usually co-operate to acquire territories and counteract internally simultaneously. Hence, the 

combination of the two phenomena usually arises. The filling of the injection moulding is an example to illustrate this 

situation. The melt flow in the cavity is split due to the changes in flow velocity. These split flows are co-operating to 

earn the territory (to fill up the cavity) and competing individually so that weld lines exist.  

 

 
(a) a box 

 
(b) space time function 

 
(c) flow fronts 

 
(d) weld lines 

Fig. 7: Filling simulation of a molding. 

 

Figure 7(a) shows a moulding with two different wall thicknesses. The thickness of domain D1 is greater than that of 

D2. Melt flows into the cavity from the gate (a point source) with constant velocity. For simplicity, the flow velocity is 

assumed to be directly proportional to the wall thickness. The edge e is common to both domains D1 and D2 and the 

velocity in D1 is faster. Hence, e is a line source in domain D2. The space time function is shown in figure 7(b) with the 

model unfolded. Sectioning this function and projecting onto the unfolded model yields the flow fronts as depicted in 

figure 7(c). A discontinuity in the space time function indicates a weld line. Figure 7(d) gives the flow fronts and weld 

lines for both folded and unfolded model. 

 

Figure 8(a) gives a flow front pattern generated by finite element method with detail calculation of the flow velocity 

(instead of assuming it as a constant) while the flow front pattern in figure 8(b) of the same molding is obtained by the 

kinetic source approach. It can be seen that both patterns are basically agreeable, particularly the location of the weld 

line. 
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(a) flow fronts generated by finite element method 
 

(b) flow fronts generated by kinetic source approach 

Fig. 8: Flow fronts. 

 

5. CONCLUSION 

From Minkowski to Einstein12, space and time are not separated. Hence, a minimal path in time between two points in 

the space is the geodesic between two events in the space time. The space time function plays an important role in 

solving two types of problem: initial value problem and boundary value problem. The initial value problem refers to 

the computation of the geodesic in space time for a given initial conditions: initial position, velocity and incident angle 

while the boundary value problem computes the geodesic between two events in the space time.  

 

Geodesics, flow fronts and space time functions are discussed in this article. Based on the space time function of a 

point source, space time functions of the higher dimension source such as curve and polygonal source can be 

obtained. Hence, the flow fronts of a curve source and a polygonal source is generated by slicing the space time 

function and projecting on the domain. While geodesics between two points in the domain are derived since geodesics 

and flow fronts are orthogonal set. 

 

The space time functions of multiple sources describe the three phenomena: co-operation between two agents, 

competition between two agents, and the combination of these two phenomena. 

 

An approach for spatial partitioning and constructing filling patterns for laminar flow simulation with some known 

velocity fields are demonstrated. 
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