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ABSTRACT 
 

Based on the properties of orthogonal polynomials, we derive an explicit constrained degree 

reduction criterion for Bernstein-Bézier polynomials in 
2L -norm. The criterion can be used to 

determine whether a further degree reduction can be applied to the polynomial in advance with a 

given tolerance ε . An efficient algorithm is also presented for obtaining the best Bernstein-Bézier 
polynomial after degree reduction. With the proposed algorithm, one can avoid the blind procedure 

for degree reduction and terminate the procedure in advance when the estimated error is larger 

than the given tolerance. 
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1. INTRODUCTION 
Given a Bernstein-Bézier polynomial of degree n as  

 ∑
=

=
n

k

n

kkn
tBbtP

0

)()( ,  [0,1]t∈ , (1.1) 

where 
kb 's are the Bézier ordinates and ( )n

kB t 's are Bernstein basis functions, the constrained multi-degree reduction 

of the given polynomial ( )nP t  is defined as the solution in finding a polynomial ( )mP t�  of reduced degree m n< , such 

that they have equal derivatives up to ( 1)r − -th and ( 1)s− -th orders respectively at the endpoints, namely  

 ( ) ( ) ( ) ( )(0) (0), (1) (1); 0,1, , 1; 0,1, , 1.k k l l

n m n mP P P P k r l s= = = − = −� � � �  (1.2) 

 The distance between ( )nP t  and ( )mP t�  in pL -norm is defined as  

 ( )
1

1

0
( ) ( ) ( ) ( ) .

p

p p

n m n m
L

P t P t P t P t dt− = −∫� �  (1.3) 

If the distance between ( )nP t  and ( )mP t�  in a certain norm is minimal, then ( )mP t�  is called the best polynomial after 

constrained )( mn −  multi-degree reduction in that norm. 

 

There have been many publications [1],[3-15] focusing on the degree reduction of a Bézier curve in various norm, but 

most of them can only obtain approximate solutions for constrained )( mn −  multi-degree reduction for polynomials. 

Recently, further progress has been made in [1],[10-11],[13-15] for constrained multi-degree reduction of polynomials 

in the 
2L  norm. Let ( )nP t�  be the Bernstein-Bézier polynomial of degree n  inversely obtained from ( )mP t�  with degree 

elevation. Lutterkort et al [10-11] discovered that the problem of the best )( mn −  degree reduction of Bernstein-Bézier 

polynomials in 
2L -norm is equivalent to the problem of finding the best Euclidean approximation from the coefficient 

vector of ( )nP t�  to the coefficient vector of the original Bernstein-Bézier polynomial ( )nP t . Based on the finding, they 

developed an algorithm for the best degree reduction of Bernstein-Bézier polynomials in 
2L -norm. However, end 

points constraints were not considered. Ahn et al [1],[14] extended the result for tackling the case with end points 
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constraints. Zheng and Wang [15] used the method of perturbing Bézier coefficients to solve the best constrained 

degree reduction polynomials in the 
2L -norm. Zhang and Wang [13] further developed a method which can provide 

an explicit matrix expression of the best constrained degree reduction polynomial and a precise error formula. 

 

In literature, one may also find algorithms for degree reduction based on other norms. When the L∞ -norm [6],[9],[12] 

is used, thanks to the good approximation property of Chebyshev polynomials, the best single degree reduction of 

Bernstein polynomial can be easily obtained. However, there has been no reported work for other cases such as the 

best constrained degree reduction of polynomials. For degree reduction in the 
1L -norm, there are also some results 

[3],[5] used for degree reduction of interval Bézier curves. One may find some further discussions regarding degree 

reduction based on other norms in [4],[7],[8]. 

 

However, the above algorithms are still not perfect and there is still space for further improvement. For example, one 

can not precisely give the approximation error formula to determine whether a given polynomial can be degree 

reduced in advance with a given tolerance ε . In other words, the approximation error can only be estimated after the 

corresponding polynomial is obtained with the constrained degree reduction procedure. An interesting and practical 

question is then whether we can determine the existence of a polynomial with reduced degree satisfying the given 

tolerance using a simple algorithm before we actually do the conversion? 

 

In this paper, we develop a new algorithm for optimal degree reduction of Bernstein-Bézier polynomial in 
2L -norm. It 

is shown that the above problem is satisfactorily solved. In the following we first present the algorithm based on the 

recursive integral formulae, and then derive the explicit, simple degree reduction criterion. Some examples will be 

introduced afterwards with further discussions. 

 

2. THE TERMINATION CRITETION AND THE RELATED RECURSIVE ALGORITHM 
Let us recall that a Jacobi polynomial ( , ) ( )s r

nJ x  of degree n  is an orthogonal polynomial on the weight function 

( ) 1 ) (1 ) , [ 1,1],( 1, 1)s rx x x x s rω = − + ∈ − > − > −（  

on [ 1,1]−  (see [2]), that is 
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n
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where ,s r  are confined on non-negative integers for our application and 
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A Jacobi polynomial of degree n , ( , ) ( )( 1 1)s r

nJ x x− ≤ ≤ , can be expressed as (see [2])  

 ( , )

0

1
( ) .

2

kn
s r

n

k

n s n s r k x
J x

n k k=

+ + + +   − =     −    
∑  (2.3) 

Note that (0,0) ( )nJ x  is a Legendre polynomial. Applying a transformation with 2 1x t= − and writing 

( , ) ( , )( ) (2 1)s r s r

i iJ t J t= −� , one can obtain the constrained best polynomial )(
~
tP

m
 after ( n m− )-degree reduction in the 

2L  

norm as follows [13]:  

 (2 ,2 ) (2 ,2 ) (2 ,2 )
1 1 1 1( ) ( ) (1 ) [ ( ) ( ) ( )]s r s r s r s r

m n n r s n r s n r s n r s m r s m r sP t P t t t b J t b J t b J t− − − − − − − − − − − − + − − += − − + + +� � �� � � �� . (2.4) 

The exact error for this approximation is 
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( , ) 1 1
( , ) 2 2 1
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where kb
�  for 1, ,k m r s n r s= − − + − −… are undetermined constants. In the following we determine kb

�  by using a new 

recursive method. 

 

Further recalling the orthogonal properties of Legendre polynomials, it is easy to see that 

 0)()(
1

1

)0,0( =∫− dttJtq
ii

,  1,,2,1,0 −= ni �  (2.6) 
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where ( )iq t  is an arbitrary polynomial of degree i  not large than .n  Multiplying both sides of Eqn. (2.4) by (0,0) ( )nJ t� , 

integrating from 0  to 1  and noting Eqn. (2.6), we have 

 
1 1

(0,0) (2 ,2 ) (0,0)

0 0
( ) ( )  ( ) ( ) ( ) ,s r

n r s n n n r s nb P t J t dt t J t J t dtω− − − −= ∫ ∫� � ��  (2.7) 

where ( ) (1 )s rt t tω = −� . Multiplying both sides of Eqn. (2.4) by (0,0)

1 ( )nJ t−
�  and integrating from 0  to 1 , we have 

 
1 1

(0,0) (2 ,2 ) (0,0)

1 1 1
0 0
( ) ( )  ( ) ( ) ( )s r

n r s n n n r s nb P t J t dt t J t J t dtω− − − − − − −= ∫ ∫� � ��  (2.8) 

1 1
(2 ,2 ) (0,0) (2 ,2 ) (0,0)

1 1 1
1 1
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n r s n r s n n r s nb t J t J t dt t J t J t dtω ω− − − − − − − − −− −
− ⋅ ∫ ∫� � � � �� �  

In general, we have 
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With the above recursive formulae, we can determine kb
�  ( 1, , )k m r s n r s= − − + − −…  one by one. 

 

To improve the computation efficiency, we may compute the following integrals used in the above formulae in 

advance, which are 
1

(0,0)

0
( ) ( ) ,       , 0,1,2, , ,  n

i n jB t J t dt i j n− =∫ � �  
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It is easy to see that all the above integrals can be converted to the following integral form 
1

0
(1 ) ,   , 0,1,2,m nt t dt m n− =∫ � , 

which can be explicitly evaluated as  
1
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This leads to the explicit evaluation of the above two integrals as  
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One can thus see that all the integrals in Eqn. (2.7)-(2.9) can be explicitly evaluated. 

 

Based on the above formulae and the error expression (2.5), it is now easy to establish an explicit criterion for 

constrained Bernstein-Bézier polynomial degree reduction. Given an original Bernstein-Bézier polynomial (1.1), the 

orders r  and s for the endpoint constraints (1.2), and a given tolerance ε , one can determine if there exists a 

reduced degree polynomial that can approximate the polynomial (1.1) satisfying the given constraints (1.2) in 
2L -

norm by firstly computing { }
0

l

n r s h
h

b − − − =
�  and then verifying { }( , )

( , 1 ) 0

l
s r

n n h h
E − − =

, 0,1, , 1l n m= − −� . Furthermore, the number 

of degrees that can be reduced at most can also be deduced. 
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Let 1m n= −  in Eqn. (2.4), we obtain the best constrained polynomial after one degree reduction  

 (2 ,2 )

1( ) ( ) (1 ) (2 1),
s r s r

n n n r s n r sP t P t t t b J t− − − − −= − − −��  (2.12) 

where the constant n r sb − −
�  is given explicitly as 
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= − −    − −  

∑�  (2.13) 

The above equation can be directly derived from Eqn. (2.7) or by comparing the coefficients of nt  of both sides of Eqn. 

(2.12). Following Eqn. (2.2) and Eqn. (2.5), we know that the exact error for the above one degree reduction 

approximation is 

2

( , )

( ,1) 1

0

21 ( )!( )!
( ) ( ) ( 1) .
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n
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∑�  

If the degree of a polynomial can be reduced, then it can be reduced by one at least. Thus, we obtain the following 

criterion which can be used to decide in advance whether or not the degree of a polynomial can be reduced: 

 

Degree reduction criterion The degree of a Bernstein-Bézier polynomial (1.1) can be reduced under constraints 

(1.2) in 2L -norm with a given a tolerance ε  if and only if 

 ( , )

( ,1)

0

21 ( )!( )!
( 1) .

2 1 !( )!
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s r n k
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One may notice that by letting 0),(

),(
=rs

ln
E , it leads to  

0

( 1) 0
n

n k

k

k

n
b

k

−

=


− =

 
∑  

following equation (2.14). This is a condition under which a Bernstein-Bézier polynomial of degree n  degenerates to a 

polynomial of degree 1n− . Also following (2.14), it is easy to see that the error of degree reduction will be large for 

coefficients of Bernstein-Bézier polynomial with positive and negative alternate signs. 

 

Based on the above discussions, we now give a degree reduction algorithm as follows: 

 

Algorithm  
Input: The degree of the original Bernstein-Bézier polynomial n , the ordinates of the Bernstein-Bézier 

polynomial
0 1( , , , )nb b b� , the end-point derivative constraints up to ( , )s r , and the required tolerance ε  for 

degree reduction.  

Output: A flag indicating whether the degree of the input polynomial can be reduced, and if yes, the best polynomial 

after degree reduction with the largest possible degrees.  

Steps: 
Step 1. Compute the left hand side of Eqn. (2.14). 

Step 2. Evaluate whether or not the Eqn. (2.14) is valid, and if not, go to Step 6. 

Step 3. For 2l =  to n r s− − , 

 Apply recursive formulae (2.9) to compute n r s lb − − −
�  ; 

 Apply Eqn. (2.5) to compute ( , )
( , )
s r
n n lE − ; 

 Evaluate whether or not the inequality ( , )
( , )
s r
n n lE ε− < is valid, and if not, go to Step 5. 

Step 4. Output the best degree-reduced polynomial 1( )r sP t+ −
� (apply Eqn. (2.5)) and the precise error. Go to Step 7, 

i.e. the end of the algorithm. 

Step 5. Compute and output the best degree-reduced polynomial 1( )n r s lP t− − − −
�  by applying Eqn. (2.5) and the precise 

error ( , )
( , 1)
s r
n n lE − + . Go to Step 7, i.e. the end of the algorithm. 

Step 6. Output a flag indicating that the degree of this polynomial can not be reduced. 

Step 7. The end of the algorithm. 
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3. DEGREE REDUCTION OF BERNSTEIN BÉZIER CURVES 
In this and the following sections, we present some examples on degree reduction of both Bernstein Bézier curves and 

parametric Bézier curves. For clarity, we introduce ( , )
( , )
r s
n n me −  defined  as 

( , ) ( , )
( , ) ( , )
r s s r
n n m n n me E− −= , 

i.e., we commute the symbols of s  and r  such that ( , )r s  indicates the orders of the end constraints at parameters 

0t =  and 1t = , respectively, on the illustrations. 

 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−3

−2

−1

0

1

2

3

4

5

 
 

Fig. 1: A Bernstein polynomial of degree 8 (red broken line) and its best Bernstein 

polynomial after one degree reduction with endpoint interpolation constraints up to 

( , ) (2,2)r s = , i.e. with the 1st order derivative match at both the left and the right sides. 

 

Example 1: For a given tolerance 0.05ε = , determine whether or not the degree of the following Bernstein-Bézier 

polynomials can be reduced. 

(1) the Bernstein-Bézier ordinates 

0 1 2 3 4 5 6( , , , , , , ) (0,2,3,2,4,3,1)b b b b b b b =   with  ( , ) (1,2)r s =  

(2)   the Bernstein-Bézier ordinates 

0 1 2 3 4 5 6 7 8( , , , , , , , , ) (0, 2, 7, 4,10,3,6,4,1)b b b b b b b b b = − − −   with  ( , ) (2,3)r s =  

(3)   the Bernstein-Bézier ordinates 

0 1 2 3 4 5 6 7 8( , , , , , , , , ) (0, 2, 7, 4,10,3,6,4,1)b b b b b b b b b = − − −   with  ( , ) (2,2)r s =  

 

Following the criterion, for a Bernstein-Bézier polynomial of (1.1) with degree 6n =  and ( , ) (1,2)r s = , we have 

(1,2)
(6,1)

2 9
(0,2,3,2,4,3,1) 0.037 0.05,

39 55
e = ⋅ ≈ <  

so the degree of the polynomial can be reduced for this tolerance ε . 

 

For the Bernstein-Bézier polynomial of (1.2) with degree 8n =  and ( , ) (2,3)r s = , we have 

(2,3)
(8,1)

7 713
(0, 2, 7, 4,10,3,6,4,1) 0.0683 0.05,

2431 560
e − − − = ⋅ ≈ >  

so the degree of the polynomial can not be reduced for the given tolerance ε . 
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For the Bernstein-Bézier polynomial of (1.2) with degree 8n =  and ( , ) (2,2)r s = , we have 

(2,2)
(8,1)

14 713
(0, 2, 7, 4,10,3,6,4,1) 0.0357 0.05,

1683 1820
e − − − = ⋅ ≈ <  

so the degree of the polynomial can be reduced for the given tolerance ε . It is also easy to compute 4

713

1820
b =�  from 

(2.13), and then get the best Bernstein polynomial after one degree reduction as 
4

2 2 (4,4) 2 2
7 8 4 8

0

8 12713 713
( ) ( ) (1 ) (2 1) ( ) (1 ) ( 1)

41820 1820

k

k

k
P t P t t t J t P t t t t

k k
=

 +  
= − − − = − − −   −     

∑�  

or in explicit Bernstein-Bézier form as 

6 5 2 4 3 3 4 2 5 6 7
7

5393 20661 30441 2849
( ) 16(1 ) (1 ) (1 ) (1 ) (1 ) 31(1 ) .

26 130 130 26
P t t t t t t t t t t t t t t= − − − − + − + − + − + − +�  

 The Bernstein polynomials before and after degree reduction are shown in Figure 1. 

 

Example 2: For a given Bernstein polynomial of degree 7 with Bézier ordinates 

0 1 2 3 4 5 6 7( , , , , , , , ) (1,3,3,6, 2,6,4,2)b b b b b b b b = −  

we want to find its best Bernstein polynomial after one degree reduction subjecting to endpoint interpolation 

constraints up to ( , ) (3,2)r s =  and a given tolerance 0.01ε = . Following Eqn. (2.13), one can easily obtain 2

337

91
b =�  

and  

(3,2)
(7,1)

1 337
0.166 0.01.

55 273
e ε= ⋅ ≈ > =  

The above equation indicates that the degree of the polynomial can not be reduced with the given tolerance 0.01ε = . 

 

If the given tolerance is relaxed to 0.17ε = , e.g., the degree of the polynomial can then be reduced at least by one as 

shown in the previous equation. One can further find that 1

11

17
b = −�  and 

(3,2)
(7,2) 0.18 0.17.e ε≈ > =  

Thus the degree of the polynomial can only be reduced by one with 0.17ε =  and the procedure is terminated. If we 

do not need to control the error when performing degree reduction, the degree of this polynomial can be further 

reduced down to degree 4 under the constraints ( , ) (3,2)r s = . The ordinates of the best polynomials after degree 

reduction to degrees 6, 5 and 4 are listed respectively below following the algorithm: 

 

1 1 1 1 1 1 1

0 1 2 3 4 5 6

10 43 5761 809 13
( , , , , , , ) 1, , , , , ,2

3 15 1820 273 3
b b b b b b b

=  
 

 

 

2 2 2 2 2 2

0 1 2 3 4 5

19 12 2576 24
( , , , , , ) 1, , , , ,2

5 5 910 5
b b b b b b

=  
 

 

 

3 3 3 3 3

0 1 2 3 4

9 11
( , , , , ) 1, ,1, ,2

2 2
b b b b b

=  
 

 

The Bernstein polynomials of degree 6, 5 and 4 before and after the degree reduction are shown respectively in Figure 

2, 3 and 4. 
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Fig. 2: A Bernstein polynomial of degree 7 (red broken line) and its best Bernstein polynomial 

after one degree reduction with endpoint interpolation constraints up to ( , ) (3,2)r s = , i.e. with 

the 2nd and the 1st order derivative match at the left and the right sides, respectively. 
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Fig. 3: A Bernstein polynomial of degree 7 (red broken line) and its best Bernstein polynomial 

after two degree reduction with endpoint interpolation constraints up to ( , ) (3,2)r s = , i.e. with 

the 2nd and the 1st order derivative match at the left and the right sides, respectively. 
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Fig. 4: A Bernstein polynomial of degree 7 (red broken line) and its best Bernstein polynomial 

after three degree reduction with endpoint interpolation constraints up to up to ( , ) (3,2)r s = , 

i.e. with the 2nd and the 1st order derivative match at the left and the right sides, respectively. 

 

The above example shows that after obtaining the constant n jb −
�  one may first compute the error before obtaining the 

next ( )1 [ , 1]n jb j r s r s n m− − ∈ + + + − −� . So one can terminate the degree reduction procedure if the error is large than 

the given tolerance. This can avoid the blind procedure for degree reduction. 

 

4. DEGREE REDUCTION OF PARAMETRIC BÉZIER CURVES 
A parametric Bézier curve of degree n  can be expressed as  

∑
=

=
n

k

n

kk
tBt

0

)()( bP , [0,1]t∈  

where 1, 2, ,( , , , ) ,( 1,2, )i
k k k i kx x x R i∈ =b � � . We can apply the above degree reduction algorithm to the i -th coordinate 

of ( )tP : 

∑
=

=
n

k

n

kkii
tBxtP

0

,
)()( , [0,1]t∈  

Denoting the error of component ( )iP t  after degree reduction as ie , we can then define the overall error of ( )tP  after 

degree reduction as 2 2
1 2 ,e e e= + +� , which can be used as the criterion for degree reduction of Bézier curves in i -

dimensional space. 

 

Example 3: For a given planar Bézier curve of degree 5 with Bézier control points as follows  
{ } { }0 1 2 3 4 5, , , , , ( 1,0),(0,1),(2,4),(3,2),(5,5),(7,0)= −b b b b b b  

and with endpoints interpolation constraints with orders ( , ) (1,2)r s = . Applying the algorithm to the individual 

coordinates of the control points, respectively, we obtain the updated Bézier curve with the following set of new control 

points after one degree reduction 

{ }1 1 1 1 1
0 1 2 3 4

29 31 43 25 9 25
, , , , ( 1,0), , , , , , ,(7,0) ,

60 12 18 18 2 4

     = −      
     

b b b b b  
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where, the superscript 1  indicates that they are control points obtained after one degree reduction. The Bézier curves 

before and after degree reduction are shown in Figure 5. 
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Fig. 5: A Bézier planar curve of degree 5 (red broken line) and the updated curve of degree 4 

after one degree reduction with endpoint interpolation constraints up to ( , ) (1,2)r s = , i.e. with 

function and the 1st order derivative match at the left and the right sides, respectively. 
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Fig. 6: A Bézier planar curve of degree 5 (red broken line) and the updated curve of degree 3 

after two degree reduction with endpoint interpolation constraints up to ( , ) (1,2)r s = , i.e. with 

function and the 1st order derivative match at the left and the right sides, respectively. 
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Similarly, we can also obtain the updated Bézier curve with the following set of new control points after two degree 

reduction 

{ }2 2 2 2
0 1 2 3

37 5 11 25
, , , ( 1,0), , , , ,(7,0) ,

36 72 3 3

   = −    
   

b b b b  

The Bézier curves before and after degree reduction are shown in Figure 6. 

 

5. CONCLUSIONS 
This paper presents an error criterion in explicit form for constrained degree reduction of polynomials in 2L -norm. 

Using this criterion, it is possible to calculate the number of degrees for constrained multiple-degree reduction in 

advance with a given tolerance. The explicit error criterion is formulated in a recursive fashion and it avoids the blind 

procedure for degree reduction. Some examples are presented on both degree reduction of Bernstein Bézier curves 

and degree reduction of parametric Bézier curves. 
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