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ABSTRACT 

 
As high speed machining is becoming more and more important in modern machines shops, 
generating efficient cutter path for high speed machining is highly desirable.  For this type of path, 
it should have the least number of sharp turns as well as the second derivatives along the path is 
controllable is preferred.  Archimedean spirals have no sharp turn, and the step-over between 
adjacent segments can also be controlled to a predefined value. A clothoid spiral has the property 
that the second derivative varies linearly with the length of the curve. Therefore, these spiral curves 
can be used to generate paths with constant cutter engagement values as well as maintain smooth 
movements while performing cornering and linking movements. In this paper, we will introduce a 
detailed approach which covers a 2D region in a very efficient manner by using the combination of 
Archimedean and clothoid spirals.   
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1. INTRODUCTION 
High speed machining is becoming more and more important in modern machines shops, especially in aerospace 
machining, mold and die machining. High Speed Machining (HSM is short) is the use of higher spindle speeds and 
feed rates to remove material faster as well as maintain the  quality of part finishing [1] .Ideally, along a cutter path in 
HSM, the cutter should have a constant chip load and usually with very a small step-over at very high feed rates. 
Moreover, the path should avoid sharp turns.  Otherwise, unexpected tool breakage that results from exceeding a tool's 
permissible loading conditions not only costs money, but also disrupts the machining process [2]. In this paper, we 
consider the problem of using a cutter (in this paper, we will only focus on flat-end milling cutter) to cover a larger 2D 
region called pocket that is bounded by a set of line or arc segments. Although if the scallop height is considered, this 
approach can also be extended to other types of cutters, in this paper we only consider flat-end mill for the purpose of 
computational simplicity. 
 
In the 2D path planning problem, along the path, there are usually three types of movements: (1) cutter moves along 
the path to cover region that hasn’t been fully covered (it is called an effective move); (2) cutter moves in the region 
that has been fully covered before (it is called a repositioning move); (3) in milling operations, the cutter can be lift up 
(i.e., retracted) to a clearance height and then moved to another position using rapid movement and then lowered 
down to perform another cutting motion (it is called a retraction).  Both the repositioning move and the retraction are 
used to link disconnected effective moves together. These moves result in path segments that increase the total 
covering time.  Therefore, in order to have an efficient path, such moves should be eliminated or minimized.  Even for 
the effective moves, when the cutter moves along this path, if most of the sweeping area has been covered before, this 
move is still not efficient.  The ideal way of performing efficient coverage is to move the cutter along a path to cover 
area that has not been touched before. In this case, the so called step-over is 0%.  Obviously in milling operations, the 
step-over usually cannot be 0% because there are other factors like cutting force, surface finish etc. to be considered in 
order to determine a proper step-over.  However, a constant step-over value is preferred especially in milling 
operations because it will result in constant cutting force.  Thus, a path with constant step-over is preferred. 
 
Moreover, as mentioned before, if the cutter moves along a path with shape turns, for example, the so called turn-over 
in milling operations, the speed of the cutter has to be slowed down and then the cutter will take a turn and then 
resume its movement.  This kind of shape turns has particular impact on HSM, because usually to make a turn takes 
much longer time than the normal movement, and the resulting sudden cutting load change may cause tool breakage.  
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Therefore, a path with minimal number of sharp-turns is desirable.  For some cases when an extra path segment has 
to be used to link disconnected path segments together, the movement of cutter has to be controlled such that the 
movement should be smooth enough to prevent a sudden cutting load on the cutter as well as the machine.  
Therefore, a path that curvature is controllable, for example, within an upper bound, is also preferred. 
 
Thus, the ideal path should be a path with minimal number of repositioning move, minimal number of sharp turn, 
constant step-over value, with most efficient effective moves and the curvature or the 2nd derivative is controllable.  
This type of path is desirable in milling operations, especially in high speed milling operations.   
 
Traditional approaches in finding path for 2D regions are normally either using zigzag path, or using contour-parallel 
paths.  These paths cannot meet the aforementioned requirements.  Thus, we will consider another approach in 
finding such a path, i.e., using spiral curves. 
 
An Archimedean spiral is a special curve which can have no sharp turn, and the step-over between adjacent segments 
can also be controlled to a predefined value.  However, traditional approaches in finding such a path either work for 
very simple convex regions, or, for irregular shapes, many overlap linkage paths have to be used.  Thus, although 
spiral curves are promising, there is still not a good algorithm in generating a path which 1) covers the entire region, 2) 
has least number of turns, 3) uses a controllable step-over value.  A clothoid spiral has the property that the second 
derivative varies linearly with the length of the curve. Therefore, it can be used to replace sharp turns and also be used 
in linking several disconnected segments together.  
 
In our previous work, preliminary findings of applying modified Archimedean spirals in path planning are presented 
[3].  However, there are several un-solved problems in [3], for example, finding the maximal area a cutter can cut 
along a spiral path, which will be studied in detailed in this paper.  Moreover, the problem of linking disconnected 
segments is not tackled in [3], which will also be covered. Compared to the algorithm proposed in [3], in this paper, 
the newly proposed path planning algorithm uses a combination of Archimedean and clothoid spiral, which can be 
used in generating efficient milling cutter paths for HSM.   
 
In this paper, Section 2 reviews some background information of spiral curves and path planning using modified 
Archimedean spiral curves.  Section 3 briefly introduces the algorithm in finding coverable area for a given spiral, 
which is critical in finding the centers of Archimedean spirals.  Section 4 introduces the application of clothoid spiral in 
path planning.  Then Section 5 presents the algorithm of generating spiral paths for 2D pockets, and section 6 provides 
discussion and implementation of such an algorithm.  We believe this algorithm can be used to generate better cutter 
paths than traditional cutter path planning algorithms in most of the cases. 
 
2. BACKGROUND AND RELATED WORK 
For detailed information about path planning in HSM, please 
refer to [3] and [4].  Especially in [4], research work and 
industrial applications in HSM path planning are reviewed in 
detail.  In this section, we will only focus on using spirals in path 
planning for HSM. Although some CAM providers also include 
spiral movements in their path planning packages like Catia, 
Cimatron, MasterCAM, etc., most of these paths center at given 
points.  Another commonly used path in HSM is the so called 
trochoidal paths, which can be found both in CAM providers 
like MasterCAM and PowerMill, as well as research works [5, 6].  
However, trochoidal movements require a large amount of 
empty movements, which lowers the cutting efficiency.  
 
2.1 Archimedean Spiral 
Archimedean spiral can be made by a point moving in a circle with constant speed. It starts in the origin and makes a 
curve with un-winded arms as shown in Fig. 1. The distances of intersection points along a line through the origin are 
same. 
 

Fig. 1: Archimedean spiral with three rounds.
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An Archimedean spiral is usually represented by r = a + bθ, for a simple version, we take r = bθ, thus we have its 
parametric form 
 )cos()( θθθ bx =  

)sin()( θθθ by =            

      
where b is the constant which defines the distance between two adjacent arms. The curvature of an Archimedean 
spiral is given by 
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Complex geometries are in general made up of sharp corners. A path that has the least number of sharp turns is 
preferred in high speed machining. Archimedean spiral is a special spiral curve which can have no sharp turn, and the 
step-over between adjacent segments can also be controlled to a predefined value [3], i.e., the value b in r = a + bθ 
defines the step-over value between two adjacent path. Thus the spiral tool paths are more suitable for high speed 
machining than in traditional machining. 
 
2.2 Extended Archimedean Spiral 
Consider all points on a continuous curve segment (for 
example a linear or circular one as shown in Fig. 2), if they 
are centres of spiral curves with the same a and b, and if we 
first try to create all spiral curves based on these points, and 
then find the bounding curves of these spiral curves given the 
equation r = a + bθ, then, there will be a special spiral curve 
formed which is centred at the given line or arc segment, and 
also has the property that the distance between two 
neighboring arms has the same value, which is controllable 
by b.  Thus, we can use this property to create a general case 
of spiral curves.  Just try to distinguish this spiral curve from 
traditional spiral curves which centred at a given point, these 
spiral curves are centred at curve segments, which are called 
extended Archimedean spirals (EASs). We now have a new 
definition of Archimedean spiral, which can be simply 
represented by the following: A(c, b), where c is either a point or a continuous curve and b is the value controls the 
distance between two arms along the spiral.  In this definition, is c is a point, then a traditional spiral is defined, if c is a 
curve, then an extended spiral is obtained.  Notice that in practice, we prefer c to be continuous and not self-
intersecting.  Also, c should at least have C1 continuity, otherwise, the extended Archimedean spiral will have sharp 
turns itself, which is not preferred in HSM. Obviously, C1 continuity is a minimal requirement for center curves, 
because when growing the extended Archimedean spiral curve, it may overlap, which can be checked, and the 
growing process will be stopped. 
 
Thus, if a curve segment is given, we can create an extended Archimedean spiral curve centred at this given curve 
segment.  In path planning problems, the spiral cannot un-wind infinitely.  In other words, it has to be stopped at some 
point otherwise it will intersect with the obstacle or boundary of a given pocket.  Thus, if a spiral curve is stopped at 
some point, the stopping θ is called the bounding θ, and the distance from the outermost point on the spiral curve to 
the centre is called the bounding distance. Usually, for a spiral curve centred at a point, the bounding distance is easy 
to find, i.e., find the nearest distance from the centre to the boundary of the pocket, which control the un-winding of 
the spiral curve.  The same approach can be generated to find bounding θ of extended Archimedean spiral curves. 
 
2.3 Path Planning Using Archimedean Spirals 
In our previous work, we proposed a preliminary algorithm in using extended Archimedean spirals in path 
planning[3].  The basic idea is to generate the medial axis for a given pocket, then for each segment along the medial 
axis we find the one which can covert the largest area, then we used that segment as a center to generate an extended 
spiral, and then for the left-over area, we iterate the same procedure until this pocket is fully covered by Archimedean 
spirals.     

(a): Spiral curve centered at line segment 

(b): Spiral curve centered at curve segment 

Fig. 2: Extended Archimedean Spiral.
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However, there are still several unsolved issues with that approach.  Here are three major unsolved problems. 
1. In [3], a center is found within the curve segments along the medial axis which can cover the largest area.  

However, in practice, sometime an extended Archimedean spiral which centered at part of a curve segment may 
cover the largest area because when the Archimedean is un-winded, it may intersect with the boundaries of the 
pocket.  Therefore, we need a systematic way of finding the area that an extended Archimedean spiral can cover 
before we can find the proper centers. 

2. Each time after an Archimedean spiral is used, the area it can cover is extracted from the initial pocket, and then a 
new medial axis is created.  However, this may results in too much computation work, and also, the left over area 
is irregular after some portions are extracted, which will result in a medial axis with smaller segments.  However, if 
we allow some overlapping between two adjacent cutter paths, we do not need to re-generated the medial axis 
again and again, we can always follow the initial medial axis without re-considering the segments along the 
medial axis which has been covered before. 

3. In [3], several disconnected Archimedean spirals has to be connected using straight line, which may result in un-
necessary sharp turns.  However, we can apply the clothoid spiral in solving this problem. 

 
 
2.4 Clothoid Spiral 
The clothoid spiral is also called Euler's spiral, or spiral of Cornu (Fig. 3). The characteristic property of clothoid is that 
its curvature is a linear function of the arc length, or in other 
words the curvature is proportional to the length of the curve 
measured from the origin of the spiral. 
 
A general definition of clothoid spiral is given by k(s) = σs + 
k(0). The parametric form of a clothoid is given by the 
Fresnel integrals 
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where u is a non-negative parameter. As u approaches ∞, the 

curve spirals inwards towards its centre ( )2,2 ππ± . The 
Fresnel integrals can only be solved by numerical methods. However, according to the definition, the curvature of a 
clothoid changes linearly with the arc length. 
        
In the traditional machining cutting tools undergo sudden changes in directions as they approach the corners, and thus 
the acceleration of the tool decreases instantaneously. There is also a sudden increase in resultant forces acting on the 
cutting tool. The usage of clothoid spiral can smoothen the sharp corners of the traditional tool paths and reduce the 
magnitude of the sudden direction changes that the cutting tool has to undergo [7]. 
 
3. COVERABLE AREA OF ARCHIMEDEAN SPIRAL 
Given an extended Archimedean spiral A(c, b), either c is a point or a curve segment, if we know the bounding θ, we 
can estimate the area it covers.  This area is called a coverable area.  Ideally, if the coverable area of a spiral curve 
segment is equal to the target region of a given pocket, then the objective path is the same spiral curve segment.  
However, in most cases, one spiral curve segment can only cover part of the target region; we have to build several 
spiral curve segments in order to cover the entire target region.  Because the path we expect has the least number of 
sharp turns, we want each spiral curve segment to be as large as possible.  Thus, we use the greedy algorithm in 
finding each spiral curve segment.  The idea is to find the spiral curve segment inside of the un-covered area whose 
coverable area is as large as possible.     
 
When using the algorithm in [3], one of the important elements is to find the maximal area that a cutter can cut along 
an extended Archimedean spiral.  There are some research works on finding the coverable area of a cutter in cutter 

Fig. 3: A Clothoid Spiral.  
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selection problems [8-14]. These approaches usually assume that the cutter can cover a circular region as long as we 
can locate the cutter inside of the pocket. In other words, the cutter can move along any path in order to reach that 
center located. However, our problem is different in the manner that the cutter path is along extended Archimedean 
spiral, no any arbitrary movement.  Therefore, this problem can be defined as the following:  given a 2D pocket P 
bounded by a set of linear or arc segments and a cutter C, given a set of possible centers of Archimedean spirals (these 
centers can be points, line or arc segments or a smooth continuous non-self-intersecting curve), given a constant step-
over value (in other terms, given the distance between two arms along the Archimedean spiral b), find the maximal 
area the cutter can cover without intersecting the boundaries.    
 
In the approach we used in generating spiral cutter paths, we start with the medial axis of a given pocket, and then 
along the medial axis (which is represented by {ci}, where each ci is either a linear segment or a parabola), we try to 
find the center segment of an Archimedean spiral which can cover the maximal area.  We will use the slicing method 
in finding the coverable area.  The approach is as following.  For any given point along the medial axis, we know the 
maximal enclosed circle, thus, we can build a 3D graph using the medial axis.  In this graph, the xy plane contains the 
pocket along with the medial axis; the z axis indicates the diameter of the maximal enclosed circle for each point along 
the medial axis as shown in Fig. 4.  After this graph is built, we can use the following algorithm in finding the maximal 
area a cutter can cover along an extended Archimedean spiral.   
 
FindingMaximalCoverableArea (P, C, {ci}, b) 
1. Build a 3D graph G based on the aforementioned method. 
2. Start with z=b, slice the graph using a plane parallel to the xy plane, and then increase z by b 
3. For each z 
3.1 Find the intersection curve {ci’} with G, where the projection of each ci’ on xy plane p(ci’), should have the 

following property: p(ci’)⊆ci (along the medial axis, each ci is either a line or parabola segment)  
3.2 For each ci’, the coverable area is obtained by ai = z × length of (ci’).   
3.3 Store the maximal value ai

* for all ai, and corresponding p(ci’)
* along this slice 

4. Find the maximal value of a* among all slices, and record the segment along the medial axis p(ci)
* as well as 

corresponding z value.   
 
The above algorithm finds the maximal 
area the cutter can cover. It is clear that 
this is an approximation, because it 
assumes that the coverable area of an 
Archimedean centered at a point is 
equal to the circular area centered at the 
point.  However, this approximation is 
acceptable because in path planning, we 
do not require the Archimedean spiral to 
cover exact the area it can maximally 
covered.  Meanwhile, when an extended 
Archimedean spiral A(c, b) is built by 
using the slicing method, for any point p 
along the center curve c, the maximal 
distance between this point to the 
boundary of pocket P is less than the 
maximal enclosed circle’s diameter at 
that point, which proof that A(c,b) will 
not intersect  with the boundary. After 
the graph G is built, the running time of 
this algorithm is linear to the number of 
slices, i.e., if the diameter of the 
maximal enclosed circle of the pocket is 
d, then the running time is O(⎣d/b⎦). 
 
Now, we have a concrete algorithm in 

x 

y 

z 

Slice i

Slice j
ci’ 

Fig. 4: Find the coverable area of an extended Archimedean spiral.

(a) A simple pocket and its medial axis  

(b) Build a 3D graph G using medial axis and the 
diameter of maximal enclosed circle at each point 
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finding the maximal area a cutter can cover as well as the center of the Archimedean spiral.  We can use the results in 
the algorithm. 
 
4. LINKING ALGORITHM USING CLOTHOID SPIRAL 
What we can obtain so far is a set of Archimedean spirals.  The next problem we are facing is to link these segments 
together in a proper manner.  As discussed before, we would like the final path be smooth, in other terms, we want the 
2nd derivative along the path can be controllable.  Therefore, we will apply clothoid spiral in linking those segments 
together.  There are several different approaches in applying clothoid spiral in linking two different curvilinear 
segments together, for example [7].  We will adopt these approaches in this research. For example, the approach used 
in [7] proofed that a so called bi-clothoid can be used to link two straights lines together, and this bi-clothoid exists in 
between the arc segments linking these two lines and the intersection point of these two rays as shown in Fig. 5.  Also, 
it is clear that the curvature changes smoothly when using clothoid spiral compared to when using arc segments.   
 
For each pair of ending segments 
along two Archimedean spirals, we 
create a ray along each segment. 
In case these two rays intersecting 
inside of the pocket and they are 
not intersecting with the boundary, 
we create a clothoid near the 
intersecting point. In case these 
two rays intersects at a point 
outside of the boundary, or they 
intersects with the boundary, or 
they have no intersection, we 
create extra linear segments inside 
of the pocket and also intersect 
with these two rays, then, at each 
intersection point along these extra 
linking segments, we create a 
clothoid spiral.  With that, we will 
guarantee that the linking is inside 
of the pocket, and also, the linking segment is smooth in term of the 2nd derivative.   
 
5. ALGORITHM FOR GENERATING 2D PATHS 
With all the newly developed techniques, we have a modified algorithm in generating spiral curves in HSM.  The path 
generation problem is defined as: given a connected target region T and obstruction region O, and given a mover with 
radius r, find an efficient continuous path P such that: 1) for every point p in T, there is a location of the cutter on P to 
cover p; 2) for every point q on P, the covered region of locating the cutter at q is inside T.  
 
Input: A connected pocket P, a circular shape mover with diameter d, the value a, the overlapping rate, or the value 
controlled the distance between two neighbouring arms in one spiral curve segment b.  
Output: A near optimal continuous path that can cover the whole 
region. 

1. Use Medial Axis Transform to find the pocket’s medial axis 
M and associated radius function R. 

2. Apply algorithm   FindingMaximalCoverableArea (P, C, {ci}, 
b), return center c 

3. Build spiral curve segment centred at c, and the bounding 
condition can be found by considering the boundary of the 
pocket and the obstacles. 

4. find the segments on medial axis that is covered by the 
above spiral curve, subtract them from {ci}, and do iteration 
from step 2 (as shown in Fig. 6) until the maximal coverable 
area for the leftover area is less than a predefined value, 

Fig. 6: After one archimedean spiral is built, 
use the rest segments along medial axis to 
find the next spiral. 

Fig. 5: Use clothoid spirals in linking two segments together. 

Bi-clothoid

circular arc

(a) Bi-clothoid

(b) Curvature change when 
using circular arc 

(c) Curvature change when 
using clothoid 
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which terminates the process when the Archimedean spiral is too small 
5. Build a graph from all spiral curve segments, and each connected pair, use a clothodial spiral to link them 

together 
 
It is noticed that the algorithm is based on greedy strategy, and the optimal solution cannot be guaranteed.  However, 
it can find a path which consists of different spiral curve segments, and can cover the entire region.  Also, in some 
cases, with the growth of the covered area, the leftover area will be smaller and smaller, until only areas near the 
corners of the pocket boundary have not been covered. Therefore, if we still use spiral curve to cover those areas, it 
will result in many smaller segments.  In this case, we can use the strategy of adding one or more contour parallel 
curves to cover the areas near the boundary of the pocket, for the rest region, we use the spiral curves to cover them, 
and then link the adjacent spiral curve and contour parallel curves by morphing. Thus, the resulted path will be a 
combination of several contour parallel paths, and several spiral curves segments.   
 
6. IMPLEMENTATION AND DISCUSSION 
We did a prototype implementation and conducted experiments using our algorithm. In this environment, after import 
a pocket, we can create the Medial Axis, and then generate spiral curves segment by segment.   
 
As shown in Fig. 7, after the Medial Axis is generated, we can find the maximal covered area along the Medial Axis if a 
continuous spiral curve segment is created.  Then, we create the spiral curve segment.  After that, we subtract the 
medial axis segments that are covered, then for the rest segments on medial axis, we create the next spiral curve 
segment.  If the left over area is smaller in size, then we stop the process, for the rest area, we use offset curves to cover 
them.  After that, we can easily link those spiral curve segments together.  For most cases, the generated path performs 
superior to the existing zigzag or contour 
parallel path as shown in Fig.7 because 
there is no sharp turn and the step-over 
value between two neighbouring paths is a 
constant value.  Therefore, the path 
generated by the new algorithm can 
guarantee that along most of the path 
segments, the step-over is constant, and the 
number of sharp turn-overs is limited.    

 
The work presented in this paper is different 
from the one in [3] in the following 
manners: 
1. We studied the problem of coverable 

area of extended Archimedean spiral in 
this paper. 

2. The centers are curves instead of only 
linear and circular segments. 

3. The clothoid is applied in linking 
disconnected segments together. 

4. The new algorithm in generating the 
spiral path only requires one set of 
medial axis. 

 
This new algorithm can generate paths that: 
1. For each spiral curve segment, there is 

no sharp turn-over, thus, a milling 
cutter can move rather smoothly. 

2. The distance between adjacent path 
segments in a spiral curve is a constant 
value. This value can be used to control 
the step-over value between two 
neighbouring path.  If this value is set to Fig. 7: Two Examples.
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be the radius of the mover, then the mover covers the region with maximal efficiency. 
3. Also, this constant step-over can be used to control the so called cutter engagement value in milling operations, 

which satisfies the requirement of constant cutting load, thus, in high speed machining, the cutting speed can be 
effectively controlled.  

4. The linkage segment is smooth in terms of 2nd derivative is linear with the curve length. 
5. A greedy algorithm is used to generate a sequence of spiral curves, and then a graph search algorithm can be 

used to link these segments together to cover the entire region. 
 
In the current algorithm, we consider the center curve of a spiral to be machined by a cutter that is fully engaged with 
the material.  Obviously, this is not preferred in HSM. However, this problem can be easily solved by applying 
trochoidal movements when creating centers. In other words, instead of creating the center using one single path, we 
use trochoidal path along the center line, such that the final path will be acceptable for HSM. In the future, we would 
like to explore and implement more linking algorithms.  For example, besides clothoid spiral, there are other types of 
curves like Reeds and Shepp curves we can use [15].  Meanwhile, we will study the problem of covering the left-over 
portions near the boundary of the pocket, and merging different types of path segments together.   
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