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ABSTRACT 

 
In this paper we propose a new concept, sparing least-squares denoising, which is used to 
significantly reduce the time cost of denoising algorithms that utilize least-squares fitting techniques. 
This idea is implemented by a fast feature-preserving denoising method, partition of feature and 
non-feature regions, and introduction of a new index, vertex sparsity. We use this index to decide 
the location on curves where an expensive least-squares fitting is really needed. Our numerical 
experiments indicate that our new approach yields an average 2.93 times saving in the computation 
time without remarkable sacrifice on denoising accuracy, compared to existing least-squares fitting 
methods. 
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1. INTRODUCTION 

Measurement noise is an intrinsic problem with various existing laser and white light sensors such that denoising is a 
crucial step for accurate metrology and quality control. The path/curve noise is also a current problem in tool path 
generation from CAD/CAM design surfaces. In the past, different surface smoothing algorithms have been proposed 
[1-5]. Among them, least-squares fitting methods [4, 6] yield a very high denoising accuracy, and therefore are quite 
suited for metrology and quality control. However, a least-squares fitting method is normally five to ten times more 
expensive in the computational time cost, which hinders its wide applications, especially when many boundary curves 
need to be processed or near real-time requirement is imposed. 

The objective of this paper is to propose an approach that is significantly faster than the traditional least-squares 
fitting methods, and in the meantime maintains its high denoising accuracy.  A piecewise algorithm is used to speed up 
least squares whenever possible. Its unique contribution is the introduction of a new concept, sparing least-squares 
fitting, and a new index, vertex sparsity. In this paper, we limit our effort in two-dimensional curve cases, especially in 
the format of polylines. In other words, the output format of our algorithm is a polyline. However, the concept can be 
easily extended to three-dimensional cases. 

The remaining of this paper is organized as follows. In Section 2, a new method of sparing least-squares denoising 
is introduced. Then, numerical experiments are reported and discussed in Section 3. Finally, some concluding remarks 
are given in Section 4. 
 
2. SPARING LEAST-SQUARES DENOISING 

In [6], we proposed the concept of hybrid smoothing or denoising to achieve an accurate denoising. However, the 
main shortcoming of that approach is high computational cost associated with least-squares fitting technique. In this 
paper, we follow the overall approach used in [6] with a significant improvement in reducing computational time cost.  
 
2.1 Feature-Preserving Pre-smoothing 

The pre-smoothing is an important pre-processing step in handling a denoising task. It is possible that a signal/noise 
ratio is so low that sharp features could not be correctly detected without a pre-smoothing. If a filter is randomly 
selected for pre-smoothing, even though the noise could be suppressed, the sharp features would be also smoothed 
out. This is not what we expect and creates the dilemma of a chicken-and-egg problem.  

The authors proposed to use a median filter as a first step to solve this chicken-and-egg problem. The unique 
feature of the median filter is its theoretical guarantee to maintain global sharp features, which are the features that 
should not disappear in a denoising process.  In this way, it is possible to correctly detect all the feature regions on the 
pre-smoothed curves, and then to use this partition information to guide a real denoising process on the initially-noised 
curve. As a result, our approach works properly even when signal/noise ratios are very low.  
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2.2 Partition of Curves by a Feature-Preserving Pre-smoothing Procedure 

There are many existing approaches for surface or region partition [7-9]. We don’t plan to create a new one. Instead, a 
commonly-used region grow method is adopted in this study. In order to make a partition successful, the signal/noise 
ratio should be high enough. Otherwise, a pre-smoothing is necessary, and global sharp features must be maintained 
during the pre-smoothing process. 

In this paper, a region grow method is applied on curves that are pre-denoised. A curve is divided into non-feature 
and feature regions. The global sharp features are located in the feature regions, while the non-feature regions are 
smooth and/or contain just local noises. 

 
2.3 Hybrid Denoising 

After the partition of a curve, the result of pre-smoothing is discarded except the partition information of feature and 
non-feature regions. A hybrid scheme is applied on the input noised curve discriminately over feature and non-feature 
regions. In feature regions, a median filter is used to maintain the sharp global features, while in non-feature regions a 
sparing least-squares fitting treatment is proposed for the sake of high denoising accuracy and high computational 
efficiency. 

The basic idea of the sparing least-squares fitting treatment is to avoid the least-squares fitting as much as possible 
because it is computationally time consuming. If the vertex density is very high in a local region, then the local least-
squares fitting of a quadratic or cubic curve segment in this region becomes unnecessary, because an approximation 
error becomes smaller even with a linear approximation. On the contrary, if the vertex density is very low in a local 
region, a local least-squares fitting becomes crucial to achieve a low approximation error, which in turns leads to a high 
denoising accuracy. 

In order to implement the above idea, the first thing that needs to be done is the introduction of a vertex sparsity 
index (VSI), which can be used to identify if vertices are distributed sparsely or densely on a curve.  We define VSI as a 
ratio of the distance between the first and fourth vertices in a two-ring vertex neighborhood, as shown in Figure 1, to 
the feature size of a curve. In Figure 1, the current vertex is P, and the first and fourth vertices in its two-ring 
neighborhood are 1Q  and  4Q , respectively. The feature size of a curve refers to the maximum length of its bounding 

box. 
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Fig. 1: A two-ring vertex neighborhood of a vertex P. 
 

The second task that we need to accomplish is to find out a suitable threshold for VSI, VSIt . We consider that the 

vertices on a curve are sparsely distributed if VSI >  VSIt . Otherwise, the vertices are distributed densely. In order to 

determine this threshold, we consider a typical case as shown in Figure 2, in which a circular sector of a circle is 

investigated. We define an approximation error of chord AB  as a ratio of the area of  circular segment ABC to the 

area of circular sector AOBC. A distance ratio of line segment AB  is defined as a ratio of the distance between vertices 
A and B and the diameter of the circle. According to trigonometry, the approximation error, ap, and distance ratio, dr, 
can be expressed by 
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sin
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=dr                                                                     (2) 

where  θ  is a central angle of chord AB . Table 1 gives the values of the approximation error and distance ratio for 

various central angles. We consider an approximation error, 0.00161, is sufficient for achieving a high denoising 
accuracy, as illustrated by boldface numbers in Table 1. Since VSI is a measure related to four line segments, we 
multiply 4 with the distance ratio, 0.0491, and let VSIt  equal 0.2 approximately. Figure 3 shows a vertex density on a 

circle, which corresponds to the approximation level dictated by VSIt .  
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Fig. 2: A circular sector of a circle. 

 
A circle has the minimum possible feature size for a given area among all 1C  continuous curves. On the other 

hand, a square is an extreme case for 1C  discontinuous curves, and the ratio of its minimum feature size to the size of 

the circle with the same amount of area is 0.89, which is close to unity. Therefore, it is reasonable to infer that VSIt , 

obtained through the way described above, is an approximate bound that guarantees a dense vertex distribution, if  
VSI < VSIt ,  for any arbitrary two-dimensional curve. Figure 3 shows a vertex distribution on a circle when VSI= VSIt . 

Note that the vertex distribution in Figure 3 is scale variant, while the approximation error and distance ratio in 
Equation (2) are scale invariant. 

 

θ  (degree) Approximation 

error 

Distance ratio 

180 1 1 

90 0.363 0.707 

45 0.0997 0.383 

22.5 0.0255 0.195 

11.25 0.00641 0.0980 

5.625 0.00161 0.0491 

2.813 0.000402 0.0245 

1.406 0.000100 0.0123 

 
Tab. 1: Approximation error and distance ratio of a chord at different central angles. 

 
With a scale invariant threshold, VSIt , available, we are ready to complete the third task in implementing the 

sparing least-squares denoising. For each vertex in a non-feature region, we calculate its VSI. If VSI is smaller than  

VSIt , a mean filter is applied. Otherwise, a local least-squares fitting is used. If there are some outliers on an input 

curve, they must be removed first before the computation of VSI. There are some existing methods to remove outliers 
[10-12], and readers should choose one at their own disposal.  

Our numerical experiments indicate that the mean filter is an accurate and fast denoising algorithm for non-feature 
regions with a dense vertex distribution, which is possible during a scanning process on a smooth curved surface. For 
all the non-feature regions, it is important to find a suitable denoising algorithm, because these regions could be any 
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arbitrary smooth curved surfaces. It is not our purpose to claim the median and mean filters as our contribution. 
However, for the convenience of readers, we list our version of median and mean filters for polylines as Algorithms 1 
and 2 below. 
 

 
 

Fig. 3: Vertex distribution on a circle when VSI= VSIt . 

 
Algorithm 1:  fast_median_filter( PL ) 

Data Structures: L= set of all line segments; V = set of all vertices.  

Precondition:  PL contains the information of a polyline, including L and V.  Note that the first and last line segments of 

the closed polyline PL, 1l  and nl , are adjacent to each other, i.e., nll =0 , where n is the number of line segments in 

PL.  
Postcondition: Smoothed polyline is stored in PL 

(1) calculate the median normal, )(ˆ ilN , for each line segment, Lli ∈  

(1.1)    initialize a real variable, anglesummin _ , to a big number  

(1.2) loop over each line segment: }2,2|{ +−==∈ iiklSl kneighborj  

(1.2.1) calculate the sum of angles, anglesum ,  between the normals of the current line segment, jl , and 

other line segments in neighborS  

(1.2.2) if anglesum  is less than anglesummin _ ,  then angleangle sumsummin =_  

(1.3) the median normal for il , )(ˆ ilN , is equal to the normal of the line segment that corresponds to 

anglesummin _  in the loop of Step (1.2) 

(2) calculate perturbation at each vertex V∈υ  

))((ˆ)))((ˆ))())((()((ˆ)))((ˆ))())((((5.0 υυυυυυυυυ rightrightrightleftleftleft llllll NNPCNNPCU •−+•−= ,                (3) 

where  )(lC  and )(υP  are the centroid of line segment Ll∈  and the position of vertex V∈υ , respectively. )(υleftl   

and )(υrightl   are two line segments that are adjacent to vertex, υ .                                                                               

 
Algorithm 2:  mean_filter( PL ) 

Data Structures: L= set of all line segments; V = set of all vertices.  

Precondition:  PL contains the information of a polyline, including L and V.   
Postcondition: Smoothed polyline is stored in PL 

(1) calculate the mean normal, )(ˆ ilN , for each line segment, Lli ∈  

(1.1) let ∑
+=

−=

=
2

2

)(

ij

ij

jlNΝ  
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(1.2) let the normalized N  be the mean normal for il , )(ˆ ilN  

(2) calculate perturbation at each vertex V∈υ  by Equation (3)                                                                                 

 
The overall treatment for the sparing least-squares denoising is given in Algorithm 3, which reflects our philosophy 

of applying the expensive least-squares fitting only when it is absolutely necessary.  
 
Algorithm 3:  sparing_least-squares_denoising( PL ) 

Data Structures: L= set of all line segments; V = set of all vertices.  

Precondition:  PL contains the information of a polyline, including L and V.   
Postcondition: Denoised polyline is stored in PL 

(1) make a copy, 'PL , of the input polyline PL 

(2) execute fast_median_filter( 'PL ) 
(3) identification of sharp corners  

(3.1) loop over each  vertex  'V∈υ  on 'PL  

(3.1.1) if the angle between the normals of two line segments, which are incident to vertex υ , is greater 

than an angular threshold tθ , then mark the two neighboring line segments left to υ  and the two 

neighboring line segment right to υ  as feature line segments.  

(4) loop through each feature line segment and mark its two end nodes as feature vertices 
(5) loop over each vertex V∈υ  on PL  and determine VSI for each vertex 

(6) main denoising loop with a specified number of denoising steps 
(6.1)  loop over each line segment Ll∈  

(6.1.1) if l  is not a feature line segment, calculate its mean normal by using Step (1) of Algorithm 2 

(6.1.2) otherwise, calculate its median normal by using Step (1) of Algorithm 1 

(6.2)  loop over each vertex V∈υ  on PL  

(6.2.1) if  υ  is not a feature vertex,   

(6.2.1.1) if VSI > VSIt , use least-squares fitting to determine υU  

(6.2.1.2) otherwise, use mean normal to determine υU  as in Algorithm 2 

(6.2.2) otherwise,  

(6.2.2.1) if )(υleftl  is a feature line segment,  ))((ˆ υleftlN =median normal of )(υleftl ; otherwise, 

))((ˆ υleftlN = mean normal of )(υleftl .  

(6.2.2.2) Similar operation is applied on )(υrightl  to calculate ))((ˆ υrightlN  

(6.2.2.3) calculate the smoothing perturbation υU  by Equation (3) 

(6.2.3) update the vertex coordinate by υυυ UPP +=                                                                                  

 
Note that υP   in the above algorithm refers to the location vector of vertex υ .  The number of denoising steps is 

usually specified by users. The conventional least-squares fitting treatment can be found in [6]. 
 
3. NUMERICAL EXPERIMENTS 

Our sparing least-squares denoising was implemented in VC++ and tested on a HP Notebook PC with a 1.06 GHz 
Pentium III CPU and 504 MB of RAM.  The time complexity of  the approach is O(n), where n is the number of 
vertices of  polylines. However, there is  a large coefficient associated with the least-squares fitting, which is called in a 
frequency that is problem-dependent.  

In order to quantify the denoising accuracy of two types of least-squares denoising algorithms, two error metrics 
are used in this paper. The first one is a vertex distance error metric, which measures the sum of distances between 
each vertex of a test polyline and a reference polyline. The second is an error metric of normal of line segments. It 
measures the sum of angles between each line segment of a test polyline and the corresponding line segment of a 
reference polyline.  We represent the angles in radian in this paper.  

In the first group of tests, we choose four different types of algebraic curves as a reference polyline, and then 
generate certain amount of random synthetic noises by using a random number generator in C++. In test case 1 of 
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Figure 4, the polyline consists of a part of 3xy =   on the right and a quarter of circle on the left, while test case 2 is a 

curve represented by 32 xy = .  Rows 1 and 2 in Figure 4 represent these two curves and noised ones, respectively. 

The polylines denoised by the conventional and sparing least-squares fitting are given in rows 3 and 4 for a visual 
comparison. Table 2 shows a quantitative comparison between these two types of least-squares fitting in terms of 
execution time and error metrics in test cases 1 and 2. Here, the execution time is measured in milliseconds per 
denoising step.  

A high-order drop shape, 0
20

2
20

2

5 =







−−




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−+

π
θρ

π
θρ , is used in test case 3, and the equation for the curve 

in test case 4 is ( ) ( )222222 yxayx −=+ .  Figure 4 provides a visual comparison of the denoising results between the 

two types of least-squares fitting, while Table 2 gives quantitative error metrics and execution time of two approaches 
in test cases 3 and 4. It can be easily seen from Figure 4 that the denoising results of two approaches are almost 
identical. This is also supported by the error metrics in Table 2.  

Figure 5 is a more complex example of an airplane. To explore the effect of different noise levels on the 
performance of the two approaches, we designed two test cases, 5 and 6. As you can see from this figure and Table 3, 
the conventional and sparing least-squares approaches yield almost the same denoising result except a significant 
difference in computation time.  

To investigate the effect of vertex density of a polyline on the execution time, we designed two test cases (7 and 
8), as shown in Figure 6, on the basis of the drop shape in test case 3. From Table 3, an observable tendency is that 
the higher the vertex density is, the more execution time can be saved with the sparing least-squares treatment, 
compared to the conventional least-squares fitting.   

One unexpected thing is that the normal error of our method is usually lower than that of least squares in Tables 2 
and 3. One possible explanation is that the least squares fitting method is focused on the optimization of minimum 
distance deviation, while the mean filter is focused on the average surface normal, which may be beneficial to 
obtaining a lower normal error.  

Figure 7 shows an application of the two approaches in denoising a boundary of a real point-cloud set. As you 
can see, all the major sharp corners were correctly preserved. In this case, we do not know the true underlying curve, 
and therefore it is impossible to calculate the error metrics.  

We define time saving as a ratio of the execution time of  conventional least-squares fitting to the execution time 
of sparing least-squares treatment. The average time saving for all the test cases in Figures 4 through 7 is 2.93 times, 
while the average differences between the two approaches in distance and normal error metrics are 12.7% and 9.3%, 
respectively.  It is reasonable to infer that the sparing least-squares treatment gains a significant reduction in 
computation time and loses slightly in denoising accuracy, compared to the conventional least-squares denoising.  

In the area of statistics, there are many studies related to bandwidth selection for locally weighted least-squares 
regression [13].  The selection problem could become a non-linear optimization, which is much more computationally 
expensive than a regular linear least-squares fitting. Since we have demonstrated the advantage of our new approach 
over the conventional linear least-squares smoothing, there is no point for us to conduct any further comparison with 
the bandwidth selection method.  

 
4. CONCLUDING REMARKS 

In this paper, we propose a new denoising algorithm in which the essential component is a sparing least-squares 
treatment. It significantly reduces the high computation cost associated with the conventional least-squares denoising 
approaches, while the high denoising accuracy is still maintained. The same concept should be easily extended to 
three-dimensional cases in the future. 
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Test case 1 2 3 4 

# of vertices 60 39 134 36 

Denoising steps 100 200 200 200 

Conventional LS     
Execution time 
 (ms/step) 

4.4 1.9 7.9 2.25 

Distance error 2.49 0.86 42.24 1.23 
Normal error (rad) 3.58 2.03 5.34 1.03 

Sparing LS     
Execution time  
(ms/step) 

1.6 1.85 1.35 1.8 

Distance error 2.49 0.86 46.55 1.20 
Normal error (rad) 3.15 2.03 5.21 1.28 

 
Tab. 2: Comparison between conventional and sparing least-squares denoising. 

 

Test case 5 6 7 8 

# of vertices 192 192 67 34 

Denoising steps 50 50 200 200 

Conventional LS     
Execution time  
(ms/step) 

 13.6 10.8 3.05 1.75 

Distance error 58.04 78.18 58.69 85.0 
Normal error (rad) 15.97 18.12 2.75 2.85 

Sparing LS     
Execution time  
(ms/step) 

3.4 3.2 0.675 0.29 

Distance error 71.84 81.57 82.09 102.7 
Normal error (rad) 15.33 16.29 2.39 3.14 

 
Tab. 3: Comparison between conventional and sparing least-squares denoising. 
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(a) test case 1 (b) test case 2 (c) test case 3 (d) test case 4 

 

Fig. 4: Denoising of noised polylines whose underlying shape is an algebraic curve or its combination (row 1: original 
polyline; row 2: noised polyline; row 3: denoised polyline by conventional least-squares fitting; row 4: denoised 
polyline by sparing least-squares treatment).  
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(a) test case 5 (b) test case 6 

 
Fig. 5:  Influence of noise levels on the denoising results (row 1: original polyline; row 2: noised polyline; row 3: 
denoised polyline by conventional least-squares fitting; row 4: denoised polyline by sparing least-squares treatment). 
 

  

 
 

  
(a) test case 7 (b) test case 8 

 

Fig. 6: Influence of vertex density on the denoising results (row 1:  noised polyline; row 2: denoised polyline by 
conventional least-squares fitting; row 3: denoised polyline by sparing least-squares treatment). 
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(a) input curve (b) conventional least-
squares denoising 

(c) Sparing least-
squares denoising 

 

Fig. 7: Test case 9 -- smoothing of a noised boundary obtained from the edge detection of a point-cloud data set (# of 
vertices = 342; # of smoothing steps = 100; time saving = 4.96 times). 
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