

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 199-208

199

A Fast and Accurate Denoising Algorithm for Two-Dimensional Curves

Jie Shen and David Yoon

University of Michigan-Dearborn, {shen | dhyoon}@umich.edu

ABSTRACT

In this paper we propose a new concept, sparing least-squares denoising, which is used to
significantly reduce the time cost of denoising algorithms that utilize least-squares fitting techniques.
This idea is implemented by a fast feature-preserving denoising method, partition of feature and
non-feature regions, and introduction of a new index, vertex sparsity. We use this index to decide
the location on curves where an expensive least-squares fitting is really needed. Our numerical
experiments indicate that our new approach yields an average 2.93 times saving in the computation
time without remarkable sacrifice on denoising accuracy, compared to existing least-squares fitting
methods.

Keywords: Metrology, Quality Control, Laser Sensor, Noise.

1. INTRODUCTION

Measurement noise is an intrinsic problem with various existing laser and white light sensors such that denoising is a
crucial step for accurate metrology and quality control. The path/curve noise is also a current problem in tool path
generation from CAD/CAM design surfaces. In the past, different surface smoothing algorithms have been proposed
[1-5]. Among them, least-squares fitting methods [4, 6] yield a very high denoising accuracy, and therefore are quite
suited for metrology and quality control. However, a least-squares fitting method is normally five to ten times more
expensive in the computational time cost, which hinders its wide applications, especially when many boundary curves
need to be processed or near real-time requirement is imposed.

The objective of this paper is to propose an approach that is significantly faster than the traditional least-squares
fitting methods, and in the meantime maintains its high denoising accuracy. A piecewise algorithm is used to speed up
least squares whenever possible. Its unique contribution is the introduction of a new concept, sparing least-squares
fitting, and a new index, vertex sparsity. In this paper, we limit our effort in two-dimensional curve cases, especially in
the format of polylines. In other words, the output format of our algorithm is a polyline. However, the concept can be
easily extended to three-dimensional cases.

The remaining of this paper is organized as follows. In Section 2, a new method of sparing least-squares denoising
is introduced. Then, numerical experiments are reported and discussed in Section 3. Finally, some concluding remarks
are given in Section 4.

2. SPARING LEAST-SQUARES DENOISING

In [6], we proposed the concept of hybrid smoothing or denoising to achieve an accurate denoising. However, the
main shortcoming of that approach is high computational cost associated with least-squares fitting technique. In this
paper, we follow the overall approach used in [6] with a significant improvement in reducing computational time cost.

2.1 Feature-Preserving Pre-smoothing

The pre-smoothing is an important pre-processing step in handling a denoising task. It is possible that a signal/noise
ratio is so low that sharp features could not be correctly detected without a pre-smoothing. If a filter is randomly
selected for pre-smoothing, even though the noise could be suppressed, the sharp features would be also smoothed
out. This is not what we expect and creates the dilemma of a chicken-and-egg problem.

The authors proposed to use a median filter as a first step to solve this chicken-and-egg problem. The unique
feature of the median filter is its theoretical guarantee to maintain global sharp features, which are the features that
should not disappear in a denoising process. In this way, it is possible to correctly detect all the feature regions on the
pre-smoothed curves, and then to use this partition information to guide a real denoising process on the initially-noised
curve. As a result, our approach works properly even when signal/noise ratios are very low.

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 199-208

200

2.2 Partition of Curves by a Feature-Preserving Pre-smoothing Procedure

There are many existing approaches for surface or region partition [7-9]. We don’t plan to create a new one. Instead, a
commonly-used region grow method is adopted in this study. In order to make a partition successful, the signal/noise
ratio should be high enough. Otherwise, a pre-smoothing is necessary, and global sharp features must be maintained
during the pre-smoothing process.

In this paper, a region grow method is applied on curves that are pre-denoised. A curve is divided into non-feature
and feature regions. The global sharp features are located in the feature regions, while the non-feature regions are
smooth and/or contain just local noises.

2.3 Hybrid Denoising

After the partition of a curve, the result of pre-smoothing is discarded except the partition information of feature and
non-feature regions. A hybrid scheme is applied on the input noised curve discriminately over feature and non-feature
regions. In feature regions, a median filter is used to maintain the sharp global features, while in non-feature regions a
sparing least-squares fitting treatment is proposed for the sake of high denoising accuracy and high computational
efficiency.

The basic idea of the sparing least-squares fitting treatment is to avoid the least-squares fitting as much as possible
because it is computationally time consuming. If the vertex density is very high in a local region, then the local least-
squares fitting of a quadratic or cubic curve segment in this region becomes unnecessary, because an approximation
error becomes smaller even with a linear approximation. On the contrary, if the vertex density is very low in a local
region, a local least-squares fitting becomes crucial to achieve a low approximation error, which in turns leads to a high
denoising accuracy.

In order to implement the above idea, the first thing that needs to be done is the introduction of a vertex sparsity
index (VSI), which can be used to identify if vertices are distributed sparsely or densely on a curve. We define VSI as a
ratio of the distance between the first and fourth vertices in a two-ring vertex neighborhood, as shown in Figure 1, to
the feature size of a curve. In Figure 1, the current vertex is P, and the first and fourth vertices in its two-ring
neighborhood are 1Q and 4Q , respectively. The feature size of a curve refers to the maximum length of its bounding

box.

P

1v

2v

)(PN
))((PN leftl

))((PN rightl

)(Pleftl
)(Prightl

PC

1Q

2Q

3Q

4Q

Fig. 1: A two-ring vertex neighborhood of a vertex P.

The second task that we need to accomplish is to find out a suitable threshold for VSI, VSIt . We consider that the

vertices on a curve are sparsely distributed if VSI > VSIt . Otherwise, the vertices are distributed densely. In order to

determine this threshold, we consider a typical case as shown in Figure 2, in which a circular sector of a circle is

investigated. We define an approximation error of chord AB as a ratio of the area of circular segment ABC to the

area of circular sector AOBC. A distance ratio of line segment AB is defined as a ratio of the distance between vertices
A and B and the diameter of the circle. According to trigonometry, the approximation error, ap, and distance ratio, dr,
can be expressed by

θ

θθ
θ

2
cos

2
sin2−

=ap (1)

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 199-208

201

2
sin

θ
=dr (2)

where θ is a central angle of chord AB . Table 1 gives the values of the approximation error and distance ratio for

various central angles. We consider an approximation error, 0.00161, is sufficient for achieving a high denoising
accuracy, as illustrated by boldface numbers in Table 1. Since VSI is a measure related to four line segments, we
multiply 4 with the distance ratio, 0.0491, and let VSIt equal 0.2 approximately. Figure 3 shows a vertex density on a

circle, which corresponds to the approximation level dictated by VSIt .

A
B

O

C

θ

Fig. 2: A circular sector of a circle.

A circle has the minimum possible feature size for a given area among all 1C continuous curves. On the other

hand, a square is an extreme case for 1C discontinuous curves, and the ratio of its minimum feature size to the size of

the circle with the same amount of area is 0.89, which is close to unity. Therefore, it is reasonable to infer that VSIt ,

obtained through the way described above, is an approximate bound that guarantees a dense vertex distribution, if
VSI < VSIt , for any arbitrary two-dimensional curve. Figure 3 shows a vertex distribution on a circle when VSI= VSIt .

Note that the vertex distribution in Figure 3 is scale variant, while the approximation error and distance ratio in
Equation (2) are scale invariant.

θ (degree) Approximation

error

Distance ratio

180 1 1

90 0.363 0.707

45 0.0997 0.383

22.5 0.0255 0.195

11.25 0.00641 0.0980

5.625 0.00161 0.0491

2.813 0.000402 0.0245

1.406 0.000100 0.0123

Tab. 1: Approximation error and distance ratio of a chord at different central angles.

With a scale invariant threshold, VSIt , available, we are ready to complete the third task in implementing the

sparing least-squares denoising. For each vertex in a non-feature region, we calculate its VSI. If VSI is smaller than

VSIt , a mean filter is applied. Otherwise, a local least-squares fitting is used. If there are some outliers on an input

curve, they must be removed first before the computation of VSI. There are some existing methods to remove outliers
[10-12], and readers should choose one at their own disposal.

Our numerical experiments indicate that the mean filter is an accurate and fast denoising algorithm for non-feature
regions with a dense vertex distribution, which is possible during a scanning process on a smooth curved surface. For
all the non-feature regions, it is important to find a suitable denoising algorithm, because these regions could be any

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 199-208

202

arbitrary smooth curved surfaces. It is not our purpose to claim the median and mean filters as our contribution.
However, for the convenience of readers, we list our version of median and mean filters for polylines as Algorithms 1
and 2 below.

Fig. 3: Vertex distribution on a circle when VSI= VSIt .

Algorithm 1: fast_median_filter(PL)

Data Structures: L= set of all line segments; V = set of all vertices.

Precondition: PL contains the information of a polyline, including L and V. Note that the first and last line segments of

the closed polyline PL, 1l and nl , are adjacent to each other, i.e., nll =0 , where n is the number of line segments in

PL.
Postcondition: Smoothed polyline is stored in PL

(1) calculate the median normal,)(ˆ ilN , for each line segment, Lli ∈

(1.1) initialize a real variable, anglesummin _ , to a big number

(1.2) loop over each line segment: }2,2|{ +−==∈ iiklSl kneighborj

(1.2.1) calculate the sum of angles, anglesum , between the normals of the current line segment, jl , and

other line segments in neighborS

(1.2.2) if anglesum is less than anglesummin _ , then angleangle sumsummin =_

(1.3) the median normal for il ,)(ˆ ilN , is equal to the normal of the line segment that corresponds to

anglesummin _ in the loop of Step (1.2)

(2) calculate perturbation at each vertex V∈υ

))((ˆ)))((ˆ))())((()((ˆ)))((ˆ))())((((5.0 υυυυυυυυυ rightrightrightleftleftleft llllll NNPCNNPCU •−+•−= , (3)

where)(lC and)(υP are the centroid of line segment Ll∈ and the position of vertex V∈υ , respectively.)(υleftl

and)(υrightl are two line segments that are adjacent to vertex, υ .

Algorithm 2: mean_filter(PL)

Data Structures: L= set of all line segments; V = set of all vertices.

Precondition: PL contains the information of a polyline, including L and V.
Postcondition: Smoothed polyline is stored in PL

(1) calculate the mean normal,)(ˆ ilN , for each line segment, Lli ∈

(1.1) let ∑
+=

−=

=
2

2

)(

ij

ij

jlNΝ

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 199-208

203

(1.2) let the normalized N be the mean normal for il ,)(ˆ ilN

(2) calculate perturbation at each vertex V∈υ by Equation (3)

The overall treatment for the sparing least-squares denoising is given in Algorithm 3, which reflects our philosophy

of applying the expensive least-squares fitting only when it is absolutely necessary.

Algorithm 3: sparing_least-squares_denoising(PL)

Data Structures: L= set of all line segments; V = set of all vertices.

Precondition: PL contains the information of a polyline, including L and V.
Postcondition: Denoised polyline is stored in PL

(1) make a copy, 'PL , of the input polyline PL

(2) execute fast_median_filter('PL)
(3) identification of sharp corners

(3.1) loop over each vertex 'V∈υ on 'PL

(3.1.1) if the angle between the normals of two line segments, which are incident to vertex υ , is greater

than an angular threshold tθ , then mark the two neighboring line segments left to υ and the two

neighboring line segment right to υ as feature line segments.

(4) loop through each feature line segment and mark its two end nodes as feature vertices
(5) loop over each vertex V∈υ on PL and determine VSI for each vertex

(6) main denoising loop with a specified number of denoising steps
(6.1) loop over each line segment Ll∈

(6.1.1) if l is not a feature line segment, calculate its mean normal by using Step (1) of Algorithm 2

(6.1.2) otherwise, calculate its median normal by using Step (1) of Algorithm 1

(6.2) loop over each vertex V∈υ on PL

(6.2.1) if υ is not a feature vertex,

(6.2.1.1) if VSI > VSIt , use least-squares fitting to determine υU

(6.2.1.2) otherwise, use mean normal to determine υU as in Algorithm 2

(6.2.2) otherwise,

(6.2.2.1) if)(υleftl is a feature line segment,))((ˆ υleftlN =median normal of)(υleftl ; otherwise,

))((ˆ υleftlN = mean normal of)(υleftl .

(6.2.2.2) Similar operation is applied on)(υrightl to calculate))((ˆ υrightlN

(6.2.2.3) calculate the smoothing perturbation υU by Equation (3)

(6.2.3) update the vertex coordinate by υυυ UPP +=

Note that υP in the above algorithm refers to the location vector of vertex υ . The number of denoising steps is

usually specified by users. The conventional least-squares fitting treatment can be found in [6].

3. NUMERICAL EXPERIMENTS

Our sparing least-squares denoising was implemented in VC++ and tested on a HP Notebook PC with a 1.06 GHz
Pentium III CPU and 504 MB of RAM. The time complexity of the approach is O(n), where n is the number of
vertices of polylines. However, there is a large coefficient associated with the least-squares fitting, which is called in a
frequency that is problem-dependent.

In order to quantify the denoising accuracy of two types of least-squares denoising algorithms, two error metrics
are used in this paper. The first one is a vertex distance error metric, which measures the sum of distances between
each vertex of a test polyline and a reference polyline. The second is an error metric of normal of line segments. It
measures the sum of angles between each line segment of a test polyline and the corresponding line segment of a
reference polyline. We represent the angles in radian in this paper.

In the first group of tests, we choose four different types of algebraic curves as a reference polyline, and then
generate certain amount of random synthetic noises by using a random number generator in C++. In test case 1 of

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 199-208

204

Figure 4, the polyline consists of a part of 3xy = on the right and a quarter of circle on the left, while test case 2 is a

curve represented by 32 xy = . Rows 1 and 2 in Figure 4 represent these two curves and noised ones, respectively.

The polylines denoised by the conventional and sparing least-squares fitting are given in rows 3 and 4 for a visual
comparison. Table 2 shows a quantitative comparison between these two types of least-squares fitting in terms of
execution time and error metrics in test cases 1 and 2. Here, the execution time is measured in milliseconds per
denoising step.

A high-order drop shape, 0
20

2
20

2

5 =







−−








−+

π
θρ

π
θρ , is used in test case 3, and the equation for the curve

in test case 4 is () ()222222 yxayx −=+ . Figure 4 provides a visual comparison of the denoising results between the

two types of least-squares fitting, while Table 2 gives quantitative error metrics and execution time of two approaches
in test cases 3 and 4. It can be easily seen from Figure 4 that the denoising results of two approaches are almost
identical. This is also supported by the error metrics in Table 2.

Figure 5 is a more complex example of an airplane. To explore the effect of different noise levels on the
performance of the two approaches, we designed two test cases, 5 and 6. As you can see from this figure and Table 3,
the conventional and sparing least-squares approaches yield almost the same denoising result except a significant
difference in computation time.

To investigate the effect of vertex density of a polyline on the execution time, we designed two test cases (7 and
8), as shown in Figure 6, on the basis of the drop shape in test case 3. From Table 3, an observable tendency is that
the higher the vertex density is, the more execution time can be saved with the sparing least-squares treatment,
compared to the conventional least-squares fitting.

One unexpected thing is that the normal error of our method is usually lower than that of least squares in Tables 2
and 3. One possible explanation is that the least squares fitting method is focused on the optimization of minimum
distance deviation, while the mean filter is focused on the average surface normal, which may be beneficial to
obtaining a lower normal error.

Figure 7 shows an application of the two approaches in denoising a boundary of a real point-cloud set. As you
can see, all the major sharp corners were correctly preserved. In this case, we do not know the true underlying curve,
and therefore it is impossible to calculate the error metrics.

We define time saving as a ratio of the execution time of conventional least-squares fitting to the execution time
of sparing least-squares treatment. The average time saving for all the test cases in Figures 4 through 7 is 2.93 times,
while the average differences between the two approaches in distance and normal error metrics are 12.7% and 9.3%,
respectively. It is reasonable to infer that the sparing least-squares treatment gains a significant reduction in
computation time and loses slightly in denoising accuracy, compared to the conventional least-squares denoising.

In the area of statistics, there are many studies related to bandwidth selection for locally weighted least-squares
regression [13]. The selection problem could become a non-linear optimization, which is much more computationally
expensive than a regular linear least-squares fitting. Since we have demonstrated the advantage of our new approach
over the conventional linear least-squares smoothing, there is no point for us to conduct any further comparison with
the bandwidth selection method.

4. CONCLUDING REMARKS

In this paper, we propose a new denoising algorithm in which the essential component is a sparing least-squares
treatment. It significantly reduces the high computation cost associated with the conventional least-squares denoising
approaches, while the high denoising accuracy is still maintained. The same concept should be easily extended to
three-dimensional cases in the future.

5. ACKNOWLEDGEMENT

This paper was supported in part by USA NSF DMI 0514900. The comments from two anonymous reviewers are
sincerely appreciated.

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 199-208

205

Test case 1 2 3 4

of vertices 60 39 134 36

Denoising steps 100 200 200 200

Conventional LS
Execution time
 (ms/step)

4.4 1.9 7.9 2.25

Distance error 2.49 0.86 42.24 1.23
Normal error (rad) 3.58 2.03 5.34 1.03

Sparing LS
Execution time
(ms/step)

1.6 1.85 1.35 1.8

Distance error 2.49 0.86 46.55 1.20
Normal error (rad) 3.15 2.03 5.21 1.28

Tab. 2: Comparison between conventional and sparing least-squares denoising.

Test case 5 6 7 8

of vertices 192 192 67 34

Denoising steps 50 50 200 200

Conventional LS
Execution time
(ms/step)

 13.6 10.8 3.05 1.75

Distance error 58.04 78.18 58.69 85.0
Normal error (rad) 15.97 18.12 2.75 2.85

Sparing LS
Execution time
(ms/step)

3.4 3.2 0.675 0.29

Distance error 71.84 81.57 82.09 102.7
Normal error (rad) 15.33 16.29 2.39 3.14

Tab. 3: Comparison between conventional and sparing least-squares denoising.

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 199-208

206

(a) test case 1 (b) test case 2 (c) test case 3 (d) test case 4

Fig. 4: Denoising of noised polylines whose underlying shape is an algebraic curve or its combination (row 1: original
polyline; row 2: noised polyline; row 3: denoised polyline by conventional least-squares fitting; row 4: denoised
polyline by sparing least-squares treatment).

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 199-208

207

(a) test case 5 (b) test case 6

Fig. 5: Influence of noise levels on the denoising results (row 1: original polyline; row 2: noised polyline; row 3:
denoised polyline by conventional least-squares fitting; row 4: denoised polyline by sparing least-squares treatment).

(a) test case 7 (b) test case 8

Fig. 6: Influence of vertex density on the denoising results (row 1: noised polyline; row 2: denoised polyline by
conventional least-squares fitting; row 3: denoised polyline by sparing least-squares treatment).

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 199-208

208

(a) input curve (b) conventional least-
squares denoising

(c) Sparing least-
squares denoising

Fig. 7: Test case 9 -- smoothing of a noised boundary obtained from the edge detection of a point-cloud data set (# of
vertices = 342; # of smoothing steps = 100; time saving = 4.96 times).

6. REFERENCES

[1] Belyaev, A.; Ohtake, Y.: A comparison of mesh smoothing methods, Israel-Korea Bi-National Conference on
Geometric Modeling and Computer Graphics, 2003, 83-87.

[2] Clarenz, U.; Diewald, U.; Rumpf, M.: Anisotropic geometric diffusion in surface processing, Proceedings of IEEE
Visualization, 2000, 397-405.

[3] Desbrun, M.; Meyer, M.; Schroder, P.; Barr, A. H.: Anisotropic feature-preserving denoising of height fields and
bivariate data, Graphics Interface, 2000, 145-152.

[4] Fleishman, S.; Cohen-Or, D.; Silva, C.: Robust moving least-squares fitting with sharp features, ACM
Transactions on Graphics., 24(3), 2005, 544-552.

[5] Shen, Y.; Barner, K. E.: Fuzzy vector median-based surface smoothing, IEEE Transactions on Visualization and
Computer Graphics, 10(3), 2004, 266-277.

[6] Shen, J.; Maxim, B.; Akingbehin, K.: Accurate Correction of Surface Noises of Polygonal Meshes, International
Journal for Numerical Methods in Engineering, 64(12), 2005, 1678-1698.

[7] Mangan, A. P.; Whitaker, R. T.: Partitioning 3D surface meshes using watershed segmentation, IEEE
Transactions on Visulization and Computer Graphics, 5(4), 1999, 308-321.

[8] Leonardis, A.; Gupta, A.; Bajcsy, R.: Segmentation of range images as the search for geometric parametric
models, International Journal of Computer Vision, 14, 1995, 253-277.

[9] Varady, T.; Benko, P.; Kos, G.: Reverse engineering regular objects: simple segmentation and surface fitting
procedures, International Journal of Shape Modeling, 4(3-4), 1998, 127-141.

[10] Schall, O.; Belyaev, A.; Seidel, H.: Robust filtering of noisy scattered point data, Eurographics Symposium on
Point-based Graphics, 2005.

[11] Xie, H.; McDonnell, K. T.; Qin, H.: Surface reconstruction of noisy and defective data sets, IEEE Visualization
2004, 2004, 259-266.

[12] Kolluri, R.; Shewchuk, J. R.; O'Brien, J. F.: Spectral surface reconstruction from noisy point clouds, Symposium
on Geometry Processing, 2004, 11-21.

[13] Fan, J.; Gijbels, I.: Data-driven bandwidth selection in local polynomial fitting: variable bandwidth and spatial
adaptation, Journal of the Royal Statistical Society, Series B, 57(2), 1995, 371-394.

