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ABSTRACT 

 

In this paper we investigate the spatial distribution of measurement noise at sharp edges. A local 

cylindrical coordinate system is used to decompose the measurement noise at sharp edges into to 

two components, magnitude and angle. The spatial distributions of these two components are 

analyzed at sharp edges for both touch probe and laser sensor.  A new concept, statistical binary 

tree, is proposed for representing the spatial noise distribution on a sharp edge, and a synthesis 

simulator is proposed for accurate reproduction of measurement noise at sharp edges. 
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1. INTRODUCTION 

Measurement noise is an intrinsic problem with various existing touch probes and laser sensors. In particular, more 

severe measurement errors of various sensors are frequently observed near sharp edges of the objects that are being 

measured, as illustrated in Figure 1 in which σ  refers to the standard deviation of measurement errors.  In the past, 

different surface smoothing algorithms for sharp edges have been proposed [1-15],  and the algorithms were compared 

on noisy surfaces generated by a very simple synthetic noise model controlled by a random number generator [15]. 

However, real measurement noise does not exactly follow the pattern prescribed by the random number generator. 

The question is whether or not we can design a more realistic measurement noise synthesizer as a standard reference 

to test different existing or new denoising algorithms.  

There are many factors, including operator, material property, surface roughness, surface geometric properties, 

environment noise and sensor noise, which can contribute to the measurement noise of touch probes and laser 

sensors. In this paper, our focus is on the behavior of measurement noise as a whole in a laboratory environment 

without any extraordinary external influence and without abnormal operator mistakes. Although there were some 

studies on the simulation models of laser scanning  probes [16-18], very little systematic studies have been conducted 

for revealing the behavior of measurement noises at sharp edges.  

The objective of this paper is to explore the spatial distribution of measurement noise at sharp edges, and design a 

synthetic simulator for accurate description of measurement noise.  The unique contributions of this paper include: 1) a 

local cylindrical coordinate decomposition of measurement noise at sharp edges; 2) a statistical binary tree for the 

representation of spatial distribution of noise magnitude at sharp edges; and 3) a synthetic noise simulator for the sharp 

edges.  

The remaining of this paper is organized as follows. In Section 2, the exploration of spatial distribution of 

measurement noise at sharp edges is introduced. Then, the statistical behavior of such spatial distribution is reported 

and discussed in Section 3. Next in Section 4, the concepts of measurement noise templates and statistical binary trees 

are introduced. Finally, a synthetic noise simulator is developed for sharp edges in Section 5 and some concluding 

remarks are given in Section 6.  

 

2. SPATIAL DISTRIBUTION OF MEASUREMENT NOISE AT SHARP EDGES 

In this study we use standard metrology gage blocks with sharp edges as test specimens on which touch probes or laser 

scanners are applied. The surface roughness of these specimens is considered negligible (less than 0.6 micrometer), 

compared to the range of measurement noises of laser sensors (about 50 micrometers -- personal communication with 

Burt Mason, ROMER CimCore, Hexagon Metrology). Therefore, we assume that the sharp edges of these specimens 

are perfect without need for considering the surface roughness in the neighborhood of these edges.  

The laser sensor used in this study is a Surveyor Laser Probe (SLP) made by Laser Design Inc. The data 

acquisition rate is 144,000 points per second, and the sample density ranges from 69 to 550 micrometers, which is 
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dense enough for the study of spatial distribution. After a point cloud is obtained by laser scanning, a sample density of 

0.25 mm through 0.5 mm is used to extract information from the point cloud for the study of spatial distribution.  The 

exact value of this second sample density is dependent upon the overall measurement size. The bigger the overall 

measurement size is, the sparser the second sample density should be. With a Renishaw touch probe, we tried to 

sample as fewer data points as possible, because its operation was manual at a very low data acquisition rate.  
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Fig. 1: A color image of measurement 

error distribution of a Hymarc 45C laser 

probe on a rectangular face of a 

calibration target without the inclusion of 

CMM volumetric error (Courtesy of Allan 

Spence, McMaster University). 

Fig. 2: Representation of measurement noise in a parametric space 

(transformation from a 3D sharp edge to a line segment).  

 

 

The measurement noise on a 3D object generally occurs in three dimensions, and could be very difficult to 

determine in a general format. In this study, we focus on measurement noise at a given sharp edge in the plane that is 

perpendicular to the edge. To handle measurement noise at a sharp edge, the edge is converted to a line segment in z 

direction of a parametric space, in which the measurement noise at the edge can be represented by x and y axes in the 

parametric space, as shown in Figure 2. A sharp corner can be easily transformed to the origin in the parametric space 

with respect to measurement noise at the sharp corner. The noise at the origin takes a form of an arbitrary 3D vector in 

this parametric space.   

We define the line segment in the parametric space together with the transformed noise as a noise template. This 

noise template, once created, can be applied onto arbitrary sharp edges by a process similar to texture mapping in 

computer graphics. We call this process a noise template mapping, which is then used as an effective tool to generate 

synthetic noise over synthetic object surfaces and edges.  The size of the noise template depends upon the size of the 

original sample edge in the initial physical space.  

Figure 3(a) shows a two-inch gage block with its top surface marked by grids. The maximum roughness, maxR , of 

its surfaces is less than 0.18 micrometers. Therefore, the neighborhood around sharp edges can be approximately 

considered as a region without surface roughness. Each grid rectangle was used for one sampling measurement of a 

touch probe mounted on a CMM. A typical measurement noise of the touch probe on its top surface is illustrated in 

Figure 3(b), in which blue color is used for measurement noise and gray color is for regular grids on the top surface. 

The measurement on the edges were conducted on edge line segments of each grid rectangle adjacent to an edge, and 

the measurement at sharp corners were performed at the corner vertex of each grid rectangle adjacent to the corner, as 

illustrated in Figure 3(c).  Since the dimensions of the block are much greater than the magnitude of measurement 

noises, micrometer scale is used for measurement noises and millimeter scale is for the grids in Figures 3(b).  

The measurement noise of a laser probe is shown in Figure 3(d), in which pink color is used for edge noise and 

blue color for interior noise.  The average magnitude of edge noise is one time greater than that of interior noise, and 

the average magnitude of corner noise is even higher than that at edges.  This indicates the importance of an accurate 

denoising algorithm for sharp edges and corners with laser sensors.  
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(a) a two-inch gage block (b) scaled measurement noise of a touch probe 

 
 

(c) sampling locations at sharp edges and 

corners with a touch probe (orange color 

– edge sample; green color – corner 

sample) 

(d) scaled measurement noise of a laser probe (10 times 

enlargement in vertical direction; pink color – edge noise,  

magnitude = 81.9 micrometers; blue color – interior noise, 

magnitude = 39.5 micrometers; magnitude of corner noise = 

91.4 micrometers) 

 

Fig. 3: A gage block and the measured noises of a touch probe and a laser probe. 

 

3. STATISTICAL BEHAVIOR OF SPATIAL DISTRIBUTION OF MEASUREMENT NOISE AT SHARP 

EDGES 

From the viewpoint of statistics, we consider the following two aspects in modeling the measurement noise: 

(a) The noise at each edge or corner point is considered as an independent random variable. This can be represented 

by the following equation: 

),,(),,(),,( zyxzyx eeezyxggg += ,                                                                          (1) 

where ),,( zyx  refers to the vector of a true surface point in a physical space, and ),,( zyx eee is a random 

perturbation vector at that point. ),,( zyx ggg  represents a perturbed position vector at the edge or corner point, 

(x, y, z), due to the noise.  

(b) The noise spatial distribution over an edge line is considered as one sample of a pseudo random variable. Each 

time this pseudo random variable takes a vector of values, including the mean and variance for the noise spatial 

distribution. The statistical measures of this pseudo random variable include its mean, which is actually the mean 

of a set of spatially-distributed noise values, and its variance, which is the variance of the same noise set. 

 

Assume that n rounds of measurement are conducted. An average spatial distribution of measurement noise can be 

obtained by using the following formula: 

( ) neeezyxzyx

n

i

zyxiii iii
/),,(),,(),,(

1

∑
=

+= ,                                                      (2) 

where ),,( zyx  refers to the average perturbed position vector at the edge point, (x, y, z), over all the measurement (n 

times). ),,( iii zyx  and ),,(
iii zyx eee  represent the values at the i-th measurement. Figure 4 shows the result of a typical 

measurement sample. The spatial distribution of measurement noises at sharp edges is illustrated in Figure 5. The 

measurement noise at a sharp edge is quantified by two components: e  and φ , where e  is the magnitude of noise 

and φ  refers to the orientation angle of the edge noise vector with respect to the local cylindrical coordinate ( Lx , Ly ), 

as shown in Figure 4(b). Note the axis of this cylindrical coordinate system is in the same direction as the edge line. As 
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you can see in Figures 5 and 6, the noise magnitude distribution is close to an exponential distribution with waviness in 

the range of edge line, and is of the similar pattern with each measurement round. An approximate uniform 

distribution with waviness is observed for the orientation angle φ  of measurement noises. Note that the spatial 

distribution here is simplified to the probability density distribution of a one-dimensional series of noise values.  

The computation of the mean and variance of the pseudo random variable provides the statistical information 

about a typical spatial distribution of measurement noises. Note that the mean and variance here refer to the statistical 

nature of the overall measurement on the edge line. The consideration at a finer spatial scale will be given in Table 1 in 

the next section.  

 

 

 
xL

yL

φ

e

 

(a) touch probe (noise magnitude is enlarged 

1000 times )  

(b) a local cylindrical coordinates for the definition of 

noise components at one point (red color) on an edge line 

 

Fig. 4: Typical spatial distribution of measurement noise at a sharp edge. 
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(a) magnitude of noise (b) orientation angle of noise 

 

Fig. 5: Probability density distribution of measurement noises at sharp edges with the touch probe. 
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(a) magnitude of noise (b) orientation angle of noise 

 

Fig. 6: Probability density distribution of measurement noises at sharp edges with the laser sensor. 
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4. MEASUREMENT NOISE TEMPLATE AT SHARP EDGES 

We propose a Statistical Binary Tree (SBT) as a measure to quantify the spatial distribution of measurement noise over 

the edge line to a reasonable degree. The basic idea of SBT is to subdivide the edge line by a binary tree that has a 

limited depth bound. In this way, the subdivision process does not proceed in an unlimited way down to the level of 

edge vertex. As a matter of fact, it will terminate at certain level at which the statistical properties (mean and variance) 

of the spatial distribution over each subdivided line segment are computed and used to represent the spatial 

distribution over the subdivided segments in a statistical sense. Figure 7 illustrates the subdivision process in creating 

such a SBT, and the detailed procedures for doing so are listed in Table 1.  

The subdivision process is controlled by the following two termination criteria: 

ttsub NN σσ <> ,                                                                                     (3) 

where tN  and tσ  are the limit for maximum subdivision steps and a threshold for variance of measurement noise 

over a subdivided segment, respectively.  subN  and  σ  are subdivision steps and variance of measurement noise for 

each subdivided line segment, respectively.  If there is no measurement noise in a certain segment, then this is a special 

case with zero variance and there is no need for any further subdivision in it.  The choice of tσ  has a direct influence 

on the topology of SBT. If tσ  is set to be higher than the variance, 0σ , of measurement noise in the initial edge line, 

then the SBT contains only a root node, indicating a uniform distribution over the line region.  In this study, we set 

0σσ ×= tst , where ts  is a threshold scale that is less than unity.  

 

 
(a) an edge line on which some noises (green or red 

dots) exist 

(b) statistical binary tree  

Fig. 7: Creation of a SBT. (Empty node represents an empty segment; The sequence of two binary segments in a 

subdivision is 1) left, and 2) right. ) 

 

(1) start from an edge line region as the current line segment in the parametric domain  

and set 1=subN  

(2) compute the mean and variance of measurement noise in the current segment 

(3) create a SBT node in the statistical binary tree 

(4) if the variance is less than tσ ,  stop the current branch of subdivision process. 

Otherwise, subdivide the current segment into two smaller ones 

(5) if tsub NN = , stop the subdivision process. 

Otherwise, 1+= subsub NN  and repeat steps (2) through (5) 

 

Tab.  1: Procedures for creating a SBT by a subdivision process. 

 

The structure of each SBT represents the spatial distribution of different segments over the edge line region, and 

the variance of measurement noise over each segment is less than a predetermined threshold or the size of the segment 

already reaches the subdivision limit. The statistical values at each node of the SBT refer to the statistical properties 

(mean and variance) of each segment.  Thus, the tree structure and nodal values in our SBT are two basic components 

to describe the spatial distribution in a hybrid deterministic and statistical way, which reflects a tradeoff between the 

accuracy and computational efficiency.  In summary, SBT is a special binary tree in which each node has the values of 

mean and variance.  
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The SBT represents a measurement noise template at sharp edges. However, the mean and variance at each 

leave are meaningful only in the sense of statistics. It is impossible to find an accurate noise perturbation in a 

deterministic way at each edge point in the parametric space on the basis of the resulting measurement noise template. 

On the other hand, it still effectively provides some sort of spatial distribution information, which is sufficient for the 

measurement noise synthesizer in the next section.   

 

 
threshold scale = 0.75 

 

Fig. 8:   Spatial distribution noise template for a touch-probe. 

 

5. SYNTHESIZER FOR MEASUREMENT NOISE AT SHARP EDGES 

A synthesizer for measurement noises is defined as a simulator that produces a measurement noise distribution 

synthetically. In the cases of sharp edges, its key component is the synthetic reconstruction of measurement noise 

pattern over an edge line region with a measurement noise template (SBT) available, as described in Table 2.  

Since the angle and magnitude are two components for the measurement noise distribution along a line segment, 

they need to be handled separately.  On the basis of Figures 5(b) and 6(b), a uniform distribution can be used to 

approximate the probability distribution of angles along the edge.  Therefore, there is no need for SBT to represent the 

distribution of angles. A random number generator can be directly used to cover a uniform distribution of angles from 

0 to 360 degrees. On the other hand, the magnitude does not follow a uniform distribution, as illustrated in Figures 

5(a) and 6(a). Thus, the magnitude distribution along the edge is described by a SBT tree in which each node has its 

nodal values (mean and variance). A random number generator can be used with a suitable scaling to generate the 

desired mean and variance over each segment of SBT.  The random number generator is initiated with a different seed 

number for different segments of SBT.  The scaling of a series of random numbers includes two steps:  

1) scale the variance of the numbers to the variance of the SBT segment 

),,0()( nisxxxx ii …=×−+= σ ,                                                                             (4) 

where 
r

q
s

σ

σ
σ = ,   in which rσ  and qσ  are the variances of the random numbers and the SBT segment, 

respectively. x  is the mean of the random number set.  

2) translate the mean of the numbers to the mean of the SBT segment.  

),,0( niyxxx ii …=+−= ,                                                                                      (5) 

where y  refers to the mean of SBT segment.  

The procedures presented above work only partially well, because ix  in Equation (5) may turn to be negative, 

which is not allowed for the magnitude. Therefore, a procedure is designed in Table 3 to make all ix  positive and in 

the meantime to maintain the original mean and variance of the series { }ix .  The precondition for the procedure in 

Table 3 to be correct is that there should be only very few negative numbers in { }ix . This is true for the case of edge 

noise magnitude. One negative number out of thirty positive numbers was observed with y  and qσ  specified in the 

SBT. The basic idea of steps (5) and (6) in Table 3 is that each jy  is brought back to zero, and in the meantime jz  is 

changed to Δ−jz  in order to maintain the mean of { }ix . However, the movement of this pair { }jj zy  causes a 

change, σδ , in the variance of { }ix : 
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( ) ( ) ( ) ( )2222
0.0 xzxzxxy jjj −Δ−−−+−−−=σδ ,                                                      (6) 

where x  is the mean of { }ix , and  jy−=Δ  represents the movement amount of the pair { }jj zy . { }jy  is a list that 

contains negn _  elements which are all the negative numbers in { }ix , while { }jz  is a list that contains negn _  

elements whose values are the greatest in { }ix  and greater than  x , the mean of { }ix . In order to cancel the variance 

change, σδ , the movement of another pair, { }jj downup  is needed. Here, { }jup  is a list that contains negn _  

elements whose values are around x , and greater than x ; { }jdown  is a list that contains negn _  elements whose 

values are also around x , but smaller than x . The movement amount, t , of the second pair is determined by the 

following equation 

( ) ( ) ( ) ( ) σδ=−−−−+−−−−
2222

xdownxtdownxupxtup jjjj ,                                         (7) 

which can be converted to a quadratic equation of t  

05.0)(2 =−−+ σδtdownupt jj .                                                                            (8) 

 One smaller positive root of this equation is used to compute the movement amount for the pair { }jj downup .  
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(a) touch probe (b) laser sensor 

 

Fig. 9: The probability density curves of synthesized edge noises. 

 

In order to compare how close the measurement noise generated by the synthesizer described in Table 2 is to the 

real measurement noise, the probability density curves of synthesized edge noises are given in Figure 9. These curves 

are quite similar to those of real measurement noises in Figures 5(a) and 6(a), indicating the effectiveness of our 

approach. In addition,  first four central moments of overall noise distribution on the edge line region are computed, 

and listed in Tables 4 and 5.  It can be seen from these two tables that the difference between the synthesized and real 

noise distributions is not significant if SBT structure is used (cases 2 and 3). On the other hand, the third and fourth 

moments in cases 4 and 5 (without an effective use of SBT structure) are noticeably different from those in case 1 in 

these two tables. Therefore, the synthesizer proposed in this paper can be used to substitute a real measurement noise 

distribution at sharp edges for comparing different denoising algorithms.  Note that the results in Tables 4 and 5 are 

with respect to the noise magnitude at sharp edges. Since the magnitude approximately follows an exponential 

distribution, we might use this reason to infer why case 3 provides a slightly better result than case 2 in these two 

tables.   

The reconstructed noise distribution over a line region can be mapped onto an arbitrary sharp edge by linear 

interpolation. Since the spatial distribution along sharp edges and corners is different from that in a surface domain. 

The detailed procedure for the noise template mapping is as follows: 

(1) noise template mapping within smooth surface regions 

(2) noise template mapping along sharp edges 

(3) noise template mapping at sharp corners 

 

Each of the above steps may override the content produced at a previous step.    
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1. Construct noise angle distribution, { }iφ , by a random number generator, which ranges from 0 to π2  

2. Generate noise magnitude distribution, { }ie ,  with a given SBT 

      2.1  Partition a line region by all the leaves in a given SBT 

      2.2  Loop over each partition 

      2.3  Generate a different seed number for each partition 

      2.4  Construct noise perturbation by a random number generator controlled by the mean and variance of 

the corresponding tree node 

      2.5  Repeat steps 2.2 through 2.4 

3.  Calculate the overall synthetic edge noise by  

             iiix φsine= ,   iiiy φcose= ,   

        where ix  and iy  refer to the local coordinates that are perpendicular to the edge line. iz  is the local 

coordinate along the edge line. 

 

Tab. 2:  Synthesizing Measurement Noise Distribution at a Sharp Edge. 

 

(1) Loop over an input series { }ix  to determine a list { }jy  that contains negn _  elements which are all the 

negative numbers in { }ix  

(2) Create a list { }jz  that contains negn _  elements whose values are the greatest in { }ix  and greater than  

x , the mean of { }ix  

(3) Create a list { }jup  that contains negn _  elements whose values are around x , but greater than x  

(4) Create a list { }jdown  that contains negn _  elements whose values are around x , but smaller than x  

(5) For each j, 

jy−=Δ  

( ) ( ) ( ) ( )2222
0.0 xzxzxxy jjj −Δ−−−+−−−=σδ  

solve a quadratic equation, 02 =++ cbtat , where ,0.1=a  jj downupb −= ,  and 0.2/σδ−=c  

(6) Update the number in { }ix , which corresponds to jup ,  by tup j +  

Update the number in { }ix , which corresponds to jdown , by tdown j −  

Update the number in { }ix , which corresponds to jy ,  by 0.0 

Update the number in { }ix , which corresponds to jz ,  by Δ−jz  

(7)  Repeat steps (5) and (6) for each j 

 

Tab. 3:  Correction of a Random Number Series for Magnitude of Edge Noise. 

 

6. CONCLUDING REMARKS  

In this paper, we explored the spatial distribution problem of measurement noise at sharp edges. Two components, 

magnitude and angle, are used in the representation of noise distribution. It was observed that the distribution of noise 

magnitude at sharp edges follows some kind of exponential distribution with waviness, while the angle distribution can 

be approximated by a uniform distribution with waviness. The concept of statistical binary tree (SBT) is used to 

represent the spatial distribution of measurement noise magnitude at sharp edges, while a random number generator is 

directly used for the angle distribution. A procedure has been proposed to synthesize the measurement noises at sharp 

edges on the basis of SBT. The probability density distribution of the synthesized noises is very close to that of 

measurement noises, indicating the effectiveness of our approach.  
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cases mean standard 

deviation 

skewness kurtosis 

1. Real measurement noise 69.9 40 0.3003 -1.1286 

2. Synthetic noise reconstructed from SBTnode 

through system-supplied random number 

generator in ANSI C 

69.9 40 0.0535 -1.2424 

3. Synthetic noise reconstructed from SBTnode 

through exponential deviates 

69.9 40 0.1288 -1.3806 

4. Synthetic noise reconstructed from the root 

node of SBT tree through system-supplied 

random number generator in ANSI C 

69.9 40 -0.2084 -1.5771 

5. Synthetic noise reconstructed from the root 

node of SBT tree through exponential deviates 

69.9 40 1.3249 0.9279 

 

Tab. 4: Reconstruction accuracy of noise template in global statistical property with the Renishaw touch probe (unit: 

micrometer).  
 

cases mean standard 

deviation 

skewness kurtosis 

1. Real measurement noise 120.8 98.9 0.8983 0.2962 

2. Synthetic noise reconstructed from SBTnode 

through system-supplied random number 

generator in ANSI C 

120.8 98.9 0.7503 -0.0797 

3. Synthetic noise reconstructed from SBTnode 

through exponential deviates 

120.8 98.9 0.9185 0.0281 

4. Synthetic noise reconstructed from the root 

node of SBT tree through system-supplied 

random number generator in ANSI C 

120.8 98.9 -0.0047 -1.5596 

5. Synthetic noise reconstructed from the root 

node of SBT tree through exponential deviates 

120.8 98.9 3.2485 11.61 

 

Tab. 5: Reconstruction accuracy of noise template in global statistical property with the LDI laser probe (unit: 

micrometer).  
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