
 

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 267-276 

 

267 

A Hybrid Model with Mathematical Relations and Neural Network Relations 

for Optimal Concurrent Design 
 

Dong Zhao1, Wei Dong2 and Deyi Xue1* 
 

1University of Calgary, zdong@ucalgary.ca, dxue@ucalgary.ca 
2Versa Power Systems, Wei.Dong@versa-power.com 

 
 

ABSTRACT 

 
A hybrid model is introduced in this research to describe both the mathematical relations and the 
neural network relations. Parameters of a design are associated by these two types of relations 
through a parameter relation network. An optimal concurrent design is achieved by changing values 
of variable parameters based on evaluation of different performance and cost parameters through 
optimization. A case study to design a 4-linkage mechanism considering both design and 
manufacturing requirements is conducted to demonstrate the effectiveness of this optimal 
concurrent design method.  
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1. INTRODUCTION 

Concurrent design is an approach to incorporate the considerations in down-stream product development life-cycle 
aspects, such as manufacturing and maintenance, into the early design stage for shortening product development lead 
time, reducing production cost, and improving the overall design quality [2,4]. Presently many methodologies and 
computer tools have been developed for solving concurrent design problems.  
Among various concurrent design approaches, the optimization based concurrent design approach has demonstrated 
the effectiveness due to the advances in optimization techniques and product life-cycle database modeling. In this 
research area, Wong et al. developed an optimization based concurrent design method to minimize production cost 
considering functional requirements as constraints [7]. In this research, meta-modeling was employed for improving 
the efficiency and quality of optimization. Chang et al. introduced a multi-level product model to describe both the 
geometric parameters of mechanical systems and behaviors of these systems such as reliability and maintainability, 
and to achieve the optimal design parameters through tradeoff of these evaluation measures [1]. Wong and Wang 
developed a customized CAD system using a commercial CAD system, Pro/ENGINEER, for optimal design of 
industrial silencers considering performance and cost [6]. Many advanced computing techniques, such as genetic 
algorithm and neural networks, have also been used for optimal concurrent design [3].  
In our previous research, a database scheme was introduced to model the different life-cycle aspects of a design and to 
associate these life-cycle aspects through their relations [8]. A hybrid optimization mechanism was developed to 
identify the optimal design configuration and its parameters through genetic programming and particle swarm 
optimization considering functional performance and production cost [10]. Modeling of the non-linear relations among 
functional performance measures and production cost measures was also studied [9].  
Despite the progress, the relations between design variables and design evaluation measures in these optimal 
concurrent design methods are modeled by mathematical functions usually implemented by computer programs. 
Since the mathematical relations may not be achieved due to the uncertainty factors, new methods to model the 
relations considering uncertainties have to be developed. To address this problem, a hybrid model is introduced in this 
research to describe both the mathematical relations and the neural network relations among design parameters.     
 
2. A HYBRID MODEL WITH MATHEMATICAL RELATIONS AND NEURAL NETWORK RELATIONS 

The relation between a number of input parameters, x1, x2, ..., xn, and an output parameter, y, can be defined by a 
function 
 ),...,,( 21 nxxxFy =  (1) 
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When the mechanism of mapping from the input parameters to the output parameter given in Eq. (1) is explicitly 
known, this relation can be modeled by a mathematical relation 
 ),...,,( 21 nxxxMy =  (2) 

A mathematical relation can be defined either by a simple mathematical expression, such as 
 21 4xxy +=  (3) 

or by a number of mathematical expressions, such as 
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When the mapping from the input parameters to the output parameter is not exactly known, approximation process is 
usually considered to achieve the relation. Among various approximation methods, the feed-forward neural network 
with the back-propagation learning algorithm has demonstrated the effectiveness to achieve such a relation when a 
large amount of training data is available [5]. In this research, a neural network relation is modeled by  
 ),...,,( 21 nxxxNy =  (5) 

The various mathematical relations and neural network relations of a design form a parameter relation network. Fig. 
1(b) shows a parameter relation network created from the 2 mathematical relations and 1 neural network relation 
given in Fig 1(a).  

A parameter relation network is modeled by two types of nodes: parameter nodes and relation nodes. When a 
parameter node is used only as an input node of one or several relation nodes, this parameter node is called an 
independent parameter node. When a parameter node serves as an output node of a relation node, this parameter 
node is called a derived parameter node. In the example given in Fig. 1, x1, x2, x3 and x4 are independent parameter 
nodes, while x5, x6 and x7 are derived parameter nodes. Each parameter node can only be used as the output 
parameter node of one relation node. Relation nodes are classified into mathematical relation nodes and neural 
network relation nodes.   
Each parameter node in the parameter relation network is associated with a parameter value. Value of an independent 
parameter can be modified. When value of a parameter is changed, the relations that use this parameter as an input 
parameter should be activated to update the values of their output parameters. This propagation process is continued 
until all the relevant parameters are updated. For example, when x1 in Fig. 1 is changed, this change is then 
propagated to x5 and x7 through the relations N1 and M2, respectively. The change of x5 is further propagated to x6 
through the relation M1. Change of x6 is subsequently propagated to x7 through the relation M2.  
Propagation of parameter value changes through the hybrid parameter relation network is different from the traditional 
parametric design using the relations defined in commercial CAD systems in the following two aspects. 

1. In the traditional parametric design, all the relations are used sequentially to get the value of the right side 
expression for each relation and assign this value to the left side of this relation. In the hybrid parameter 
relation network, only when the input parameter value of a relation is modified, this relation is then activated 
to get the output parameter value. This new output parameter value is compared with the current parameter 
value to see whether a modification is required.  

2. In the traditional parametric design, each relation is only used once for parameter change propagation. 
Therefore different sequences of these relations could achieve different propagation results. In the hybrid 
parameter relation network, since a relation could be activated several times during the parameter change 

 x1 

R1: x6 = M1(x5,x3) 

R2: x5 = N1(x1,x2) 

R3: x7 = M2(x1,x4,x6) 

N1 M1 M2 

(a). Two types of relations. (b). A parameter relation network. 

Fig. 1: A hybrid model with mathematical and neural network relations. 

 

 

A parameter node 

A relation node 

x3 x4 

x5 x6 x7 

x2 
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propagation process, the same propagation result is obtained when these relations are organized in different 
sequences.  

 
3. OPTIMAL CONCURRENT DESIGN USING THE HYBRID MODEL TO DESCRIBE THE RELATIONS 

AMONG PARAMETERS 

In this research, the design modeling scheme introduced in [8] is employed to describe the relations among 
parameters. In this scheme, a design is modeled using primitives called artifacts including components and assemblies. 
Fig. 2 shows a gear-pair mechanism modeled by 1 assembly and 2 components. Each artifact is modeled by 
parameters and relations among parameters. Constraints are also described in artifacts. The parameter relations in 
different artifacts of a design form a parameter relation network. 

Among various parameters, the design engineer can select some independent parameters as design variables, as shown 
in Fig. 3. The value of each design variable can be changed between two boundary limits. The vector of design 
variables is defined as X. In Fig. 3, x1, x6 and x11 are selected as design variables defined by 
 X = (x1, x6, x11)

T (6) 

 

Component: gear-2 
Parameters: 
d[gear-2]=40, m[gear-2]=2,  
z[gear-2]=20, n[gear-2]=200 

Parameter-Relations: 
    d[gear-2]:=m[gear-2]*z[gear-2] 

Assembly: gear-pair-1  
Components: 
    ?X: gear-1, ?Y: gear-2 
Parameter-Relations: 
n[gear-1]:=n[gear-2]*z[gear-2] / z[gear-1] 

Constraints: 
    n[gear-1]/n[gear-2] < 0.7 

 

Component: gear-1 
Parameters: 
d[gear-1]=80, m[gear-1]=2,  
z[gear-1]=40, n[gear-1]=100 

Parameter-Relations: 
    d[gear-1]:=m[gear-1]*z[gear-1] 

m: module (mm) 
d: diameter (mm) 
z: number of teeth 
n: rotational speed (rpm) 

Fig. 2: Modeling of a gear-pair mechanism. 

 

M1 
x1 

Fig. 3: Modeling of optimal concurrent design considering performance and costs. 
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Among the parameters in the parameter relation network, the design engineer can select a number of derived 
parameters as the evaluation measures. An evaluation measure can be achieved from design variables by f(X). In Fig. 
3, performance measures of x5 and x9 and cost measure of x13 are selected as the evaluation measures.   
 x5 = f5(X) (7) 
 x9 = f9(X)  

  x13 = f13(X)  
Since the different evaluation measures are usually described in different units such as kilowatts, percentages and 
dollars, these measures need to be converted into comparable measures for evaluating the design considering all 
relevant evaluation aspects. In this research, these evaluation measures are converted into evaluation indices, Ii 
(i=1,2,...,m), representing the degrees of satisfaction in these evaluation aspects. The method to model the non-linear 
relations between evaluation measures and evaluation indices introduced in [9] is employed in this work to convert the 
evaluation measures into the evaluation indices. An evaluation index is defined by 
 Ii(X) = Fi[fi(X)],    i = 1, 2, ..., m (8) 
Since the m evaluation indices are described by values between 0 and 1, the overall evaluation index, I, can then be 
defined by considering the importance of these evaluation aspects: 

 I(X) = 
mWWW +++ ...

1

21

[(W1I1(X) + W2I2(X) + ... + WmIm(X)] (9) 

where W1, W2, ..., Wm are m weighting factors for the m evaluation indices. These individual weighting factors are 
selected by design engineers according to their preference.  
The optimal concurrent design problem is defined by 
 )(IMax

w.r.t. 
X

X
 (10) 

     subject to: 

 maxmin XXX <≤  

 kjh j ,,2,1,0)( �==   X                         

 lkkjg j ,,2,1,0)( �++=≤   X  

 

4. SYSTEM IMPLEMENTATION 

The optimal concurrent design system was implemented using Visual C++. Two snapshots of this system are given in 
Fig. 4. In this system, the Design Model Browser is used to build the design using artifacts. The mathematical relations 
and neural network relations defined in artifacts are used to form the hybrid parameter relation network. The 
Optimization Browser is used to select design variables, evaluation measures, mapping from evaluation measures to 
evaluation indices, and weighting factors of these evaluation indices for modeling the optimal concurrent design 
problem. The optimization result is also achieved using this browser.  

   

(a). Design Model Browser.

  

(b). Optimization Browser.

 
Fig. 4: Two snapshots of the implemented optimal concurrent design system. 
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5. A CASE STUDY OF OPTIMAL 4-LINKAGE MECHANISM DESIGN 

A case study of optimal mechanism design was conducted using the hybrid model with mathematical relations and 
neural network relations. In this case study, the geometric parameters of a 4-linkage mechanism (Fig. 5) are optimized 
to achieve a required motion path of point M. The mathematical relations are used to calculate the coordinates of the 
path, while the neural network relations are used to obtain the systematic errors of the path for error compensation. 
Accuracy and cost are selected to evaluate the designed mechanism in the optimization.    

5.1 The 4-Linkage System  

In the 4-linkage mechanism given in Fig. 5, l1 is the length of the driving link AB, l2 is the length of the connection link 
BC, l3 is the length of the driven link CD, l4 is the length of the fixed link AD, l5 is the length of the arm BM, α is the 
angle between the horizontal line and the fixed link AD, φ is the driving angle between the fixed link AD and the 
driving link AB, β is the angle between the diagonal line BD and the fixed link AD, λ is the angle between the 
connection link BC and the diagonal line BD, δ is the angle between the connection link BC and the horizontal line, 
and θ is the angle between the connection link BC and the arm BM. A, B, C and D are rotational joints. The arm BM 

and the connection link BC have no relative motion. When the driving angle ϕ rotates from φ0 to φ
’, the point M on the 

arm of the mechanism moves along a path.   
 

5.2 Behaviors of the 4-Linkage System 

When the geometric parameters of the 4-linkage system are perfectly manufactured, the coordinates of the point M can 
be calculated mathematically by: 
 ( ) ( )θδϕα ++++= coslcoslxx AM 51  (11) 

 ( ) ( )θδϕα ++++= sinlsinlyy AM 51  (12) 

where xA and yA are the x and y coordinates of the anchor point A. The driving angle φ in Eqs. (11) and (12) is defined 
by  
 )(0 tϕϕϕ +=  (13) 

where φ0 is the initial angle, φ(t) is a function of the time t defined by 
 tt sϕϕ =)(  (14) 

where φs is a constant. The driving angle φ is changed from φ0 to φ
’. In Eqs. (11) and (12), α and θ are design variables, 

and δ is calculated by: 
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 ( ) βλααβλδ −+=−−=  (17) 

From Eqs. (11)-(17), we can see the coordinates of the point M in the path are determined by the parameters of [xA, 
yA, l1, l2, l3, l4, l5, α, θ, φ0]. To simplify the design problem, xA and yA are selected as 0 in this case study. Therefore the 8 
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Fig. 5: A 4-linkage mechanism. 
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design parameters for the 4-linkage system are selected as [l1, l2, l3, l4, l5, α, θ, φ0]. The coordinates of the point M in the 
path can be calculated by the following two mathematical functions.  
 ( ) ( )θδϕαϕθα +++== coslcosl),,,l,l,l,l,l(xx MM 51054321  (18) 

 ( ) ( )θδϕαϕθα +++== sinlsinl),,,l,l,l,l,l(yy MM 51054321  (19) 

 

5.3 Discussion on the Behaviors of the 4-Linkage System 

Although the path of the point M for the 4-linkage system can be calculated using Eqs. (18) and (19), the actual path is 
usually different from the calculated path due to errors in manufacturing, measurement, etc. Fig. 6 shows the partial 
calculated paths and the actual paths when the 8 design parameters are assigned with different values. The different 
types of errors can be classified into 2 categories: statistical errors and systematic errors. Statistical errors are caused by 
random factors such as unpredictable changes of temperatures. The systematic errors, on the other hand, are caused 
by non-random factors such as the errors of the manufacturing machines. If the cause of the systematic errors can be 
identified, the systematic errors can be eliminated by compensation. The errors of the paths for the 4-linkage system 
are primarily caused by the length errors of the five linkages, l1, l2, l3, l4, and l5, which are produced by a certain 
manufacturing machine. Therefore only the systematic errors are considered in this case study.  

Identification of the causes of the systematic errors, however, is a nontrivial task. In this case study, the neural network 
is employed to predict the systematic errors of the path when the 8 design parameters are assigned with certain values. 
By observing the calculated paths and the actual paths of the point M when the driving angle change, ϕ(t) in Eq. (13), 
is selected with a series of values from 0o to 180o as shown in Fig. 7, the deviations of an actual path from a calculated 
path in the x and y directions, Dx and Dy, can be approximated using the following oscillation functions: 

 ϕϕϕϕ 2
4

2
3210 sinacosasinacosaaDx ++++=  (20) 

 ϕϕϕϕ 2
4

2
3210 sinbcosbsinbcosbbD y ++++=  (21) 

where a0, a1, a2, a3, a4, b0, b1, b2, b3, and b4 are 10 coefficients to obtain the errors in the x and y directions for a 
manufactured 4-linkage mechanism. These 10 coefficients can be achieved from the data points corresponding to 
different ϕ angles in the calculated path and the data points in the actual path using the least square method. Since a 
calculated path and an actual path can be obtained for each design with the 8 design parameters, the 10 coefficients 
can be achieved for each of the design modeled by the 8 design parameters to obtain the errors of x and y coordinates 
in the path. The x and y coordinates in the actual path, xM

’ and  yM
’, can then be calculated by 
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S

M1-i
: x = [100,250,200,200,100,0,30,0]

S
M1-r

: x = [100,250,200,200,100,0,30,0], Avg.Dev. = 0.36375

S
M2-i

: x = [100,250,150,250,100,0,30,0]

S
M2-r

: x = [100,250,150,250,100,0,30,0], Avg.Dev. = 0.43416

S
M3-i

: x = [100,200,150,200,100,0,45,0]

S
M3-r

: x = [100,200,150,200,100,0,45,0], Avg.Dev. = 0.34008

S
M4-i

: x = [100,200,150,200,100,15,30,0]

S
M4-r

: x = [100,200,150,200,100,15,30,0], Avg.Dev. = 0.5962

S
M5-i

: x = [100,200,150,200,100,0,30,30]

S
M5-r

: x = [100,200,150,200,100,0,30,30], Avg.Dev. = 0.39391

Fig. 6: Ideal and real paths of the point M. 

SM: path of the point M. i: ideal path. r: real path.   
x= [l1, l2, l3, l4, l5, α, θ, φ0]. Avg. Dev.: average deviation. 
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 ( ) ( ) ϕϕϕϕθδϕα 2
4

2
321051 sinacosasinacosaacoslcoslDxx xM

'
M ++++++++=+=  (22) 

 ( ) ( ) ϕϕϕϕθδϕα 2
4

2
321051 sinbcosbsinbcosbbsinlsinlDyy yM

'
M ++++++++=+=  (23) 

A neural network is used to predict the 10 coefficients of a0, a1, a2, a3, a4, b0, b1, b2, b3, b4 from the 8 design parameters 
of l1, l2, l3, l4, l5, α, θ, φ0, as shown in Fig. 8. First for each design modeled by the 8 design parameters, the coordinates 
in the calculated path and the actual path can be achieved. The errors are used to obtain the 10 coefficients using Eqs. 
(20) and (21) through the least square method. The 8 design parameters of l1, l2, l3, l4, l5, α, θ, φ0 and the 10 
coefficients of a0, a1, a2, a3, a4, b0, b1, b2, b3, b4 are then selected as the input data and the output data in a data set to 
train the neural network. Since the 10 coefficients can be calculated from the 8 design parameters using the trained 
neural network, the errors of Dx and Dy in Eqs. (20) and (21) can then be achieved using the following two neural 
network relations. 

 ϕϕϕϕϕθα 2
4

2
3210054321 sinacosasinacosaa),,,l,l,l,l,l(DD xx ++++==  (24) 

 ϕϕϕϕϕθα 2
4

2
3210054321 sinbcosbsinbcosbb),,,l,l,l,l,l(DD yy ++++==  (25) 

 

5.4 Evaluation Measures 
Two measures are selected in this case study to evaluate the design modeled by the 8 design parameters. These two 
measures are: (1) the average deviation between the required path and the designed path of the point M, and (2) the 
cost of a device used at the point M. 
 
5.4.1 Average Deviation between the Required Path and the Designed Path at Point M 

The average deviation between the required path and the designed path of the point M in the mechanism can be 
calculated by:  
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Fig. 8: A neural network. 
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Fig. 7: Coordinate deviations between actual paths and calculated paths.  
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where n is the number of sampling points along the path, xR and yR are the required x and y locations of the point M, 
and xM

’ and yM
’ are the coordinates in the designed path calculated from the 8 design parameters using Eqs. (22) and 

(23).   

 
5.4.2 Cost of the Device Used at Point M 

The velocities of the point M in the x and y directions are calculated by: 
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where Δts is the different between ti+1 and ti. The accelerations in the x and y directions are calculated by: 
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The average acceleration of the point M is calculated by: 
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 (31) 

When a device is used at the point M, due to different degrees of forces, different designs of this device are required. 
Suppose the cost of the device is proportional to the average applied force at the point M, and the force at point M is 
proportional to the acceleration, the cost of the device can then be calculated by 
 MavgM aCC , =  (32) 

where C is a constant selected as 1,800 $·s2/m.  
 

5.5 Constraints 

Based on the mechanism design theory, the following geometric constraints need to be satisfied when l1 is selected as 
the driving link. 
 4321 llll +≤+  (33) 

 4231 llll +≤+  (34) 

 3241 llll +≤+  (35) 

In addition, l1 is selected as the shortest link among the 5 links in this case study. The lower and upper boundaries of 
the 8 design parameters are defined as: 
 120100 1 ≤≤ l  (36) 

 250200 2 ≤≤ l  (37) 

 200150 3 ≤≤ l  (38) 

 250200 4 ≤≤ l  (39) 

 120100 5 ≤≤ l  (40) 

 oo 150 ≤≤ α  (41) 

 oo 4530 ≤≤ θ  (42) 

 oo 300 0 ≤≤ ϕ  (43) 
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5.6 Optimal Mechanism Design 

The required path is defined by 12 data points given in Table 1. The 8 design parameters are defined by a vector: 
 X = (l1, l2, l3, l4, l5, α, θ, φ0)

T (44) 

Two evaluation measures, the average deviation between the required path and the designed path of the point M, 
Devavg,M, and the cost of the device used at the point M, CM, are selected in this case study. These two evaluation 
measures are calculated from the 8 design parameters using the mathematical relations and the neural network 
relations defined in the hybrid relation network. Since these two evaluation measures are modeled by different units, 
these evaluation measures are first converted into evaluation indices, I1 and I2, representing degrees of satisfaction in 
these evaluation aspects using the method introduced in [9]:  
 I1(X)= F1(Devavg,M(X)) (45) 
 I2(X)= F2(CM(X)) (46) 
Fig. 9 shows the non-linear relations between the evaluation measures and the evaluation indices.  

The optimization objective function is defined as: 

 ( ) ( )( )XXX 2211
21

1
IWIW

WW
)(I +

+
=  (47) 

where W1 and W2 are the weighting factors selected as 65% and 35%, respectively. The optimal mechanism design 
problem is thus defined as: 
 ),,( 054321

,, 054321

φ,α,l,l,l,llIMax
φ,α,l,l,l,lw.r.t. l

θ
θ

 (48) 

The optimal design parameters are identified as: 
 X = (l1, l2, l3, l4, l5, α, θ, φ0)

T = (115 mm, 223 mm, 183 mm, 217 mm, 117 mm, 0o, 30o, 15o)T (49) 
Fig. 10 shows partial required path and designed path. The average deviation between the required path and the 
designed path of the point M, Devavg,M, and the cost of the device used at the point M, CM, for this optimal design are 
calculated as 
 (Devavg,M, CM)T = (0.0976 mm, $25.818)T (50) 
From this case study, we can see the average deviation calculated using the hybrid relation network model is much 
smaller than the average systematic errors given in Fig. 6.      
 

6. CONCLUSIONS 

Characteristics of this newly introduced hybrid model with mathematical relations and neural network relations are 
summarized as follows.  

 

 

Tab. 1: Coordinates in the required path. 

P  P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 

φ(t) 0 15 30 45 60 75 90 105 120 135 150 165 
xR 153.0 159.8 151.3 132.6 107.5 78.7 48.6 19.5 -7.0 -29.4 -46.8 -58.9 
yR 139.0 157.8 175.1 189.3 198.5 201.6 197.9 187.7 171.7 151.1 127.5 102.7 
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Fig. 9: Evaluation measures and evaluation indices.  
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1. The hybrid model is effective for modeling both the explicit relations and the relations with uncertainties.  
2. The hybrid model provides a new parametric design approach where the same result can be achieved when 

the relations are organized in different sequences.  
3. The design engineer can select parameters of the hybrid model as design variables and evaluation measures 

for conducting the optimal concurrent design.    
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