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ABSTRACT 

 

A global weighted-mean approximation to scattered lines is introduced. Rational Gaussian weights 

are stretched along lines and standard deviations of Gaussians are selected in such a way as to 

produce surfaces that closely follow data along lines. When the lengths of the lines approach zero, 

the proposed formulation converges to that of global weighted mean approximation to scattered 

points. Therefore, the traditional weighted mean approximation becomes a special case of the 

proposed approximation. Implementation strategies are presented and examples of surface 

approximation using range data and polygon meshes are given. 
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1. INTRODUCTION 

Surfaces are most widely defined by weighted sum of points [4–6], [10], [13], [17], [24]. Surface formulations based 

on weighted sum of polynomials also exist in the literature [2] [10]. Surfaces that are defined in terms of points can be 

considered a weighted sum of polynomials by letting the degree of the polynomials be zero. In parametric surfaces, a 

component of a surface is defined by a weighted sum of a component of the points, which again can be considered 

polynomials of degree zero in the parameter space. 

 

In this paper, a surface formulation based on a weighted sum of lines is introduced. The motivation behind this 

formulation is to produce surfaces that contain sharp edges. The proposed formulation produces surfaces that have 

high degrees of continuity even at sharp edges. 

 

Man-made scenes often contain flat patches and sharp edges. To represent such geometries from range scans and data 

generated by computer vision techniques, a representation is needed that can not only represent smoothly varying 

surfaces but can also represent surfaces containing flat patches and sharp edges. Current surface formulations are not 

designed to create sharp edges. Subdivision methods have been used to create sharp edges in surfaces by changing 

the subdivision rules [3], [12]. Subdivision surfaces, however, require that a polygon mesh be given, which is possible 

to have when working with data generated by computer graphics applications but is rarely obtained when working 

with data generated by computer vision applications. Stereo depth recovery algorithms can determine depth along 

scene edges with a rather high degree of accuracy, but they often fail to produce accurate depth values in smooth 

areas in a scene [1]. Recovered depth will often be along scattered lines in an image and from such scattered line data 

there is a need to recover the geometry of the scene. 

 

Forcing a surface that is defined by a weighted sum of points to produce a sharp edge in one area may produce high 

fluctuations in another area. The formulation proposed here is particularly designed to produce sharp edges in a 

surface. The formulation is written by a weighted sum of lines, which enables the surface to make sharp turns near the 

lines while approximating them. Providing a smoothness parameter that can be varied interactively, the surface can be 

made to get as close as desired to the lines and reproduce them, or smooth out the line details and create a smooth 

surface. 

 

In the following sections, first, the problem to be solved is described. Then, a solution to the problem when the scene 

represents a single-valued surface is described. Next, the method is extended to parametric surfaces that approximate 

scattered lines in 3-D. Finally, applications of the proposed formulation in smooth approximation of range data and 

polygon meshes are discussed. 
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2. PROBLEM DESCRIPTION 

We first solve the problem for scattered line data in 2-D and then extend the method to scattered lines in 3-D. Consider 

scattered lines in the plane, { }N,1,i:y)(x,
i

L …= , with endpoints: { }N,,1i:)y,x(),y,x(
2211 iiii …= . Also, suppose data 

along a line varies linearly and 
111 iiii Z)y,x(L =  and

222 iiii Z)y,x(L = for .N,,1i …=  We would like to find a single-

valued function f(x,y) that satisfies 

),y,x(L)y,x(f i≈           ,N,,1i …=                                                             (1) 

for points on the lines. 

 

3. APPROACH 

The single-valued function approximating a set of scattered line data is obtained by extending a surface formulation 

that approximates a set of scattered point data. Consider fitting a single-valued surface to scattered point data in the 

plane, {(xi,yi,Zi): i=1,…,N}. An example of scattered point data is given in Fig. 1a. Intensities of the points represent the 

data values at the points. If we use the single-valued rational Gaussian (RaG) surface [7], [8], [15] as the 

approximating surface, we have 

∑
=

=
N

1i

ii )y,x(gZ)y,x(f ,                                                                             (2) 

where )y,x(g i  is the ith blending function of the surface defined by 

∑N

1j
jj

ii
i

)y,x(GW

)y,x(GW
)y,x(g

=

= .                                                                     (3) 

Gi(x,y) is a 2-D Gaussian centered at data point (xi,yi) and Wi is the weight or the importance of that point with respect 

to other points on the surface. If the data value at (xi,yi) is Zi, surface f(x,y) will approximate Zi at (xi,yi). The standard 

deviations of the Gaussians are the free parameters of the surface and can be varied to produce a desired level of local 

detail in the surface. The standard deviations of all Gaussians can be set to the same parameter σ  to control the 
smoothness of the surface globally. 

 

Now, consider using a data line in the place of a data point. For the sake of simplicity, let’s first assume that data along 

a line does not vary and all lines are parallel to the x-axis. An example of such data lines is given in Fig. 1b. Therefore, 

instead of point (xi,yi) we will have a line with end points )y,x( ii1
 and )y,x( ii2

 and the same data value Zi everywhere 

along the line. To fit a surface to these lines, we will stretch the Gaussian associated with a line proportional to the 

length of the line horizontally.  

 

   
(a)                                                                (b)                                                                (c) 

Fig. 1: (a) An example of scattered point data in the plane. (b) Scattered line data parallel to the x-axis. Data value 

along a line does not vary.  (c) Scattered line data in the plane. Data value along a line varies linearly. 

 

Assuming the coordinates of the midpoint of the ith line are (xi,yi), since a 2-D Gaussian can be decomposed into two 

1-D Gaussians, we have 
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To stretch )y,x(Gi along the x-axis, we can scale down the x coordinates, or equivalently, scale up σ. Let’s denote this 

scaling by mi > 1. Then, we replace )x(Gi with 
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where mi = (1 + εi) and εi is proportional to the length of the ith line. After this stretching, relation (2) becomes 

∑
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Now, suppose data along a line varies linearly, but the lines are still parallel to the x-axis. To fit a surface to such data 

lines, instead of using a Gaussian of a fixed height Zi, we let the height of the Gaussian vary with data along the line. 

Assuming data at the endpoints of the ith line are
1i

Z and 
2i

Z , and assuming Zi represents the data value at the 

midpoint of the line, in equation (6) we will replace Zi with 
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This formula changes the height of the Gaussian along a line proportional to the data value there. The new 

approximation formula, therefore, becomes  

∑
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)y(G)x(HW)x(Z
)y,x(f .                                                                      (8) 

To adapt the approximation to data lines with arbitrary orientations, such as those shown in Fig. 1c, we rotate each 

line about its center so it becomes parallel to the x-axis, use the above formula to find its contribution to the surface, 

and finally, rotate the computed values back to their original positions. Doing this for each line and adding the 

contributions from the lines, we obtain the approximating surface. Assuming the ith line makes angle θi with the x-axis, 

when rotating the coordinate system clockwise about the line’s midpoint by θi so that it becomes parallel to the x-axis, 

if the coordinates of points on the line before and after this rotation are (X,Y) and (x,y), we will have 

iiiii xsin)YY(cos)XX(x +−−−= θθ ,                                                                 (9) 

iiiii yθcos)YY(θsin)XX(y +−+−= .                                                               (10) 

Substituting relations (9) and (10) into the right side of equation (8), we obtain a relation in (X,Y). This relation defines 

the surface value at (X,Y) in the approximation domain. Renaming the approximating function by )Y,X(F , we will 

have 
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and 
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is half the length of the ith line in the xy or XY domain. Weight Wi of line Li is set equal to 1+2Di. The 1 in the formula 

ensures that if instead of lines points are provided, the obtained surface will approximate the points. As the length of a 

line increases, the volume under the stretched Gaussian increases also. To make the weight function dependent on the 

length of the line as well as the data values on the line, the following formula is recommended: 

)ZZ()yy()xx(1D21W
121212 ii

2
ii

2
iiii −+−+−+=+= .                                                       (16) 

Substituting (12–14) and (16) into (11) a single-valued surface will be obtained approximating scattered line data in 

the plane. 

 

4. APPROXIMATION TO SCATTERED LINES IN 3-D 

A simple example demonstrating the proposed idea is given in Fig. 2. Fig. 2a shows seven data lines in the xy plane. 

Intensities of points along a line represent the data values there. The coordinates of the line endpoints and the 

associating data values are shown in Table 1. Fig. 2b shows the surface approximating the lines according to formula 

(11). Although the surface approximates the lines, flat spots are obtained along the lines. This is a known property of 

weighted mean methods. Since the sum of the weights is required to be 1 everywhere in the approximation domain, 

when the weight functions have rather small widths, flat spots are obtained at and near the data points, and so in our 

case, at and near the lines. To avoid such flat spots from appearing in the approximating surface, instead of single-

valued surfaces, we suggest use of parametric surfaces. Therefore, instead of the single-valued surface given by (11), 

we use the parametric surface defined by 
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Doing so, we obtain the surface shown in Fig. 2c. Fx, Fy, and Fz are the X, Y, and Z components of the surface, each 

obtained by varying u and v from 0 to 1. Parameter coordinates at the line midpoints and line end points are set 

proportional to the XY coordinates of the line midpoints and end points, respectively. That is, 

)XX/()XX(u minmaxminii −−= ,                                                                  (20) 

)XX/()XX(u minmaxmin1i1i
−−= ,                                                (21) 

)XX/()XX(u minmaxmin2i2i
−−= ,                                              (22) 

)YY/()YY(v minmaxminii −−= ,                                                    (23) 

)YY/()YY(v minmaxmin1i1i
−−= ,                                                   (24) 

)YY/()YY(v minmaxmin2i2i
−−= ,                                                   (25) 

where Xmin, Xmax, Ymin, and Ymax define the approximation domain. The parametric representation makes it possible to 

fit a surface to scattered lines in 3-D when the lines can be mapped to a plane, a cylinder, a torus, or a sphere.  

 

Formulas (17–19) describe a parametric surface approximating a set of lines and Fig. 2c shows the surface 

approximating the lines of Fig. 2a using this formulation. Increasing the standard deviation of the Gaussians, which we 

will call the smoothness parameter, will produce a smoother surface as shown in Fig. 2d, while decreasing the 
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smoothness parameter will produce a surface that follows the lines more closely as shown in Fig. 2e. Fig. 2f depicts a 

view of this surface from the opposite side. Portions of the lines hidden from the front view are visible in the rear view. 

 

   
(a)                                                                 (b)                                                           (c) 

   
(d)                                                                 (e)                                                           (f) 

Fig. 2: (a) Data lines of Tab. 1. Higher values are shown with brighter intensities. (b) Single-valued surface defined by 

(11) approximating the data lines. (c) Parametric surface defined by (17)–(19) approximating the same data lines. (d) 

Same as (c) but using a larger σ. (e) Same as (c) but using a smaller σ. (f) Same as (e) but viewing from the opposite 

side.  

 

i 1 2 3 4 5 6 7 

1i
X  −50 50 50 −50 1 −1 0 

1i
Y  −50 −50 50 50 1 1 −10 

1i
Z  0 0 0 0 50 50 40 

2i
X  50 50 −50 −50 50 −50 0 

2i
Y  −50 50 50 −50 50 50 −20 

2i
Z  0 0 0 0 0 0 20 

 

Tab. 1: Data lines of Fig. 2a. 

 

A more complex example of surface fitting by the proposed method is given in Fig. 3. Fig. 3a shows a depth map of an 

indoor scene. Closer points are shown brighter. Linear features in the image are detected by computer vision 

techniques as shown in Fig. 3b and used as the lines. The lines are then used in the parametric formulation to recover 

the scene geometry by letting the parameter coordinates at the line end points be proportional to their image 

coordinates. The geometry recovered by the surface defined by (17)–(19) is shown in Fig. 3c. The lines are overlaid 
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with the recovered surface to show the quality of approximation. Parts of the lines in front of the surface are visible in 

this image. The remaining lines are behind the surface and can be viewed from the opposite side as shown in Fig. 3d.  

 

An example of the proposed method in approximation of triangle meshes is given in Fig. 4. Fig. 4a shows a mesh 

obtained by triangulating a digital elevation map of an area over the Grand Canyon. The triangle mesh in shaded form 

is shown in Fig. 4b. Using the edges of the triangles as input to the proposed approximation, and letting uv be 

proportional to the xy coordinates of the mesh points, the surface shown in Fig. 4c is obtained. The triangle mesh is 

overlaid with the surface to show the quality of approximation. Increasing the smoothness parameter, the surface 

shown in Fig. 4d is obtained, smoothing the edges. This example demonstrates that the proposed method can be used 

to smooth a triangle mesh, creating a surface with a very high degree of continuity. 

 

    
(a)                                              (b)                                             (c)                                           (d) 

Fig. 3: (a) A depth map of an indoor scene. This data set is courtesy of University of California, Los Angeles. (b) Lines 

approximating the edges in the depth map. (c) Estimation of the scene geometry using the data lines. (d) The same 

geometry when viewed from the opposite side. Some of the lines or their parts that are hidden in (c) are visible in (d).  

 

    
(a)                                             (b)                                           (c)                                              (d) 

Fig. 4: (a) Triangulation of a digital elevation map. This data set is courtesy of USGS. (b) The triangle mesh in shaded 

form. (c) Approximation of the mesh by the proposed approximation using the mesh edges as the 3-D lines. (d) A 

smoother approximation to the same mesh. 

 

Since the proposed surface is in parametric form, the lines are not required to represent single-valued data. Rather, 

they can represent any geometry as long as parameter coordinates at the line end points are known. An example of a 

cylindrical surface is given in Fig. 5. Table 2 shows the XYZ coordinates as well as the uv parameters of twelve line end 

points. These line segments represent the four side edges of a cube. The lines are shown in Fig. 5a and the cylindrical 

surface obtained from the lines is depicted in Fig. 5b. Reducing the smoothness parameter σ pulls the surface closer to 
the lines as depicted in Fig. 5c. Another example of a cylindrical surface is given in Figs. 5d–f. Eight more line segments 

were added to the set of lines in Fig. 5a, connecting the centers of the two open faces to the four corners of the same 

faces as depicted in Fig. 5d. The XYZ and uv coordinates at the twenty line end points are given in Table 3. There are 

two tinyl holes at the two ends of the cylindrical surface, which become invisible when rendered. The approximating 

surface reproduces the cube closely as depicted in Fig. 5f.  

 

An example of a closed surface is given in Fig. 6. The coordinates of the line endpoints in this data set are given in 

Table 4.  The line segments shown in Fig. 6a have endpoints (1,2), (2,3), (3,4), (4,1); (5,6), (6,7), (7,8), (8,5); (9,10), 

(10,11), (11,12), (12,9); (13,14), (14,15), (15,16), (16,13). Figs. 6b and 6c show surfaces obtained with different 
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smoothness parameters. If the four squares shown in Fig. 6a are moved parallel to themselves towards each other so 

that their centers coincide at (0,0,0) without changing their parameter coordinates, a spherical surface will be obtained. 

Details about parametrizing spherical surfaces with torus parameter coordinates are given elsewhere [9]. 

 

i 1 2 3 4 5 6 7 8 9 10 11 12 

Xi1 0 0 1 1 0 0 1 1 0 0 1 1 

Yi1 0 1 1 0 0 1 1 0 0 1 1 0 

Zi1 0 0 0 0 1 1 1 1 0 0 0 0 

ui1 0 ¼ ½ ¾ 0 ¼ ½ ¾ 0 ¼ ½ ¾ 

vi1 0 0 0 0 1 1 1 1 0 0 0 0 

Xi2 0 1 1 0 0 1 1 0 0 0 1 1 

Yi2 1 1 0 0 1 1 0 0 0 1 1 0 

Zi2 0 0 0 0 1 1 1 1 1 1 1 1 

ui2 ¼ ½ ¾ 1 ¼ ½ ¾ 1 0 ¼ ½ ¾ 

vi2 0 0 0 0 1 1 1 1 1 1 1 1 

 

Tab. 2: Coordinates of the line endpoints shown in Fig. 5a. 

 

 

  
(a)                                                                (b)                                                              (c) 

   
(d)                                                                (e)                                                              (f) 

Fig. 5: (a) The line data set of Table 2. (b) The surface approximating the lines. (c) Same as (b) but using a smaller σ. 

(d) The line data set of Table 3. (e) The surface approximating the line data set of (d). (f) Same as (e) but without 

showing the lines.  

 

An example of a triangulated cylindrical surface is given in Fig. 7. Fig. 7a shows triangulation of the range scan of a 

person’s knee. The mesh in shaded form is shown in Fig. 7b. Using the edges of the mesh as input to the proposed 

weighted linear method and using cylindrical parametrization, the surface shown in Fig. 7c is obtained. Increasing the 

smoothness parameter reduces the noisy details in the surface and captures the global shape of the knee as depicted in 

Fig. 7d. The triangle mesh is overlaid with the surface to demonstrate the quality of approximation. This example 

demonstrates reconstruction of a smooth surface, containing no sharp edges. The lines used in the input simply 

represent small linear segments approximating a smooth surface. 
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To approximate a surface to single-valued linear data, parameters u and v of the line endpoints can be set proportional 

to the x and y coordinates of the line end points. For more complex geometries, determination of parameters at line 

end points may become a challenge. Algorithms to parametrize geometries that can be mapped to a plane, cylinder, 

sphere, or torus have been developed [14], [19]. The weakness of the proposed surface formulation compared to the 

subdivision methods [16], [20], [23] can be considered the need for finding the parameter coordinates at the line 

endpoints. The proposed method, however, has advantages over subdivision methods when parameter coordinates at 

line endpoints are known. For instance, to create a surface, a complete triangle mesh is not needed. Parts of some of 

the triangle edges can be missing and the process will still work. In addition, the proposed method has a smoothness 

parameter that can be changed to suppress noisy details in the constructed surface. This function, if not impossible, is 

very difficult to achieve by subdivision methods.  

 

Related to the proposed method are the discontinuous regression method of Qiu [20] and the moving least-squares 

method of Shen et al. [22]. These methods, which work quite well when dense range data are available, either fail or 

perform poorly when data lie along scattered lines. 

 
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

Xi1 0 0 1 1 0 0 1 1 0 0 1 1 1/2 ½ ½ ½ ½ ½ ½ 1/2 

Yi1 0 1 1 0 0 1 1 0 0 1 1 0 ½ ½ ½ ½ ½ ½ ½ 1/2 

Zi1 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 

ui1 0 ¼ 1/2 ¾ 0 ¼ ½ ¾ 0 ¼ ½ ¾ 0 ¼ ½ ¾ 0 ¼ ½ ¾ 

vi1 1/3 1/3 1/3 1/3 2/3 2/3 2/3 2/3 1/3 1/3 1/3 1/3 0 0 0 0 1 1 1 1 

Xi2 0 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 

Yi2 1 1 0 0 1 1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 

Zi2 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 1 1 1 1 
ui2 ¼ ½ ¾ 1 ¼ ½ ¾ 1 0 ¼ ½ ¾ 0 ¼ ½ ¾ 0 ¼ ½ ¾ 

vi2 1/3 1/3 1/3 1/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 2/3 1/3 1/3 1/3 1/3 2/3 2/3 2/3 2/3 

 

Tab. 3: The coordinates of line endpoints in Figs. 5d. 

 
i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

Xi 4.5 5.5 5.5 4.5 0 0 0 0 -4.5 -5.5 -5.5 -4.5 0 0 0 0 

Yi 0 0 0 0 -4.5 -5.5 -5.5 -4.5 0 0 0 0 4.5 5.5 5.5 4.5 

Zi 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 -0.5 0.5 0.5 -0.5 -0.5 

ui 0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75 0 0.25 0.5 0.75 

vi 0 0 0 0 0.25 0.25 0.25 0.25 0.5 0.5 0.5 0.5 0.75 0.75 0.75 0.75 

 

Tab. 4: Coordinates of line end points shown in Fig. 6a. 

 

   
(a)                                                       (b)                                                   (c) 

Fig. 6: An example of a closed surface. (a) The line segments defining the surface. The coordinates of the line 

endpoints are shown in Table 4. (b), (c) Surfaces obtained with different values of the smoothness parameter σ. 
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(a)                                                                                            (b) 

  
(c)                                                                                                  (d) 

Fig. 7: (a) Triangulation of a range data set of a person’s knee. This data set is courtesy of SGI. (b) The triangle mesh 

in shaded form. (c) Approximation of the mesh by the proposed method. (d) Same as (c) but using a larger 

smoothness parameter. The triangle mesh is overlaid with the surfaces in (c) and (d) to show the approximation 

quality.

 

5. CONCLUSIONS 

If a polygon mesh is given, a smooth approximation to the mesh can be obtained by 1) approximating the mesh 

vertices, 2) approximating the mesh faces, or 3) approximating the mesh edges. This paper described a method for 

approximating the mesh edges. Methods that are based on points tend to produce overall smooth surfaces. Methods 

that are based on planes [10] and lines can reproduce flat faces and sharp edges in created surfaces. In the proposed 

approximation, by sufficiently lowering a smoothness parameter, the surface can be made to closely follow the 

provided lines and reproduce sharp edges in the surface, while by setting the smoothness parameter sufficiently high, 

the surface can be made to smooth out noisy line data and produce an overall smooth surface. The method described 

here does not require that all edges in a polygon mesh be provided or that entire edge segments be given. Rather, a 

partial edge list is sufficient to create a surface that approximates the edges. 

 

If a line data set can be mapped to a plane, a cylinder, a torus, or a sphere, the lines can be approximated by the 

proposed surface. The obtained surface will have a high degree of continuity everywhere, enabling very accurate 

generation of surface normals, and consequently, generation of very high-quality images. The proposed method is 

particularly suitable in applications where the smoothness of the surface can be interactively varied to reproduce sharp 

edges in data or smooth out noisy edge details and capture the global geometry hidden amongst the data. 
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