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ABSTRACT

In this paper, we present a measure to quantify the multi-neighborhood level roughness of the
surface using mean curvature. The surface is scaled to a unit sphere to enable comparison between
different models with scale taken out of the comparison equation. Our roughness measure can be
used as a shape indicator of the surface as it gives information regarding the vertex distribution at
multiple neighborhood levels. In addition to computing the surface roughness, we use our measure
as a unifying method to analyze different smoothing algorithms on different models including the
effect of different vertex updating methods. We also use our measure to illustrate the differences in
roughness at different neighborhood levels due to the irregular sampling of the surface. We
specifically target triangle surface mesh representation for this paper, as it is the most common and
other polygonal models can be converted to it by using local triangulation. Results are presented to
demonstrate the usefulness of our roughness measure.

Keywords: Roughness, multi-neighborhood level, local roughness, global roughness, mean
curvature, mesh smoothing.

1. INTRODUCTION
Recent advances in 3D data acquisition technology have given rise to large and complex triangle mesh models. Many
new mesh smoothing and simplification techniques have been developed to handle such complex meshes. With the
increase in mesh complexity and number of methods available, it is always difficult to select an appropriate method for
a particular mesh as different methods produce different results on the same mesh. There is no unified way of
comparing these methods as each method tries to achieve its goal by minimizing various criteria, which are not
common to all the methods. Thus, more information about a surface is needed to come up with a better prediction of
the effect of these methods on the surface. One such piece of information is the roughness of the surface at different

neighborhood levels. Since roughness is opposite to smoothness, surface roughness information is valuable. A k -ring

neighborhood level of a vertex ix is defined as the union of all vertices, which are connected to ix by at most k
edges.

In this paper we present a measure to quantify the multi-neighborhood level roughness of the surface using an intrinsic
property of the mesh. Traditional methods in physical sciences and engineering treat roughness as a stochastic
measure whereas we compute it over the complete surface at different neighborhood levels. We are specifically
targeting triangle surface mesh representations for this paper, as it is the most common and other polygonal models
can be converted to it by using local triangulation.

The remainder of this paper is organized as follows. Section 2 reviews related work. In section 3, we introduce the
concept of neighborhood level roughness, local roughness and global roughness of the surface. Section 4 presents our
measure to compute multi-neighborhood level roughness of the surface. We discuss applications of our roughness
measure in section 5. Results are presented and a comparison between different smoothing methods is done in section
6. Finally, conclusions are drawn in section 7.

2. RELATED WORK
The notion of surface roughness is the subject of a large variety of investigations in different fields of engineering and
sciences. Physical and chemical properties of surfaces are to a significant degree determined by their surface structure.
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The effect of surface roughness is being studied in different fields like industrial engineering, oceanography and
atmospheric sciences [19].

Different methods have been used in various fields to measure the roughness of a surface. In case of 1D signals, the
most common methods of distortion measurement involve measuring the heights of the sampled points from a

horizontal line. The resulting series of values are used in equations like maximum height difference ( zR ), mean value

of absolute heights ( aR ) and root mean square roughness ( qR ) to measure the noise in the signal. If the measured

heights are represented as )(xz , then zR , aR and qR are defined as
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where N is the number of sampled points and )(xz is the average height. zR and aR are generally used in the

context of industrial and engineering applications whereas qR is used generally in physical and other sciences [19].

The above approaches have been extended to the surface case by using the surface profile information in equations
(1), (2) and (3). But these simple equations fail to completely characterize the complexity of surface roughness. Also,
these methods fail to measure the multi-neighborhood level roughness of the surface.

Rippa [12] defines roughness of a voronoi triangulation as the
2L norm squared of the gradient of the piecewise linear

surface, integrated over the triangulated region. The roughness of the data vector F , relative to triangulation T is
given by

.|=|),( tfTFR (4)

where ,1|.| T is the Sobolev semi-norm defined as:
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where tn is the number of triangles. Jian-Hua Wu et al in [8] proposed a measure to compute the per-face roughness

of the mesh by making statistical considerations about the dihedral angles and valence of the vertices associated with
each face of the mesh. Even though these methods successfully compute the local roughness, i.e. the roughness at one
ring neighborhood level; they do not compute the multi-neighborhood level roughness of the surface as our measure
does.

A modified version of [8] is proposed by Corsini et al in [3], where the per-vertex roughness is computed by averaging
the roughness of all the faces in the neighborhood of the vertex. In spite of taking multiple neighborhood levels in to
consideration, this method can not compute the roughness at higher neighborhood levels as simple averaging does not
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reflect the roughness of the vertices with respect to larger regions. This can be observed in fig 1(e), where the global
roughness of the noisy sphere, computed using the method in [3], is greater than the local roughness, which is quite
opposite to reality since globally its shape is still close to a sphere.

Lee et. al propose mesh saliency - a perceptually-based measure of regional importance [20]. Saliency is formulated in
terms of mean curvature. A Gaussian filter is placed over a vertex and used to compute a weighted average of the
mean curvature. This average is computed at multiple "scales" where the scale is varied by changing the cut-off for the
Gaussian filter. The saliency at a vertex is computed as the absolute difference between the Gaussian weighted average
of the mean curvature at a finer and coarser scale. The motivation for the multi-scale formulation is that all features are
not important at all scales. The authors consider scales of up to 1.8 % the length of the body diagonal of the object
bounding box. Neighbourhoods larger than this are not considered. Our method evaluates roughness at arbitrarily
large neighbourhoods and accounts for features of any size (a sizeable fraction of the bounding box).

3. LOCAL AND GLOBAL ROUGHNESS
In this section, we introduce the concept of local roughness and global roughness of a surface. We will then
demonstrate the usefulness of these notions.

The local roughness of a surface describes the average behavior of all the vertices in their local region, generally a one
ring neighborhood, whereas the global roughness of a surface describes the average behavior of all the vertices with
respect to a larger region, generally a complete surface. In other words, local roughness gives the average high
frequency roughness of a surface whereas global roughness gives the average low frequency roughness. The roughness
profile or local to global roughness plot for a given object captures the information about the roughness of an object
from the local sense (region around vertices) to the global sense (entire object).

(a) (b)

(c) (d)
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(e) (f)
Fig. 1: (a) Sphere with 14% noise added in radial direction (b) Bunny and their roughness profiles. (c) & (d) are
computed using the roughness measure proposed in this paper, whereas (e) & (f) are computed using the method in
[3].

Fig 1(a) & 1(b) show a triangle mesh approximation of a sphere with noise added and its roughness profile
respectively. Noise is randomly added by radially perturbing the vertices by 14%. It can be observed that, the local
roughness is high compared to the global roughness as the noise is added locally and the sphere still maintains its
spherical shape, while for the bunny, shown in fig 1(d), the global roughness is high compared to the local roughness
as it contains global features like ears, head, legs etc.

(a) (b) (c)
Fig. 2: (a) A curve with noise distributed at multiple neighborhood levels, (b) after removing local roughness, (c) and
after removing roughness at higher neighborhood levels.

In Fig 2, which shows a 1D case, the curve is rough locally as well as globally. Just removing the local roughness
doesn't make the curve smooth. A smoothing algorithm should proceed until it removes the roughness at higher
neighborhood levels. Similar argument can be made in surface case. Moreover, the smoothing of some models, like the
bunny, may require an algorithm to focus more on the local roughness than the global roughness, which in turn means
preserving the features while removing the noise, while some other models may require the algorithm to remove the
noise at higher neighborhood levels. Different smoothing methods produce different results with the same mesh.
Availability of the roughness profile of an object allows the user to compare the results of different smoothing methods
on the same mesh and make an informed decision in selecting the number of smoothing iterations.

4. MULTI-NEIGHBORHOOD LEVEL ROUGHNESS
The disadvantage of using the surface height information is that it depends on a base plane and fails to correctly
compute the global roughness of a surface. A possible approach to compute the multi-neighborhood level roughness of
a surface is to use the mean curvature of the vertices in the RMS roughness equation instead of surface height. We
choose mean curvature instead of other curvatures as it is the average of all directional curvatures at a point on the
surface and averages any directional curvatures spikes. We select the sphere as the base model as it has constant mean
curvature surface and our method implies surfaces with constant mean curvature are the smoothest. A plane and
synthetic surfaces like Wente's torii and Delaunay unduloid, which do not exist in practical applications, are other
examples of constant mean curvature surfaces. Before computing the mean curvature, we resize the model so that the
average distance between the centroid of the model and it’s vertices is a unit sphere. Since the curvature is scale
dependent, resizing enables the roughness measure to compare two different models on the same grounds.

Given a triangle mesh with N vertices, we propose to compute the surface roughness as follows: First scale the model

to a unit sphere and compute the mean curvature at each vertex of the triangle mesh. For each vertex ix , compute
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the difference )( ixD between its mean curvature and the average mean curvature of its k -ring neighborhood,

where k is the neighborhood level at which the surface roughness is being computed. )( ixD gives the information

regarding the roughness at the vertex ix . The surface is smooth at vertex ix if )( ixD is zero. Finally, we compute

the surface roughness by computing the root mean square of )( ixD over the entire triangle mesh.

Let )( iH xK be the mean curvature of the vertex ix and )( i
L
H xK be the average mean curvature of its L -ring

neighborhood given by
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where )( ixN contains all the vertices in the L -ring neighborhood of the vertex ix and |)(| ixN is the number of

vertices in )( ixN . Then the equation to compute the surface roughness is given by

),()(=)( i
L
HiHi xKxKxD  (8)

.))((
1

= 2

1=
i

N

x

xD
N
 (9)

where  is the roughness of the surface. As L increases,  represents roughness at higher neighborhood levels.

When computing the global roughness of the surface, )( ixN contain all the vertices except ix .

The mean curvature )( iH xK of the vertex ix can be computed using different methods proposed in [5, 6, 7, 10, 13,

15, 18]. Initially we tested the discrete curvature estimation method proposed in [10] to compute the mean curvature.
This method did not give good results for the surfaces with near zero roughness. This can be observed in fig 3, which
shows the effect of different smoothing methods on the triangle mesh approximation of a unit sphere which has a near
zero roughness. Discrete curvature approximation method [10] is used to compute the mean curvature and pre-
updating method is used i.e. vertices are updated immediately after the new position is computed. It can be observed
that the roughness of the sphere increases with smoothing, which is quite opposite to reality. Because of the inability of
discrete curvature methods to accurately compute the curvature values, we switched to the continuous curvature
computation methods, which can produce more accurate results.

(a) (b)
Fig. 3: Effect of (a) Laplacian smoothing and (b) mean curvature flow smoothing algorithms on the unit sphere. Mean
curvature is computed using the discrete curvature approximation method. Similar results are observed in case of
Modified mean curvature flow smoothing method.
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Razdan et al [13] compared different curvature approximation methods and observed that the cubic-order curvature
approximation method proposed by Goldfeather et al [5] is stable and performs better than other methods. In
Goldfeather et al method, curvature is computed by fitting a quadric approximation to the neighborhood of the
vertices. Normal vectors at adjacent vertices are used to create the third degree terms in the least-square solution.

5. APPLICATIONS
Our roughness measure can be used as a shape indicator of the surface in the sense that it gives the information
regarding the vertex distribution and their behavior at multiple neighborhood levels. Our roughness measure can be
used to compare models with different geometry and topology at different neighborhood levels. Fig 4 shows the
roughness profiles of the Venus and Rocker arm. The Rocker arm is smoother than the Venus at all neighborhood
levels. This difference is higher in lower neighborhood levels and lower in the higher neighborhood levels. This is
evident from the fact that the Rocker arm contains many flat regions locally but contains many global features like
crests and valleys, whereas the Venus contains less global features and more local features like eyes, hair etc.

(a) (b)

(c) (d)
Fig. 4: Mean curvature maps and roughness profiles of (a) & (c) Venus and (b) & (d) Rocker arm.

All the mesh smoothing methods aim at generating a modified mesh according to some criteria, which are different
among these methods. However, all these methods aim at producing a visually smooth mesh and this criterion can be
used as a unifying ground for comparison. To make this comparison effective, we should define and quantify the
smoothness or roughness of the mesh. This is what our roughness measure does. Moreover, our measure enables the
comparison at different neighborhood levels. Our measure provides the information whether the noise is distributed
locally or at higher neighborhood levels, which helps the user in selecting appropriate smoothing methods. Our
measure can also be used to publish the roughness profile of the models, which can assist the user in selecting suitable
method for a mesh and come up with a better prediction of number of iterations needed.
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Apart from comparing smoothing methods, our roughness measure can also be used to compare different meshes
representing same model. Tools like MESH [1], Metro [2] and MeshDev [14] are used to numerically compare triangle
meshes. Metro and MESH measure the error in terms of the symmetric mean distance and Hausdorff distance [1]
respectively whereas the MeshDev tool measures the error in terms of the geometry deviation. Corsini et al in [3]
proposed to measure the error in terms of the roughness of the surface. The error is computed by normalizing the
difference in the roughness of two models with respect to the roughness of the original model. The expression used is:

(k)
R(M)
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w log

log
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where )(MR is the roughness of the first mesh and )( wMR is the roughness of the second mesh, computed as in

[3], and k is a constant used to avoid numerical instabilities. Even though, all these measures successfully measure

the error between two meshes, they fail to compare the meshes at different neighborhood levels, which provide the
user with more information to come up with a suitable mesh simplification and water marking methods for a particular
mesh. This multi-neighborhood level comparison can be achieved by using the multi-neighborhood level roughness
measure proposed in this paper in equation(10).

6. RESULTS
In this section we will present the results of our surface roughness method and compare five smoothing algorithms.

6.1 Multi-Neighborhood Level Roughness Computation
Fig 5(a) shows the roughness profiles for a sphere with different levels of noise added, computed using our roughness
measure. The noise is added in the radial direction of the vertices, i.e. along the normal of the vertices. We observe
that, before adding the noise, the roughness of the sphere increases with the neighborhood level as the sphere is
approximated by a triangle mesh. As increasing amount of noise is added, we observe an increase in the roughness at
all levels. We also observe that the increase in the roughness with the addition of the noise is more at lower
neighborhood levels than the higher neighborhood levels. This high increase indicates that the local roughness is
sensitive to the noise added locally, hence showing the reliability of our method.

(a) (b)
Fig. 5: Roughness profiles of (a) sphere with different levels of noise added (b) sphere deformed into an ellipsoid.

Fig 5(b) shows the roughness profiles of ellipsoids formed from deforming a sphere by different amounts. As the sphere
is deformed more and more, we observe that, the roughness at higher neighborhood levels increases more than the
roughness at the lower neighborhood levels. In fact, the change at the lower levels is less. This high increase in the
global roughness is due to the fact that the deformation changes the global features of the model.

6.2 Comparison of Smoothing Algorithms
To test the usefulness of our measure, we compared different smoothing methods based on the surface roughness. We
selected five polyhedral surface smoothing methods: Laplacian smoothing, Taubin's method [16, 17], bilaplacian
smoothing [9], Mean curvature flow [4], and the modified mean curvature flow [11]. For a brief introduction of these
methods see [11]. We chose the following four triangular mesh models for the comparison.
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• SphereN: Unit sphere with 4% of noise added by randomly perturbing the vertices along their normals.
This mesh contains approximately 8k triangles. Local roughness is higher than the global roughness because of the
local noise added.

• Ellipsoid: Formed by deforming a unit sphere along the diameter by 20%. This mesh contains
approximately 8k triangles. Since the deformation only changes the global features, global roughness is higher than the
local roughness.

• VenusN: Venus model with 0.004% noise added by randomly perturbing the vertices in the direction of
their normals. This model contains approximately 134K triangles. Since the noise added is very less, global roughness
of the model is still higher than the local roughness.

• Bunny: Stanford Bunny model with approximately 70K triangles. Because of the global features like
creases, ears, tail etc., global roughness of this model is greater than the local roughness.

The smoothing of Bunny and VenusN requires the algorithms to remove the local roughness and preserve the global
features, whereas for the ellipsoid, the algorithms should remove the global roughness. In case of sphere, both global
and local roughness must be removed.

Fig 6 shows the effect of different smoothing methods on Bunny. As shown in the figure, Laplacian smoothing, mean
curvature flow and modified mean curvature flow methods perform well at lower neighborhood levels. At higher
neighborhood levels, Taubin's method and bilaplacian method perform well by showing less effect on the global
roughness i.e. by preserving the global features. The performance of these two methods is competitive with other
methods at local levels. In other words, these two methods remove local roughness while preserving the global features
of the mesh. Similar results are observed in case of VenusN in fig 7.

In case of noisy sphere (sphereN) in fig 8, we observe that the Laplacian smoothing performs better than other
methods by effectively removing the local roughness as well as the global roughness. The performance of the mean
curvature flow and the modified mean curvature flow are close to that of the Laplacian method. We also observe that,
if smoothed beyond certain point, Laplacian, bilaplacian and Taubin's methods introduce noise to the model. This
effect can be clearly observed in case of Ellipsoid in fig 9. Only the mean curvature flow and the improved mean
curvature flow perform better in this case. The reason for this behavior can be attributed to the topology of the models.
We observe that, the Laplacian and the Taubin's methods creates nodules at some vertices on the ellipsoid whose
valance is other than six. This is shown in fig 10, which shows the mean curvature maps for Ellipsoid after smoothing
with different smoothing methods. It can be observed that, most of the vertices on Ellipsoid contain six neighbors in
their one ring neighborhood and the Laplacin and the Taubin's methods create high curvature regions around only
those vertices which have only five neighbors.

From fig 6-10 we observe that the Taubin's method and the bilaplacian method perform well if the global features of
the models have to be preserved, whereas the Laplacian, the mean curvature flow and the modified mean curvature
flow methods perform well if the local as well as the global roughness has to be removed. We also observe that
Laplacian, bilaplacian and Taubin's methods will introduce noise if used on locally smooth surfaces with non uniform
topology. Depending on the end user application, our roughness measure can be used to get an assessment of which
algorithm is optimal for a model.

(a) (b)
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(c) (d)

(e)
Fig. 6: Comparison of different smoothing algorithms on bunny at different neighborhood levels (a) One ring (b) five
ring (c) 10 ring (d) 20 Ring neighborhood and (e) Global.

(a) (b)

(c) (d)
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(e)
Fig. 7: Comparison of different smoothing algorithms on VenusN at different neighborhood levels (a) One ring (b) five
ring (c) 10 ring (d) 20 Ring neighborhood and (e) Global.

(a) (b)

(c) (d)

(e)
Fig. 8: Comparison of different smoothing algorithms on sphereN at different neighborhood levels (a) One ring (b) five
ring (c) 10 ring (d) 20 Ring neighborhood and (e) Global.
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(a) (b)

(c) (d)

(e)
Fig. 9: Comparison of different smoothing algorithms on ellipsoid at different neighborhood levels (a) One ring (b) five
ring (c) 10 ring (d) 20 Ring neighborhood and (e) Global.

(a) (b)
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(c) (d)
Fig. 10: Mean curvature maps of ellipsoid after smoothing with (a) Laplacian method (c)Taubins method (d) Mean
curvature flow method. Close look at the boxed region in (a) is shown in (b). Red color represents regions with high
curvature and green color represents regions with zero curvature.

6.3 Pre-updating Vs Post-updating
In this paper, we also compare two different mesh updating approaches used by smoothing algorithms - pre-updating
and post-updating. Post-updating updates the positions of the vertices after the algorithm completes one iteration while
pre-updating updates the vertex positions immediately after the new position is computed. Sometimes the results can
be vastly different depending on which method is used. Our measure can be used to quantify the effect of pre-updating
method versus post-updating method. For a sphere, as shown in fig 11, post-updating gives better results than the pre-
updating method for all smoothing methods. In case of Bunny, Venus and Rocker arm, as shown in fig 12, both pre
and post updating performs well at local neighborhood levels. But at higher neighborhood levels post-updating method
performs better than the pre-updating method by preserving the global features. From these results we observe that,
post-updating preserves the global features, whereas pre-updating method performs better when the global roughness
must be removed.

(a) (b)

(c) (d)
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(e) (f)
Fig. 11: Laplacian, mean flow and modified mean flow of sphere using pre- and post-updating. (a) (b) & (c) use pre-
updating and (d) (e) & (f) use post-updating.

(a) (b)

(c) (d)

(e) (f)
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Fig. 12: Comparison of Laplacian smoothing at local and global levels using pre- and post- updating methods on (a) &
(b) Bunny (c) & (d) Venus (e) & (f) Rocker arm. Similar results are observed in the case of mean curvature flow and
the modified mean curvature flow.

(a) (b)

(c) (d)
Fig.13: Roughness profiles for torus (a) & (c) regular mesh (b) & (d) irregular mesh.

(a) (b)

(c) (d)
Fig. 14: Roughness profiles for a test surface shown in [5] (a) & (c) regular mesh (b) & (d) irregular mesh.
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6.3 Regular Vs Irregular Triangulation
Fig 13 shows the roughness profiles for a torus represented by two different meshes, a regular mesh, formed by
regularly sampled vertices on the surface, and an irregular mesh, formed by irregularly sampled vertices on the surface.
It can be observed that, the irregularity in the mesh will increase the local roughness of the surface but has very little
effect on the roughness at global level. This highlights the challenge of good curvature estimation. Similar results can be
observed on Goldfeather's surface [5] in fig 14. From fig 13 & 14, we can say that the global roughness of a surface
does not depend on the approximating mesh but mainly depends on the global features of the surface.

7. CONCLUSIONS AND FUTURE WORK
We have presented a measure which successfully measures the multi-neighborhood level roughness. Our measure uses
the mean curvature, which is an intrinsic property of the surface to compute the surface roughness. The model is scaled
to a unit sphere before computing the mean curvature so that different models can be compared on the same grounds.
The benefits of using this measure are demonstrated with the help of relevant data. We also introduced the concept of
local roughness, global roughness and roughness profile of a surface. The computations are simple, making our
scheme easy to implement.

Our measure can also be used as a shape indicator of the surface. Depending on the application, our measure can help
the user in selecting a suitable smoothing method for a particular mesh and to make an intelligent decision in selecting
the number of iterations instead of guessing. We have demonstrated the usefulness of our measure in providing a
unified method to compare different smoothing algorithms. A comparison between the pre and post-updating methods
is done and we observed that the post-updating method generally produces better results than the pre-updating
method. The effect of the irregularities in the mesh on the surface roughness is also studied and an observation has
been made that the local roughness of the surface depends on the approximating mesh of the surface, while the global
roughness does not depend on the approximating mesh.

For future work, we would like to investigate the possibility of using our roughness measure for comparing the
performance of the decimation and watermarking methods.
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