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ABSTRACT 

 

This study aims to develop a scheme for rapidly interpolating non-uniform rational B-spline 

(NURBS) curves on CNC machines with limited interpolation time. NURBS curves are usually 

applied to represent free-form curves because of the flexibility in modeling processes. However, 

since interpolation time is usually limited for obtaining high-quality machining results, the copious 

and complicated operations limit NURBS curves in machining applications. In this paper, a fast 

scheme with a new computation structure, an extended basis function, and a moving data method 

is proposed for rapidly interpolating NURBS curves in limited interpolation time. Simulations and 

machining tests are given for testing the performance of the proposed scheme. Comparing with the 

existing approaches, the proposed approach provides good interpolation results with little 

interpolation time in actual machining processes. 

 

Keywords: NURBS curve, interpolation, CNC machine. 

 

 

1. INTRODUCTION 

In modern CAD/CAM systems, curves for parts such as dies, vanes, aircraft models, and car models are usually 

represented in parametric forms. However, since conventional CNC machines only provide linear and circular arc 

interpolators, the performance of conventional CAD/CAM/CNC systems is usually limited in applications. Recently, the 

CAD/CAM/CNC systems shown in Fig. 1 are widely applied to manufacturing processes for improving machining 

results. However, a segmentation unit is required to generate parametric curve information for CNC machines, and the 

interpolator in CNC machines requires a function for interpolating parametric curves.  

 

 
Fig. 1: The CAD/CAM/CNC systems with curve information transmission. 

 

Some researchers have proposed different approaches for precisely approximating planar parametric curves in 

CAD/CAM systems [6][8-10][13], and some investigators have proposed different interpolation algorithms for precisely 

interpolating parametric curves on CNC machines [1-5][11][14-17]. The approximation [6][8-10][13] in CAD/CAM 

systems is usually implemented on off-line computation systems and thus the computation time may not be a critical 

problem. However, for obtaining good machining results, the interpolation algorithms [1-5][11][14-17] must be 

implemented on CNC machines with limited interpolation time. Thus, the copious and complicated operations of 

NURBS curves usually limit the machining performances of interpolation algorithms [1-5][11][14-17] in actual 

machining applications. 

In this paper, a fast scheme is proposed to reduce the computation time for interpolating NURBS curves. A new 

computation structure of NURBS curves, an extended branch structure of basis functions, and a moving data method 

with common data registers are proposed for implementing NURBS curve interpolators in real-time. Since the tool 
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radius and length compensations are usually required in actual machining processes, interpolators must also 

interpolate the derivatives of NURBS curves in limited interpolation time. To efficiently compute NURBS curves and 

their derivatives, a new computation structure is proposed by considering NURBS curves in extended space. 

Moreover, an extended branch structure is developed for simultaneously computing basis functions and their 

derivatives. The basis function with extended branch structure used for simultaneously computing basis functions and 

their derivatives defines an extended basis function in this paper. Usually, interpolators spend much time for 

computing basis functions that have inherent properties of iteration structure and redundant computation. It is 

important to reduce the computation time of basis functions for interpolating NURBS curves. Cheng and Tsai [4] 

proposed an efficient computation method to compute basis functions and their derivatives in real-time. Because two 

adjacent basis functions require the same basis functions from sub-orders, only a single run of computation for the 

same order of basis functions is required and can be reused for higher-order calculation. The computation method 

proposed by Cheng and Tsai [4] considers the tree structure of a basis function with the same index-of-sum. In this 

paper, a new computation method considering the tree structures of basis functions with adjacent index-of-sum is 

proposed for further reducing the computation time of basis functions and their derivatives. By analyzing the tree 

structures of basis functions, a moving data method with common data registers is proposed for efficiently computing 

basis functions with adjacent index-of-sum. Finally, simulations and machining tests are given to test the performance 

of the proposed approach in this paper. Simulation results indicate that the proposed approach not only provides 

good interpolation results but also needs little interpolation time for interpolating NURBS curves. The machining tests 

performed on a vertical machining center show that the proposed scheme is feasible for interpolating NURBS curves in 

limited interpolation time on CNC machines. 

 

2. REVIEW OF NURBS CURVES 

The formulas of NURBS curves are given by [4][12] 
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where i is the index-of-sum; n is the upper index-of-sum and (n+1) denotes the number of control points; iP  are 

control points for shaping NURBS curves; iw  are the corresponding weights of control points iP ; )(, uN pi  are basis 

functions of a NURBS curve and p is the degree of )(, uN pi ; )(, uR pi  is the rational basis function of a NURBS curve. 

The recurrence formulas for computing basis functions )(, uN pi are shown in Eqn. (2.3). 
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where iu  are knots of a NURBS curve. The knot vector U formed by serial knots are given by Eqn. (2.4). 

                                                                        [ ]TpnuuuU 110 ..... ++=                                                                (2.4) 

Fig. 2 shows the branch structure of basis functions )(, uN pi . 
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Fig. 2: The branch structure of basis functions )(, uN pi . 

 

The first and the second derivatives of NURBS curves are given by Eqns. (2.5)-(2.6) [4][12]. 
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The first and the second derivatives of basis functions, )()1(, uN pi  and )()2(, uN pi , are given by applying the kth derivatives 

of basis functions as shown in Eqn. (2.9) [4][12]. 
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Eqn. (2.10) and Eqn. (2.11) represent the first and the second derivatives of basis functions, respectively. 
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3. DESIGN OF A FAST SCHEME FOR INTERPOLATING NURBS CURVES 

 

3.1 The Computation Structure of NURBS Curves 

Referring to the formulas of NURBS curves, Eqn. (2.1) is rewritten as 

                                                                       ∑
=

=⋅
n

i

iipi PwuNuPuW

0

, )()()(                                                              (3.1) 



 

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 31-40 

 

34 

where the function )(uW  is defined by Eqn. (3.2).  
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By representing Eqn. (3.1) and Eqn. (3.2) together, new curve functions )(ur  and new control points ir  are derived 

by Eqns. (3.3)-(3.4). 
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Eqn. (3.5) obtained from Eqns. (3.3)-(3.4) denotes the formula of NURBS curves in extended space. 
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Based on Eqn. (3.5), the derivatives of curve functions )(ur  are derived by Eqns. (3.6)-(3.7).  
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Eqns. (3.5)-(3.7) describe the structure for computing NURBS curves )(uP  and their derivatives )()1( uP  and )()2( uP . 

The computation structure is summarized as follows: 

1) Compute basis functions )(, uN pi  and their derivatives, 
du

udN pi )(,
 and 
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3) Compute NURBS curves )(uP  and their derivatives )()1( uP  and )()2( uP  by 

21

11

)(

)(
)(

ur

ur
uP = ; 

21

2111)1(

)(

)(
)()(

)(
)(

ur

uP
du

udr

du

udr

du

udP
uP

⋅







−









== ; 

21

2121

2

2

11

2

2

2

2
)2(

)(

)()(
2)(

)()(

)(
)(

ur

du

udP

du

udr
uP

du

urd

du

urd

du

uPd
uP

⋅







⋅−⋅










−











== . 



 

Computer-Aided Design & Applications, Vol. 4, Nos. 1-4, 2007, pp 31-40 

 

35 

Clearly, comparing with the existing approach as shown in Eqns. (2.1)-(2.2) and Eqns. (2.5)-(2.8), the computation 

structure shown in Eqns. (3.5)-(3.7) provides an efficient method for computing NURBS curves and their derivatives. 

 

3.2 The Extended Branch Structure of Basis Functions 

The derivatives of NURBS curves are obtained by applying the computation structure as shown in Eqns. (3.5)-(3.7). 

Clearly, the derivatives of basis functions are required for computing derivatives of NURBS curves. Based on the 

definition of basis functions, the first and the second derivatives of basis functions are derived in Eqn. (3.8) and Eqn. 

(3.9), respectively. 
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For concisely representing the derivative functions, Eqn. (3.8) and Eqn. (3.9) are further rewritten in Eqn. (3.10) and 

Eqn. (3.11), respectively. 
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where rational functions ( )pi  ,α , ( )pi  ,β , ( )pi  ,γ , and ( )pi  ,Ω  are defined in Eqn. (3.12). 
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Comparing with Eqn. (2.3), the recurrence formulas for computing derivatives, 
du

udN pi )(,
 and 

2

,
2

)(

du

uNd pi
, are similar 

to the recurrence formula for computing basis functions )(, uN pi . Thus, the branch structure composed of Eqn. (2.3), 

Eqn. (3.8), and Eqn. (3.9) defines an extended branch structure in this paper. Accordingly, an extended basis function 

with the extended branch structure is applied to efficiently and simultaneously compute basis functions )(, uN pi  and 

their derivatives, 
du

udN pi )(,
 and 

2

,
2

)(

du

uNd pi
. 

Fig. 3 shows the extended branch structure. Comparing with the existing branch structure as shown in Fig. 2, the 

extended branch structure simultaneously computes basis functions and their derivatives by using common rational 

functions ( )pi  ,α , ( )pi  ,β , ( )pi  ,γ  and ( )pi  ,Ω . 

 

 
Fig. 3: The extended branch structure. 
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3.3 The Moving Data Method 

The computation structure as shown in Eqns. (3.5)-(3.7) and the extended branch structure as shown in Fig. 3 are 

applied to efficiently compute NURBS curves and their derivatives. However, the tree structure of basis functions 

usually spends much computation time in interpolation processes. In this paper, a moving data method with common 

data registers is proposed by analyzing the tree structures of basis functions with adjacent index-of-sum. 

Considering the tree structure as shown in Fig. 4., the basis functions )(4, uNi  are affected over the parameter range 

from iu  to 14++iu . For instance, the basis function )(4,0 uN  is affected over the parameter range from 0u  to 5u  and the 

basis function )(4,1 uN  is affected over the parameter range from 1u  to 6u . For conveniently analyzing the computation 

of basis functions )(4, uNi  with different parameter ranges, the representation functions j
iK  are defined as the basis 

functions with parameter u within the range [ iju + , 1++iju ). For instance, 0
iK  denote the representation functions of 

)(4, uNi  with parameter u within the range [ )1 , +ii uu ; 1
iK  denote the representation functions of )(4, uNi  with 

parameter u within the range [ )21  , ++ ii uu ; j
iK  denote the representation functions of )(4, uNi  with parameter u within 

the range [ )1 , +++ jiji uu . The representation functions j
iK  with different index-of-sum are arranged in Fig. 5. 

 

 
Fig. 4: The tree structure of basis functions )(4, uNi  with p=4 and n=8. 

 

 
Fig. 5: The representation functions with different index-of-sum (p=4 and n=8). 

 

As shown in Fig. 5, some conclusions are obtained as follows: 

• The basis functions )(, uN pi  are affected over the parameter range from iu  to 1++ piu . 
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• The basis functions )(, uN pi  are affected by (p+1) representation functions. 

• The computation of basis functions )(, uN pi  can be divided into three categories as 

- Category 1: The parameter u is in the range [ )puu  ,0 . For each range [ )1 , +ii uu  with pi < , there are 

(i+1) basis functions, )( ...., ),( ,,0 uNuN pip , that must be concerned for computing NURBS curves. 

- Category 2: The parameter u is in the range [ )1 , +np uu . For each range [ )1 , +ii uu  with 1+<≤ nip , 

there are (p+1) basis functions, )( ...., ),( ,, uNuN ppipi + , that must be concerned for computing 

NURBS curves. 

- Category 3: The parameter u is in the range [ )11  , +++ pnn uu . For each range [ )1 , +ii uu  with 

11 ++<≤+ pnin , there are (n+p+1-i) basis functions, )( ...., ),( ,, uNuN pnppi− , that must be 

concerned for computing NURBS curves. 

Therefore, instead of (n+1) basis functions in Eqn. (2.1), (p+1) basis functions at most are required for interpolating 

NURBS curves. 

Fig. 6 shows the tree structure of basis functions )(4,1 uNi+ . Comparing with the tree structure of basis functions )(4, uNi  

as shown in Fig. 4, some data in registers can be reused for computing basis functions )(4,1 uNi+ . Some registers in gray 

area of Fig. 6 denote the common data registers for computing basis functions )(4, uNi  and )(4,1 uNi+ . Note that 

)(4, uNi  and )(4,1 uNi+  are basis functions with adjacent index-of-sum. Therefore, for efficiently computing basis 

functions )(4,1 uNi+ , common data registers are moved from the tree structure of basis functions )(4, uNi  to the tree 

structure of basis functions )(4,1 uNi+ . The method by moving common data registers is defined as the moving data 

method in this paper. 

 

 
Fig. 6: The tree structure of basis functions )(4,1 uNi+  with p=4 and n=8. 

 

4. SIMULATIONS AND MACHINING TESTS 

 

4.1 Interpolation Time for Interpolating a NURBS Curve Point 

A personal computer with DOS operating system and a Pentium 200 MHz CPU is employed to verify the computation 

efficiency of different approaches. The recorded interpolation time is the average value of the time for computing 

10,000 interpolating points. A NURBS curve with different degrees, p, is applied in simulations. Tab. 1. shows the 

interpolation time compared with different approaches. Clearly, the conventional approach provides the longest 

interpolation time and the existing approach provides shorter interpolation time than the conventional approach. The 

proposed approach with a new computation structure, an extended basis function, and a moving data method 

provides the shortest interpolation time. Usually, the degree of NURBS curves is closely related to the interpolation 

time. Tab. 1 shows that raising the degree substantially increases the interpolation time of applying conventional and 
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existing approaches. The increasing rates of conventional and existing approaches are 18.7 and 13.8, respectively. By 

applying the proposed approach, raising the degree slightly increases the interpolation time. The increasing rate is 4.3. 

Therefore, the proposed approach is more suitable for interpolating NURBS curves with higher degrees. Also, the 

simulation results indicate that the proposed approach is applicable for implementing real-time NURBS curve 

interpolators on CNC machines. 

 

Degree, p  

1 2 3 4 5 

 

Increasing rate 

Conventional approach [12] 22 

( µsec ) 

49 

( µsec ) 

110 

( µsec ) 

214 

( µsec ) 

434 

( µsec ) 
7.18

22

22434
≅

−
 

Existing approach [4] 20 

( µsec ) 

47 

( µsec ) 

95 

( µsec ) 

143 

( µsec ) 

296 

( µsec ) 
8.13

20

20296
≅

−
 

Proposed approach 4 

( µsec ) 

8 

( µsec ) 

11 

( µsec ) 

16 

( µsec ) 

21 

( µsec ) 
3.4

4

421
≅

−
 

Tab. 1: The interpolation time compared with different approaches. 

 

4.2 NURBS Curve Interpolation Test 

A circular NURBS curve with diameter 20 millimeters is applied to test the interpolation accuracy of the proposed 

approach. Fig. 7 shows the errors of interpolation points around the applied NURBS curve. The maximum error is 
3107.1 −×  µm  that is smaller than the least unit of 1 µm  in conventional CNC machines. 

 

 
Fig. 7: The absolute errors of interpolation points. 

 

4.3 NURBS Curve Machining Test 

The proposed scheme is applied to a LEADWELL MCV-OP CNC machining center composed of an industrial PC, a 

DSP-based motion control card, and a mechanical system with three 3-phase Panasonic AC servo packs. Fig. 8 shows 

the applied LEADWELL MCV-OP CNC machining center. The industrial PC with a Pentium III CPU is used to provide 

functions including the interface for human and machine operations, the interpreter for interpreting NC codes, logical 

controller for controlling I/O devices, the motion generator for generating motion commands, and the central processor 

for handling machining procedures. The DSP-based motion control card with a high-performance TI TMS320C32 

digital signal processor (DSP) is applied to interpolate motion commands and to control three AC servo packs at a 

sampling period of 1 ms. Some functions are also implemented on the DSP-based motion control card for accessing 

and controlling external hardware. The industrial PC sends motion commands to the DSP-based motion control card 

via dual port RAM. For instance, the motion command of a NURBS curve includes the upper index-of-sum, degree, 

control points, weights, and knot vector. 
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Fig. 8: LEADWELL MCV-OP CNC machining center. 

 

Fig. 9 shows the machining results of circle commands with different interpolation approaches. Fig. 9(a), Fig. 9(b), and 

Fig. 9(d) are machining results of applying conventional interpolation method. Fig. 9(c) is the machining result of 

applying the proposed interpolation scheme. Tab. 2 tabulates the machining tests with different interpolation 

approaches. For conventional approaches, increasing the feedrate command usually increases the roundness of 

machining results. The roundness is increased from 16 µm to 24 µm when the feedrate command is increased from 

1,000 
min

mm  to 5,000 
min

mm . However, by applying the proposed approach in this paper, the roundness is 

maintained at 14 µm even though the feedrate command is given as 3,000 
min

mm . Although some factors, such as 

mechanical factors and control factors of motion systems, may significantly affect machining results, the results shown 

in Fig. 9 and Tab. 2 indicate that the proposed scheme provides good interpolation results and is feasible for 

implementation on CNC machines. 

 

 
 

Fig. 9: NURBS curve machining results. 

 

 Fig. 9(a) Fig. 9(b) Fig. 9(c) Fig. 9(d) 

Feedrate (
min

mm ) 1,000 5,000 3,000 3,000 

Measured radius (mm) 19.439 19.423 19.438 19.434 

Roundness ( µm) 16 24 14 20 

 

Tab. 2: The machining tests with different interpolation approaches. 
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5. CONCLUSIONS 

In this paper, a fast scheme with a new computation structure, an extended basis function, and a moving data method 

is proposed to reduce the time for interpolating NURBS curves. The computation structure considering the formula in 

extended space provides an efficient method for computing NURBS curves and their derivatives. By applying the 

extended branch structure, the extended basis function provides a timesaving approach for simultaneously computing 

basis functions and derivatives. The moving data method significantly reduces the interpolation time by using common 

data registers and the tree structures of basis functions with adjacent index-of-sum. Some simulation and machining 

results indicate that the proposed scheme provides good computation efficiency and good interpolation results for 

interpolating NURBS curves on CNC machines. 
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